

B. Leib

Recap: MAP Solution
Minimize the negative logarithm
$-\log p(\mathbf{w} \mathbf{X}, \mathbf{t}, \beta, \alpha) \propto -\log p(\mathbf{t} \mathbf{X}, \mathbf{w}, \beta) - \log p(\mathbf{w} \alpha)$
$-\log p(\mathbf{t} \mathbf{X}, \mathbf{w}, eta) = rac{eta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 + ext{const}$
$-\log p(\mathbf{w} \alpha) = \frac{\alpha}{2}\mathbf{w}^T\mathbf{w} + \text{const}$
 The MAP solution is therefore
$rg\min_{\mathbf{w}} \; rac{eta}{2} \sum_{n=1}^N \{y(\mathbf{x}_n,\mathbf{w}) - t_n\}^2 + rac{lpha}{2} \mathbf{w}^T \mathbf{w}$
⇒ Maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error (with $\lambda = \frac{\alpha}{\beta}$).
B. Leibe

_

Recap: Computational Complexity

Complexity of GP model

- > Training effort: $\mathcal{O}(N^3)$ through matrix inversion
 - Test effort: $\mathcal{O}(N^2)$ through vector-matrix multiplication

RVNTHAA

UNIVERS

Complexity of basis function model

- > Training effort: $\mathcal{O}(M^3)$
- \succ Test effort: $\mathcal{O}(M^2)$

Discussion

- $\succ\,$ If the number of basis functions M is smaller than the number of data points N, then the basis function model is more efficient.
- However, advantage of GP viewpoint is that we can consider covariance functions that can only be expressed by an infinite number of basis functions.
- Still, exact GP methods become infeasible for large training sets.
 8. Leibe

7

B. Leibe

criteria.

Recap: Detailed Balance Detailed balance means > If we pick a state from the target distribution $p(\mathbf{z})$ and make a transition under T to another state, it is just as likely that we will pick \mathbf{z}_{A} and go from \mathbf{z}_{A} to \mathbf{z}_{B} than that we will pick \mathbf{z}_{B} and go from z_B to z_A . It can easily be seen that a transition probability that satisfies detailed balance w.r.t. a particular distribution will leave that distribution invariant, because

B. Leibe

$$\sum_{\mathbf{z}'} p^{\star}(\mathbf{z}') T(\mathbf{z}', \mathbf{z}) = \sum_{\mathbf{z}'} p^{\star}(\mathbf{z}) T(\mathbf{z}, \mathbf{z}')$$
$$= p^{\star}(\mathbf{z}) \sum_{\mathbf{z}'} p(\mathbf{z}'|\mathbf{z}) = p^{\star}(\mathbf{z})$$

Recap: Gradient Descent • Iterative minimization • Start with an initial guess for the parameter values $w_{kj}^{(0)}$. • Move towards a (local) minimum by following the gradient. • Basic strategies • "Batch learning" $w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$ • "Sequential updating" $w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$ where $E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$ B. Leibe 57

RVVIII A

Recap: Logistic Regression

- Let's consider a data set $\{\phi_n, t_n\}$ with n = 1, ..., N, where $\phi_n = \phi(\mathbf{x}_n)$ and $t_n \in \{0, 1\}$, $\mathbf{t} = (t_1, ..., t_N)^T$.
- With $y_n = p(\mathcal{C}_1 | \pmb{\phi}_n)$, we can write the likelihood as

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1-1}$$

- Define the error function as the negative log-likelihood $E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w})$

$$= -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

RWTHAAC

> This is the so-called cross-entropy error function.

Image source: Lucas Bever

T

Augmented training data

(from one original image)

RNTHAA

