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Announcements

• Today, I’ll summarize the most important points from 

the lecture.

 It is an opportunity for you to ask questions…

 …or get additional explanations about certain topics.

 So, please do ask.

• Today’s slides are intended as an index for the lecture.

 But they are not complete, won’t be sufficient as only tool.

 Also look at the exercises – they often explain algorithms in 

detail.

• Exam procedure

 Closed-book exam, the core exam time will be 2h.

 We will send around an announcement with the exact starting 

times and places by email.
2
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• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes
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 Neural Networks

 Backpropagation & Optimization
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Recap: Regression

• Learning to predict a continuous function value

 Given: training set X = {x1, …, xN}

with target values  T = {t1, …, tN}.

 Learn a continuous function y(x) to predict the function value 

for a new input x.

• Define an error function E(w) to optimize

 E.g., sum-of-squares error

 Procedure: Take the derivative and set it to zero

5
B. Leibe Image source: C.M. Bishop, 2006
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Recap: Least-Squares Regression

• Setup

 Step 1: Define

 Step 2: Rewrite

 Step 3: Matrix-vector notation

 Step 4: Find least-squares solution

 Solution:

6
B. Leibe

~xi =

µ
xi
1

¶
; ~w =

µ
w

w0

¶

with

Slide credit: Bernt Schiele
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Recap: Regularization

• Problem: Overfitting

 Many parameters & little data  tendency to overfit to the noise

 Side effect: The coefficient values get very large.

• Workaround: Regularization

 Penalize large coefficient values

 Here we’ve simply added a quadratic regularizer, which is 

simple to optimize

 The resulting  form of the problem is called Ridge Regression.

 (Note: w0 is often omitted from the regularizer.)
8
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Recap: Probabilistic Regression

• First assumption: 

 Our target function values t are generated by adding noise to 

the ideal function estimate:

• Second assumption:

 The noise is Gaussian distributed.

9
B. Leibe

Target function

value

Regression function Input value Weights or

parameters

Noise

Mean Variance

(¯ precision)

Slide adapted from Bernt Schiele
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Recap: Probabilistic Regression

• Given

 Training data points:

 Associated function values:

• Conditional likelihood (assuming i.i.d. data)

 Maximize w.r.t. w, ¯

10
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X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]T

Generalized linear

regression function

Slide adapted from Bernt Schiele
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Recap: Maximum Likelihood Regression

• Setting the gradient to zero:

 Least-squares regression is equivalent to Maximum Likelihood 

under the assumption of Gaussian noise.

11
B. Leibe

Same as in least-squares

regression!

Slide adapted from Bernt Schiele

©= [Á(x1); : : : ; Á(xn)]
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Recap: Role of the Precision Parameter

• Also use ML to determine the precision parameter ¯:

• Gradient w.r.t. ¯:

 The inverse of the noise precision is given by the residual 

variance of the target values around the regression function.

12
B. Leibe
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Recap: Predictive Distribution

• Having determined the parameters w and ¯, we can 

now make predictions for new values of x.

• This means

 Rather than giving a point

estimate, we can now also 

give an estimate of the 

estimation uncertainty.

13
B. Leibe Image source: C.M. Bishop, 2006
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Recap: Maximum-A-Posteriori Estimation

• Introduce a prior distribution over the coefficients w.

 For simplicity, assume a zero-mean Gaussian distribution

 New hyperparameter ® controls the distribution of model 

parameters.

• Express the posterior distribution over w.

 Using Bayes’ theorem:

 We can now determine w by maximizing the posterior.

 This technique is called maximum-a-posteriori (MAP).
14
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Recap: MAP Solution

• Minimize the negative logarithm

• The MAP solution is therefore

 Maximizing the posterior distribution is equivalent to 

minimizing the regularized sum-of-squares error (with            ).
15
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Recap: MAP Solution (2)

• Setting the gradient to zero:

B. Leibe

©= [Á(x1); : : : ; Á(xn)]

16

Effect of regularization:

Keeps the inverse well-conditioned
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Recap: Bayesian Curve Fitting

• Given

 Training data points:

 Associated function values:

 Our goal is to predict the value of t for a new point x.

• Evaluate the predictive distribution

 Noise distribition – again assume a Gaussian here

 Assume that parameters ® and ¯ are fixed and known for now.
17
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X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]T

What we just computed for MAP
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Recap: Bayesian Curve Fitting

• Under those assumptions, the posterior distribution is a 

Gaussian and can be evaluated analytically:

 where the mean and variance are given by

 and S is the regularized covariance matrix

18
B. Leibe Image source: C.M. Bishop, 2006
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Recap: Loss Functions for Regression

• Optimal prediction

 Minimize the expected loss

 Under squared loss, the optimal regression function is the 

mean E [t|x] of the posterior p(t|x) (“mean prediction”).

 For generalized linear regression function and squared loss:

19
B. LeibeSlide adapted from Stefan Roth Image source: C.M. Bishop, 2006

Mean prediction
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Recap: Loss Functions for Regression

• The squared loss is not the only possible choice

 Poor choice when conditional distribution p(t|x) is multimodal.

• Simple generalization: Minkowski loss

 Expectation

• Minimum of E[Lq] is given by  

 Conditional mean    for q = 2,

 Conditional median for q = 1,

 Conditional mode for q = 0.
21
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E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt
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Recap: Linear Basis Function Models

• Generally, we consider models of the following form

 where Áj(x) are known as basis functions.

 In the simplest case, we use linear basis functions: Ád(x) = xd.

• Other popular basis functions

22
B. Leibe

Polynomial Gaussian Sigmoid
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Recap: Regularized Least-Squares

• Consider more general regularization functions

 “Lq norms”:

• Effect: Sparsity for q  1.

 Minimization tends to set many coefficients to zero
23

B. Leibe Image source: C.M. Bishop, 2006
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Recap: The Lasso

• L1 regularization (“The Lasso”)

 The solution will be sparse (only few coefficients non-zero)

 The L1 penalty makes the problem non-linear.

 There is no closed-form solution.

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): 

 Laplacian distribution

24
B. Leibe

with

Image source: Wikipedia
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Recap: Kernel Ridge Regression

• Dual definition

 Instead of working with w, substitute w = ©Ta into J(w) and 

write the result using the kernel matrix K = ©©T :

 Solving for a, we obtain

• Prediction for a new input x:

 Writing k(x) for the vector with elements

The dual formulation allows the solution to be entirely 

expressed in terms of the kernel function k(x,x’).
26

B. Leibe Image source: Christoph Lampert
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Recap: Properties of Kernels

• Theorem

 Let k: X × X ! R be a positive definite kernel function. Then 

there exists a Hilbert Space H and a mapping ' : X ! H such 

that

 where h. , .iH is the inner product in H.

• Translation

 Take any set X and any function k : X × X ! R.

 If k is a positive definite kernel, then we can use k to learn a 

classifier for the elements in X!

• Note

 X can be any set, e.g. X = "all videos on YouTube" or X = "all 

permutations of {1, . . . , k}", or X = "the internet".
27

Slide credit: Christoph Lampert
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Recap: The “Kernel Trick”

Any algorithm that uses data only in the form 

of inner products can be kernelized.

• How to kernelize an algorithm

 Write the algorithm only in terms of inner products.

 Replace all inner products by kernel function evaluations.

 The resulting algorithm will do the same as the linear 
version, but in the (hidden) feature space H.

 Caveat: working in H is not a guarantee for better performance. 

A good choice of k and model selection are important!

28
B. LeibeSlide credit: Christoph Lampert
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Recap: How to Check if a Function is a Kernel

• Problem:

 Checking if a given k : X × X ! R fulfills the conditions for a 

kernel is difficult:

 We need to prove or disprove

for any set x1,… , xn 2 X and any t 2 Rn for any n 2 N.

• Workaround:

 It is easy to construct functions k that are positive definite 

kernels.

29
B. LeibeSlide credit: Christoph Lampert
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Recap: Gaussian Process

• Gaussian distribution

 Probability distribution over scalars / vectors.

• Gaussian process (generalization of Gaussian distrib.)

 Describes properties of functions.

 Function: Think of a function as a long vector where each entry 

specifies the function value f(xi) at a particular point xi.

 Issue: How to deal with infinite number of points?

– If you ask only for properties of the function at a finite number of 

points… 

– Then inference in Gaussian Process gives you the same answer if 

you ignore the infinitely many other points.

• Definition

 A Gaussian process (GP) is a collection of random variables any 

finite number of which has a joint Gaussian distribution.
31
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Recap: Gaussian Process

• A Gaussian process is completely defined by

 Mean function m(x) and

 Covariance function k(x,x’)

 We write the Gaussian process (GP)

32
B. Leibe

m(x) = E[f(x)]

k(x;x0) = E[(f(x)¡m(x)(f(x0)¡m(x0))]

f(x) » GP(m(x); k(x;x0))

Slide adapted from Bernt Schiele
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Recap: GPs Define Prior over Functions

• Distribution over functions:

 Specification of covariance function implies distribution over 

functions.

 I.e. we can draw samples from the distribution of functions 

evaluated at a (finite) number of points.

 Procedure

– We choose a number of input points

– We write the corresponding covariance

matrix (e.g. using SE) element-wise:

– Then we generate a random Gaussian

vector with this covariance matrix:
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X?

K(X?;X?)

f? »N(0;K(X?;X?))

Example of 3 functions 

sampled
Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006
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Recap: Prediction with Noise-free Observations

• Assume our observations are noise-free:

 Joint distribution of the training outputs f and test outputs f*
according to the prior:

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations:

 with:
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B. LeibeSlide adapted from Bernt Schiele

·
f

f?

¸
» N

µ
0;

·
K(X; X) K(X; X?)

K(X?; X) K(X?;X?)

¸¶

¹f? = E[f?jX;X?; t]

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: Prediction with Noisy Observations

• Joint distribution of the observed values and the test 

locations under the prior:

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations:

 with:

 This is the key result that defines Gaussian process regression!

– Predictive distribution is Gaussian whose mean and variance depend 

on test points X* and on the kernel k(x,x’), evaluated on X.
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¹f? = E[f?jX;X?; t]
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Recap: GP Regression Algorithm

• Very simple algorithm

 Based on the following equations (Matrix inv.  Cholesky fact.)

36
B. Leibe Image source: Rasmussen & Williams, 2006
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Recap: Computational Complexity

• Complexity of GP model

 Training effort: O(N3) through matrix inversion

 Test effort: O(N2) through vector-matrix multiplication

• Complexity of basis function model

 Training effort: O(M3)

 Test effort: O(M2)

• Discussion

 If the number of basis functions M is smaller than the number of 

data points N, then the basis function model is more efficient.

 However, advantage of GP viewpoint is that we can consider 

covariance functions that can only be expressed by an infinite 

number of basis functions.

 Still, exact GP methods become infeasible for large training sets.
37
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Recap: Bayesian Model Selection for GPs

• Goal

 Determine/learn different parameters of Gaussian Processes

• Hierarchy of parameters

 Lowest level

– w – e.g. parameters of a linear model.

 Mid-level (hyperparameters)

– µ – e.g. controlling prior distribution of w.

 Top level

– Typically discrete set of model structures Hi.

• Approach

 Inference takes place one level at a time.

38
B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Lowest Level

• Posterior of the parameters w is given by Bayes’ rule

• with

 p(t|X,w,Hi) likelihood and

 p(w|µ,Hi) prior parameters w,

 Denominator (normalizing constant) is independent of the 

parameters and is called marginal likelihood.
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B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Mid Level

• Posterior of parameters µ is again given by Bayes’ rule

• where

 The marginal likelihood of the previous level p(t|X,µ,Hi)

plays the role of the likelihood of this level.

 p(µ|Hi) is the hyperprior (prior of the hyperparameters)

 Denominator (normalizing constant) is given by:

40
B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Top Level

• At the top level, we calculate the posterior of the model

• where

 Again, the denominator of the previous level p(t|X,Hi)

plays the role of the likelihood.

 p(Hi) is the prior of the model structure.

 Denominator (normalizing constant) is given by:
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B. LeibeSlide credit: Bernt Schiele
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Recap: Bayesian Model Selection

• Discussion

 Marginal likelihood is main difference to non-Bayesian methods

 It automatically incorporates a trade-off

between the model fit and the model

complexity:

– A simple model can only account

for a limited range of possible

sets of target values – if a simple

model fits well, it obtains a high

marginal likelihood.

– A complex model can account for

a large range of possible sets of

target values – therefore, it can

never attain a very high marginal 

likelihood.
42

B. LeibeSlide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: Sampling Idea

• Objective: 

 Evaluate expectation of a function f(z)

w.r.t. a probability distribution p(z).

• Sampling idea

 Draw L independent samples z(l) with l = 1,…,L from p(z).

 This allows the expectation to be approximated by a finite sum

 As long as the samples z(l) are drawn independently from p(z), 

then

 Unbiased estimate, independent of the dimension of z!
44
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f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006
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Recap: Rejection Sampling

• Assumptions

 Sampling directly from p(z) is difficult.

 But we can easily evaluate p(z) (up to some norm. factor Zp):

• Idea

 We need some simpler distribution q(z) (called proposal 

distribution) from which we can draw samples.

 Choose a constant k such that: 

• Sampling procedure

 Generate a number z0 from q(z).

 Generate a number u0 from the

uniform distribution over [0,kq(z0)].

 If                    reject sample, otherwise accept.

45
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p(z) =
1

Zp

~p(z)

8z : kq(z) ¸ ~p(z)

Slide adapted from Bernt Schiele

u0 > ~p(z0)

Image source: C.M. Bishop, 2006
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Recap: Sampling from a pdf

• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution:

• To draw samples from this pdf, we can invert the 

cumulative distribution function:

46
B. Leibe

F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Recap: Importance Sampling

• Approach

 Approximate expectations directly

(but does not enable to draw samples from p(z) directly).

 Goal:

• Idea

 Use a proposal distribution q(z) from which it is easy to sample.

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z).

47
B. LeibeSlide adapted from Bernt Schiele

Importance weights

Image source: C.M. Bishop, 2006
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Recap: Sampling-Importance-Resampling

• Motivation: Avoid having to determine the constant k.

• Two stages

 Draw L samples z(1),…, z(L) from q(z).

 Construct weights using importance weighting

and draw a second set of samples z(1),…, z(L) with probabilities 

given by the weights w(1),…, w(L).

• Result

 The resulting L samples are only approximately distributed 

according to p(z), but the distribution becomes correct in the 

limit L ! 1.
48
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• Overview

 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea

 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Approach

 At each time step, we generate a candidate 

sample from the proposal distribution and 

accept the sample according to a criterion.

 Different variants of MCMC for different

criteria.

Recap: MCMC – Markov Chain Monte Carlo

49
B. LeibeSlide adapted from Bernt Schiele Image source: C.M. Bishop, 2006
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Recap: Markov Chains – Properties

• Invariant distribution

 A distribution is said to be invariant (or stationary) w.r.t. a 

Markov chain if each step in the chain leaves that distribution 

invariant.

 Transition probabilities:

 For homogeneous Markov chain, distribution p*(z) is invariant if:

• Detailed balance

 Sufficient (but not necessary) condition to ensure that a 

distribution is invariant:

 A Markov chain which respects detailed balance is reversible.
50
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T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Recap: Detailed Balance

• Detailed balance means

 If we pick a state from the target distribution p(z) and make a 

transition under T to another state, it is just as likely that we 

will pick zA and go from zA to zB than that we will pick zB and 

go from zB to zA.

 It can easily be seen that a transition probability that satisfies 

detailed balance w.r.t. a particular distribution will leave that 

distribution invariant, because

51
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Recap: MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

 New candidate samples always accepted if                        .

 The algorithm sometimes accepts a state with lower probability.

• Metropolis-Hastings algorithm

 Generalization: Proposal distribution not necessarily symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of considered transitions.
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q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

~p(z?) ¸ ~p(z(¿))

Slide adapted from Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: Gibbs Sampling

• Approach

 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).

– This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 

choosing the next variable.

• Properties

 The algorithm always accepts!

 Completely parameter free.

 Can also be applied to subsets of variables.
53
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: Linear Discriminant Functions

• Basic idea

 Directly encode decision boundary

 Minimize misclassification probability directly.

• Linear discriminant functions

 w, w0 define a hyperplane in RD.

 If a data set can be perfectly classified by a linear discriminant, 

then we call it linearly separable.
55
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y(x) =wTx+ w0

weight vector “bias”

(= threshold)

Slide adapted from Bernt Schiele
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y = 0
y > 0

y < 0
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Recap: Generalized Linear Discriminants

• Extension with non-linear basis functions 

 Transform vector x with M nonlinear basis functions Áj(x):

 Basis functions Áj(x) allow non-linear decision boundaries.

 Activation function g( ¢ ) bounds the influence of outliers.

 Disadvantage: minimization no longer in closed form.

• Notation

56
B. Leibe

with Á0(x) = 1

Slide adapted from Bernt Schiele
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Recap: Gradient Descent

• Iterative minimization

 Start with an initial guess for the parameter values        .

 Move towards a (local) minimum by following the gradient.

• Basic strategies

 “Batch learning”

 “Sequential updating”

where

57
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kj = w
(¿)

kj ¡ ´
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kj = w
(¿)
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E(w) =
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n=1
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Recap: Gradient Descent

• Example: Quadratic error function

• Sequential updating leads to delta rule (=LMS rule)

 where

 Simply feed back the input data point, weighted by the 

classification error.
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w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

= w
(¿)

kj ¡ ´±knÁj(xn)

±kn = yk(xn;w)¡ tkn

Slide adapted from Bernt Schiele

E(w) =

NX

n=1

(y(xn;w)¡ tn)
2

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: Probabilistic Discriminative Models

• Consider models of the form

with

• This model is called logistic regression.

• Properties

 Probabilistic interpretation

 But discriminative method: only focus on decision hyperplane

 Advantageous for high-dimensional spaces, requires less 

parameters than explicitly modeling p(Á|Ck) and p(Ck).

59
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p(C1jÁ) = y(Á) = ¾(wTÁ)

p(C2jÁ) = 1¡ p(C1jÁ)

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: Logistic Sigmoid

• Properties

 Definition:

 Inverse:

 Symmetry property:

 Derivative:

60
B. Leibe

d¾

da
= ¾(1¡ ¾)

¾(a) =
1

1 + exp(¡a)

a = ln

µ
¾

1¡ ¾

¶

¾(¡a) = 1¡¾(a)

“logit” function
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Recap: Logistic Regression

• Let’s consider a data set {Án,tn} with n = 1,…,N,

where                     and                 ,                            .

• With yn = p(C1|Án), we can write the likelihood as

• Define the error function as the negative log-likelihood

 This is the so-called cross-entropy error function.
61

Án = Á(xn) tn 2 f0;1g

p(tjw) =

NY

n=1

ytnn f1¡ yng1¡tn

E(w) = ¡ ln p(tjw)

= ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

t = (t1; : : : ; tN)T
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Recap: Gradient of the Error Function

• Gradient for logistic regression

• This is the same result as for the Delta (=LMS) rule

• We can use this to derive a sequential estimation 

algorithm.

 However, this will be quite slow…

 More efficient to use 2nd-order Newton-Raphson  IRLS
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rE(w) =

NX

n=1

(yn ¡ tn)Án

w
(¿+1)

kj = w
(¿)

kj ¡ ´(yk(xn;w)¡ tkn)Áj(xn)
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Recap: Iteratively Reweighted Least Squares

• Result of applying Newton-Raphson to logistic regression

• Very similar form to pseudo-inverse (normal equations)

 But now with non-constant weighing matrix R (depends on w).

 Need to apply normal equations iteratively.

 Iteratively Reweighted Least-Squares (IRLS)
63
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Recap: Softmax Regression

• Multi-class generalization of logistic regression

 In logistic regression, we assumed binary labels

 Softmax generalizes this to K values in 1-of-K notation.

 This uses the softmax function

 Note: the resulting distribution is normalized.
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tn 2 f0;1g

y(x;w) =

2
6664

P (y = 1jx;w)

P (y = 2jx;w)
...

P (y = Kjx;w)

3
7775 =

1
PK

j=1 exp(w>j x)

2
6664

exp(w>1 x)

exp(w>2 x)
...

exp(w>Kx)

3
7775
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Recap: Softmax Regression Cost Function

• Logistic regression

 Alternative way of writing the cost function

• Softmax regression

 Generalization to K classes using indicator functions.
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E(w) = ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

= ¡
NX

n=1

1X

k=0

fI (tn = k) ln P (yn = kjxn;w)g

E(w) = ¡
NX

n=1

KX

k=1

(
I (tn = k) ln

exp(w>k x)
PK

j=1 exp(w>j x)

)

rwk
E(w) = ¡

NX

n=1

[I (tn = k) lnP (yn = kjxn;w)]
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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• One output node per class

• Outputs

 Linear outputs With output nonlinearity

 Can be used to do multidimensional linear regression or 

multiclass classification.

Recap: Perceptrons

67
B. LeibeSlide adapted from Stefan Roth

Input layer

Weights

Output layer
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• Straightforward generalization

• Outputs

 Linear outputs with output nonlinearity

Recap: Non-Linear Basis Functions

68
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Feature layer

Weights

Output layer

Input layer

Mapping (fixed)
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• Straightforward generalization

• Remarks

 Perceptrons are generalized linear discriminants!

 Everything we know about the latter can also be applied here.

 Note: feature functions Á(x) are kept fixed, not learned!

Recap: Non-Linear Basis Functions
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Feature layer

Weights

Output layer

Input layer

Mapping (fixed)
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Recap: Perceptron Learning

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector.

• Translation

 This is the Delta rule a.k.a. LMS rule!

 Perceptron Learning corresponds to 1st-order (stochastic) 

Gradient Descent of a quadratic error function! 

70
B. LeibeSlide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)
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Recap: Loss Functions

• We can now also apply other loss functions

 L2 loss

 L1 loss:

 Cross-entropy loss

 Hinge loss

 Softmax loss

71
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 Logistic regression

 Least-squares regression

 Median regression

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification

 Multi-class probabilistic classification
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Recap: Multi-Layer Perceptrons

• Adding more layers

• Output

72
B. Leibe

Hidden layer

Output layer

Input layer

Slide adapted from Stefan Roth
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last 

layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight          in the direction of the gradient            

74
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L2 loss 

L2 regularizer

(“weight decay”) 
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Recap: Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of 

the gradient

• We consider those two steps separately

 Computing the gradients:  Backpropagation

 Adjusting the weights: Optimization techniques
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Recap: Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

76
B. LeibeSlide adapted from Geoff Hinton
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• Efficient propagation scheme

 yi is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer j and multiply with  yi. 

Recap: Backpropagation Algorithm
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B. LeibeSlide adapted from Geoff Hinton
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Recap: MLP Backpropagation Algorithm

• Forward Pass

for  k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

78
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• Backward Pass

for  k = l, l-1, ...,1 do

endfor
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 Forward differentiation needs one pass per node. Reverse-mode 

differentiation can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

Recap: Computational Graphs

79
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Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: Automatic Differentiation

• Approach  for obtaining the gradients

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the 

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
80

B. Leibe Image source: Christopher Olah, colah.github.io
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
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Recap: Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
82
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Augmented training data

(from one original image)

Image source: Lucas Beyer
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Recap: Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs)

 Normalize all inputs that an input unit sees to zero-mean, 

unit covariance.

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion).

83
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Recap: Choosing the Right Learning Rate

• Convergence of Gradient Descent

 Simple 1D example

 What is the optimal learning rate ´opt? 

 If E is quadratic, the optimal learning rate is given by the 

inverse of the Hessian

 Advanced optimization techniques try to

approximate the Hessian by a simplified form.

 If we exceed the optimal learning rate, 

bad things happen!
84

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Don’t go beyond

this point!
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Recap: Advanced Optimization Techniques

• Momentum

 Instead of using the gradient to change the position of the 

weight “particle”, use it to change the velocity.

 Effect: dampen oscillations in directions of high

curvature

 Nesterov-Momentum: Small variation in the implementation

• RMS-Prop

 Separate learning rate for each weight: Divide the gradient by 

a running average of its recent magnitude.

• AdaGrad

• AdaDelta

• Adam

85
B. Leibe Image source: Geoff Hinton

Some more recent techniques, work better 

for some problems. Try them.
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Recap: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
86

B. Leibe Image source: Yoshua Bengio
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Recap: Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower after that.
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Reduced

learning rate

T
ra

in
in

g
 e

rr
o
r

Epoch

Slide adapted from Geoff Hinton
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Recap: Glorot Initialization      [Glorot & Bengio, ‘10]

• Variance of neuron activations

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y. 

 We want the variance of the input and output of a unit to be 

the same, therefore n Var(Wi) should be 1. This means

 Or for the backpropagated gradient

 As a compromise, Glorot & Bengio propose to use

 Randomly sample the weights with this variance. That’s it.
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Recap: He Initialization                  [He et al., ‘15]

• Extension of Glorot Initialization to ReLU units

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Same basic idea: Output should have the input variance 

 However, the Glorot derivation was based on tanh units, 

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, proposed to use instead
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Recap: Batch Normalization     [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

• Effect

 Much improved convergence

90
B. Leibe
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Recap: Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training.

 Change network architecture for each data point, effectively 

training many different variants of the network.

 When applying the trained network, multiply activations with 

the probability that the unit was set to zero.

 Greatly improved performance
91
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: ImageNet Challenge 2012

• ImageNet

 ~14M labeled internet images

 20k classes

 Human labels via Amazon

Mechanical Turk

• Challenge (ILSVRC)

 1.2 million training images

 1000 classes

 Goal: Predict ground-truth 

class within top-5 responses

 Currently one of the top benchmarks in Computer Vision

93
B. Leibe

[Deng et al., CVPR’09]
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Recap: Convolutional Neural Networks

• Neural network with specialized connectivity structure

 Stack multiple stages of feature extractors

 Higher stages compute more global, more invariant features

 Classification layer at the end

94
B. Leibe

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to

document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Slide credit: Svetlana Lazebnik

“LeNet”

architecture
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Recap: CNN Structure

• Feed-forward feature extraction

1. Convolve input with learned filters

2. Non-linearity

3. Spatial pooling

4. (Normalization)

• Supervised training of convolutional 

filters by back-propagating 

classification error

95
B. LeibeSlide credit: Svetlana Lazebnik
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Recap: Intuition of CNNs

• Convolutional net

 Share the same parameters 

across different locations

 Convolutions with learned 

kernels

• Learn multiple filters

 E.g. 1000£1000 image

100 filters
10£10 filter size

 only 10k parameters

• Result: Response map

 size: 1000£1000£100

 Only memory, not params!
96

B. Leibe Image source: Yann LeCunSlide adapted from Marc’Aurelio Ranzato
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Recap: Convolution Layers

• All Neural Net activations arranged in 3 dimensions

 Multiple neurons all looking at the same input region, 

stacked in depth

 Form a single [1£1£depth] depth column in output volume.

97
B. LeibeSlide credit: FeiFei Li, Andrej Karpathy

Naming convention:
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Recap: Activation Maps

98
B. Leibe

5£5 filters

Slide adapted from FeiFei Li, Andrej Karpathy

Activation maps

Each activation map is a depth

slice through the output volume.
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Recap: Pooling Layers

• Effect:

 Make the representation smaller without losing too much 

information

 Achieve robustness to translations
99

B. LeibeSlide adapted from FeiFei Li, Andrej Karpathy
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Recap: AlexNet (2012)

• Similar framework as LeNet, but

 Bigger model (7 hidden layers, 650k units, 60M parameters)

 More data (106 images instead of 103)

 GPU implementation

 Better regularization and up-to-date tricks for training (Dropout)

100
Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012.
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Recap: VGGNet (2014/15) 

• Main ideas 

 Deeper network

 Stacked convolutional

layers with smaller

filters (+ nonlinearity)

 Detailed evaluation

of all components

• Results

 Improved ILSVRC top-5

error rate to 6.7%.

101
B. Leibe

Image source: Simonyan & Zisserman

Mainly used
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• Ideas: 

 Learn features at multiple scales

 Modular structure

Recap: GoogLeNet (2014)

102
B. Leibe

Inception

module
+ copies

Auxiliary classification 

outputs for training the 

lower layers (deprecated)

Image source: Szegedy et al.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: Residual Networks

• Core component

 Skip connections 

bypassing each layer

 Better propagation of 

gradients to the deeper

layers

 This makes it possible

to train (much) deeper

networks.
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B. Leibe
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Recap: Transfer Learning with CNNs

104
B. LeibeSlide credit: Andrej Karpathy

1. Train on

ImageNet

3. If you have a medium 

sized dataset, 

“finetune” instead: use 

the old weights as

initialization, train the 

full network or only 

some of the higher 

layers.

Retrain bigger 

part of the network

2. If small dataset: fix 

all weights (treat 

CNN as fixed feature

extractor), retrain 

only the classifier

I.e., replace the 

Softmax layer at 

the end
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Recap: Visualizing CNNs

105
Image source: M. Zeiler, R. Fergus

ConvNetDeconvNet
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Recap: Visualizing CNNs

106
B. LeibeSlide credit: Yann LeCun
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Recap: R-CNN for Object Deteection

107
B. LeibeSlide credit: Ross Girshick
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Recap: Faster R-CNN

• One network, four losses

 Remove dependence on

external region proposal

algorithm.

 Instead, infer region

proposals from same

CNN.

 Feature sharing

 Joint training

 Object detection in

a single pass becomes

possible.

108
Slide credit: Ross Girshick
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Recap: Fully Convolutional Networks

• CNN

• FCN

• Intuition

 Think of FCNs as performing a sliding-window classification,

producing a heatmap of output scores for each class

109
Image source: Long, Shelhamer, Darrell
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Recap: Image Segmentation Networks

• Encoder-Decoder Architecture

 Problem: FCN output has low resolution

 Solution: perform upsampling to get back to desired resolution

 Use skip connections to preserve higher-resolution information

110
Image source: Newell et al.
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: Neural Probabilistic Language Model

• Core idea

 Learn a shared distributed encoding (word embedding) for the 

words in the vocabulary.

112
B. LeibeSlide adapted from Geoff Hinton Image source: Geoff Hinton

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language 

Model, In JMLR, Vol. 3, pp. 1137-1155, 2003.
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Recap: word2vec

• Goal

 Make it possible to learn high-quality

word embeddings from huge data sets

(billions of words in training set).

• Approach

 Define two alternative learning tasks

for learning the embedding:

– “Continuous Bag of Words” (CBOW)

– “Skip-gram”

 Designed to require fewer parameters.

113
B. Leibe

Image source: Mikolov et al., 2015

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: word2vec CBOW Model

• Continuous BOW Model

 Remove the non-linearity

from the hidden layer

 Share the projection layer 

for all words (their vectors

are averaged)

 Bag-of-Words model

(order of the words does not 

matter anymore)

114
B. Leibe

Image source: Xin Rong, 2015

SUM

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


20

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: word2vec Skip-Gram Model

• Continuous Skip-Gram Model

 Similar structure to CBOW

 Instead of predicting the current

word, predict words 

within a certain range of

the current word.

 Give less weight to the more

distant words

• Implementation

 Randomly choose a number R 2 [1,C].

 Use R words from history and R words

from the future of the current word

as correct labels.

 R+R word classifications for each input.
115

B. Leibe
Image source: Xin Rong, 2015
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Problems with 100k-1M outputs

• Weight matrix gets huge!

 Example: CBOW model

 One-hot encoding for inputs

 Input-hidden connections are

just vector lookups.

 This is not the case for the

hidden-output connections!

 State h is not one-hot, and 

vocabulary size is 1M.

W’N£V has 300£1M entries

• Softmax gets expensive!

 Need to compute normaliza-

tion over 100k-1M outputs

116
B. Leibe

Image source: Xin Rong, 2015
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Recap: Hierarchical Softmax

• Idea

 Organize words in binary search tree, words are at leaves

 Factorize probability of word w0 as a product of node 

probabilities along the path.

 Learn a linear decision function y = vn(w,j)¢h at each node to 

decide whether to proceed with left or right child node.

 Decision based on output vector of hidden units directly.
117

B. Leibe
Image source: Xin Rong, 2015
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Recap: Recurrent Neural Networks

• Up to now

 Simple neural network structure: 1-to-1 mapping of inputs to 

outputs

• Recurrent Neural Networks

 Generalize this to arbitrary mappings

118
B. Leibe

Image source: Andrej Karpathy
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Recap: Recurrent Neural Networks (RNNs)

• RNNs are regular NNs whose

hidden units have additional

connections over time.

 You can unroll them to create

a network that extends over

time.

 When you do this, keep in mind

that the weights for the hidden

are shared between temporal

layers.  

• RNNs are very powerful

 With enough neurons and time, they can compute anything that 

can be computed by your computer.

119
B. Leibe

Image source: Andrej Karpathy
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Recap: Backpropagation Through Time (BPTT)

120

• Configuration

• Backpropagated gradient

 For weight wij:
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Recap: Backpropagation Through Time (BPTT)

121

• Analyzing the terms

 For weight wij:

 This is the “immediate” partial derivative (with hk-1 as constant)

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: Backpropagation Through Time (BPTT)

122

• Analyzing the terms

 For weight wij:

 Propagation term:
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Recap: Backpropagation Through Time (BPTT)

• Summary

 Backpropagation equations

 Remaining issue: how to set the initial state h0?

 Learn this together with all the other parameters.

123
B. Leibe
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Recap: Exploding / Vanishing Gradient Problem

• BPTT equations:

(if t goes to infinity and l = t – k.)

 We are effectively taking the weight matrix to a high power.

 The result will depend on the eigenvalues of Whh.

– Largest eigenvalue > 1  Gradients may explode.

– Largest eigenvalue < 1  Gradients will vanish.

– This is very bad...
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B. Leibe
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Recap: Gradient Clipping

• Trick to handle exploding gradients

 If the gradient is larger than a threshold, clip it to that 

threshold.

 This makes a big difference in RNNs

125
B. LeibeSlide adapted from Richard Socher
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Recap: Long Short-Term Memory (LSTM)

• LSTMs

 Inspired by the design of memory cells

 Each module has 4 layers, interacting in a special way.
126

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Elements of LSTMs

• Forget gate layer

 Look at ht-1 and xt and output a 

number between 0 and 1 for each

dimension in the cell state Ct-1.

0: completely delete this,

1: completely keep this.

• Update gate layer

 Decide what information to store

in the cell state.

 Sigmoid network (input gate layer)

decides which values are updated.

 tanh layer creates a vector of new

candidate values      that could be 

added to the state.
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Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Elements of LSTMs

• Output gate layer

 Output is a filtered version of our

gate state. 

 First, apply sigmoid layer to decide

what parts of the cell state to

output.

 Then, pass the cell state through a

tanh (to push the values to be

between -1 and 1) and multiply it

with the output of the sigmoid gate.
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Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Gated Recurrent Units (GRU)

• Simpler model than LSTM

 Combines the forget and input

gates into a single update gate zt.

 Similar definition for a reset gate rt, 

but with different weights.

 In both cases, merge the cell state 

and hidden state.

• Empirical results

 Both LSTM and GRU can learn much

longer-term dependencies than 

regular RNNs

 GRU performance similar to LSTM 

(no clear winner yet), but fewer

parameters.
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B. Leibe
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: Reinforcement Learning

• Motivation

 General purpose framework for decision making.

 Basis: Agent with the capability to interact with its environment

 Each action influences the agent’s future state.

 Success is measured by a scalar reward signal.

 Goal: select actions to maximize future rewards.

 Formalized as a partially observable Markov decision process 

(POMDP)
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Slide adapted from: David Silver, Sergey Levine
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Recap: Reward vs. Return

• Objective of learning

 We seek to maximize the expected return 𝐺𝑡 as some 

function of the reward sequence 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, …

 Standard choice: expected discounted return

where 0 ≤ 𝛾 ≤ 1 is called the discount rate.

• Difficulty

 We don’t know which past actions caused the reward.

 Temporal credit assignment problem
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𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … = 

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Policy

• Definition

 A policy determines the agent’s behavior

 Map from state to action 𝜋: 𝒮 → 𝒜

• Two types of policies

 Deterministic policy: 𝑎 = 𝜋(𝑠)

 Stochastic policy: 𝜋 𝑎 𝑠 = Pr 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

• Note

 𝜋 𝑎 𝑠 denotes the probability of taking action 𝑎 when in state 𝑠.
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B. Leibe

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Recap: Value Function

• Idea

 Value function is a prediction of future reward

 Used to evaluate the goodness/badness of states

 And thus to select between actions

• Definition

 The value of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋 𝑠 , is the 

expected return when starting in 𝑠 and following 𝜋 thereafter.

 The value of taking action 𝑎 in state 𝑠 under a policy 𝜋, 

denoted 𝑞𝜋 𝑠, 𝑎 , is the expected return starting from 𝑠, 
taking action 𝑎, and following 𝜋 thereafter.

134
B. Leibe

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Recap: Optimal Value Functions

• Bellman optimality equations

 For the optimal state-value function 𝑣∗:

 𝑣∗ is the unique solution to this system of nonlinear equations.

 For the optimal action-value function 𝑞∗:

 𝑞∗ is the unique solution to this system of nonlinear equations.

 If the dynamics of the environment 𝑝 𝑠′, 𝑟 𝑠, 𝑎 are known, then 

in principle one can solve those equation systems.
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𝑣∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎∈𝒜(𝑠)



𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

𝑞∗ 𝑠, 𝑎 = 

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠
′, 𝑎′
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Recap: Exploration-Exploitation Trade-off

• Example: N-armed bandit problem

 Suppose we have the choice between

𝑁 actions 𝑎1, … , 𝑎𝑁.

 If we knew their value functions 𝑞∗(𝑠, 𝑎𝑖),
it would be trivial to choose the best.

 However, we only have estimates based

on our previous actions and their returns.

• We can now

 Exploit our current knowledge 

– And choose the greedy action that has the highest value based on 

our current estimate.

 Explore to gain additional knowledge

– And choose a non-greedy action to improve our estimate of that 

action’s value.
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Image source: research.microsoft.com
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Recap: TD-Learning

• Policy evaluation (the prediction problem)

 For a given policy 𝜋, compute the state-value function 𝑣𝜋.

• One option: Monte-Carlo methods

 Play through a sequence of actions until a reward is reached, 

then backpropagate it to the states on the path.

• Temporal Difference Learning – TD(𝜆)

 Directly perform an update using the estimate 𝑉(𝑆𝑡+𝜆+1).
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𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉(𝑆𝑡)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)

Target: the actual return after time 𝑡

Target: an estimate of the return (here: TD(0))
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Recap: SARSA – On-Policy TD Control

• Idea

 Turn the TD idea into a control method by always updating the 

policy to be greedy w.r.t. the current estimate

• Procedure

 Estimate 𝑞𝜋(𝑠, 𝑎) for the current policy 𝜋 and for all states 𝑠 and 

actions 𝑎.

 TD(0) update equation

 This rule is applied after every transition from a nonterminal 

state 𝑆𝑡.

 It uses every element of the quintuple (𝑆𝑡, 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1).

 Hence, the name SARSA.
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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Recap: Q-Learning – Off-Policy TD Control

• Idea

 Directly approximate the optimal action-value function 𝑞∗, 
independent of the policy being followed.

• Procedure

 TD(0) update equation

 Dramatically simplifies the analysis of the algorithm.

 All that is required for correct convergence is that all pairs 

continue to be updated.
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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Recap: Deep Q-Learning

• Idea

 Optimal Q-values should obey Bellman equation

 Treat the right-hand side 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰 as a target

 Minimize MSE loss by stochastic gradient descent

 This converges to 𝑄∗ using a lookup table representation.

 Unfortunately, it diverges using neural networks due to

– Correlations between samples

– Non-stationary targets
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𝑄∗ 𝑠, 𝑎 = 𝔼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ |𝑠, 𝑎

𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ , 𝐰 − 𝑄 𝑠, 𝑎,𝐰
2
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Recap: Deep Q-Networks (DQN)

• Adaptation: Experience Replay

 To remove correlations, build a dataset from agent’s own 

experience

 Perform minibatch updates to samples of experience drawn at 

random from the pool of stored samples 

– 𝑠, 𝑎, 𝑟, 𝑠′ ~ 𝑈 𝐷 where 𝐷 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) is the dataset

 Advantages 

– Each experience sample is used in many updates (more efficient)

– Avoids correlation effects when learning from consecutive samples

– Avoids feeback loops from on-policy learning
141

B. LeibeSlide adapted from David Silver
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Recap: Deep Q-Networks (DQN)

• Adaptation: Experience Replay

 To remove correlations, build a dataset from agent’s own 

experience

 Sample from the dataset and apply an update

 To deal with non-stationary parameters 𝐰−, are held fixed.

– Only update the target network parameters every 𝐶 steps.

– I.e., clone the network 𝑄 to generate a target network 𝑄.

 Again, this reduces oscillations to make learning more stable.
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𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰− − 𝑄 𝑠, 𝑎, 𝐰
2
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Recap: Policy Gradients

• How to make high-value actions more likely

 The gradient of a stochastic policy 𝜋 𝑠, 𝐮 is given by

 The gradient of a deterministic policy 𝑎 = 𝜋(𝑠) is given by

if 𝑎 is continuous and 𝑄 is differentiable.
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𝜕𝐿(𝐮)

𝜕𝐮
=

𝜕

𝜕𝐮
𝔼𝜋 𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + … | 𝜋(∙, 𝐮)

= 𝔼𝜋
𝜕 log 𝜋 𝑎 𝑠, 𝒖

𝜕𝒖
𝑄𝜋(𝑠, 𝑎)

𝜕𝐿(𝐮)

𝜕𝐮
= 𝔼𝜋

𝜕𝑄𝜋(𝑠, 𝑎)

𝜕𝑎

𝜕𝑎

𝜕𝐮
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Recap: Deep Policy Gradients (DPG)

• DPG is the continuous analogue of DQN

 Experience replay: build data-set from agent's experience

 Critic estimates value of current policy by DQN

 To deal with non-stationarity, targets 𝐮−, 𝐰−are held fixed

 Actor updates policy in direction that improves Q

 In other words critic provides loss function for actor.
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𝐿𝐰(𝐰) = 𝑟 + 𝛾𝑄 𝑠′, 𝜋(𝑠′, 𝐮−),𝐰− − 𝑄 𝑠, 𝑎, 𝐰
2

𝜕𝐿𝐮(𝐮)

𝜕𝐮
=
𝜕𝑄(𝑠, 𝑎, 𝐰)

𝜕𝑎

𝜕𝑎

𝜕𝐮

Slide credit: David Silver
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Any Questions?

So what can you do with all of this?
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Robust Object Detection & Tracking

146
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Applications for Driver Assistance Systems
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Mobile Tracking in Densely Populated Settings

148

[D. Mitzel, B. Leibe, ECCV’12]
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Articulated Multi-Person Tracking

• Multi-Person tracking
 Recover trajectories and solve data association

• Articulated Tracking
 Estimate detailed body pose for each tracked person

149
[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]
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Semantic 2D-3D Scene Segmentation

150
B. Leibe [G. Floros, B. Leibe, CVPR’12]
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Integrated 3D Point Cloud Labels

151
B. Leibe [G. Floros, B. Leibe, CVPR’12]
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Any More Questions?

Good luck for the exam!
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