Computer Vision - Lecture 2

Binary Image Analysis

26.10.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Announcements

- Course webpage
, http://www.vision.rwth-aachen.de/courses/
, Slides will be made available on the webpage
- L2P electronic repository
, Exercises and supplementary materials will be posted on the L2P
- Please subscribe to the lecture on the Campus system!
, Important to get email announcements and L2P access!
, Bachelor students please also subscribe

Binary Images

- Just two pixel values
- Foreground and background
- Regions of interest

1	1	0	1	1	1	0	1
1	1	0	1	0	1	0	1
1	1	1	1	0	0	0	1
0	0	0	0	0	0	0	1
1	1	1	1	0	1	0	1
0	0	0	1	0	1	0	1
1	1	0	1	0	0	0	1
1	1	0	1	0	1	1	1

Uses: Industrial Inspection

Fig. 3 Schematic diagram of marking inspection setup at Texas Instruments

R. Nagarajan et al. "A real time marking inspection scheme

Uses: Document Analysis, Text Recognition

Handwritten digits

Natural text (after detection)

Scanned documents

Source: Till Quack, Martin Renold

Uses: Medical/Bio Data

Source: D. Kim et al., Cytometry 35(1), 1999

Uses: Blob Tracking \& Motion Analysis

Frame Differencing

Source: Kristen Grauman
Computer Vision WS 16/17

Background Subtraction

B. Leibe

Uses: Shape Analysis, Free-Viewpoint Video

Silhouette

Visual Hull Reconstruction

Medial axis

Uses: Intensity Based Detection

- Looking for dark pixels...

Uses: Color Based Detection

- Looking for pixels within a certain color range...

$$
\text { fg_pix }=\text { find (hue }>\text { t1 \& hue }<\mathrm{t} 2)
$$

Issues

- How to demarcate multiple regions of interest?
, Count objects
, Compute further features per object

- What to do with "noisy" binary outputs?
, Holes
, Extra small fragments

Outline of Today's Lecture

- Convert the image into binary form
, Thresholding
- Clean up the thresholded image
, Morphological operators
- Extract individual objects
, Connected Components Labeling
- Describe the objects
, Region properties

Thresholding

- Grayscale image \Rightarrow Binary mask
- Different variants
, One-sided

$$
F_{T}[i, j]=\left\{\begin{array}{l}
1, \text { if } F[i, j] \geq T \\
0, \text { otherwise }
\end{array}\right.
$$

, Two-sided

$$
F_{T}[i, j]=\left\{\begin{array}{l}
1, \text { if } T_{1} \leq F[i, j] \leq T_{2} \\
0, \text { otherwise }
\end{array}\right.
$$

, Set membership

$$
F_{T}[i, j]= \begin{cases}1, & \text { if } F[i, j] \in Z \\ 0, & \text { otherwise }\end{cases}
$$

Selecting Thresholds

- Typical scenario
, Separate an object from a distinct background

- Try to separate the different grayvalue distributions
, Partition a bimodal histogram
, Fit a parametric distribution (e.g. Mixture of Gaussians)
, Dynamic or local thresholds
- In the following, I will present some simple methods.
, We will then see some more general methods in Lecture 6...

A Nice Case: Bimodal Intensity Histograms

Ideal histogram, light object on dark background

Actual observed histogram with noise

Not so Nice Cases...

- How to separate those?

Two distinct modes

Overlapping modes

Multiple modes

- Threshold selection is difficult in the general case
, Domain knowledge often helps
, E.g. Fraction of text on a document page (\Rightarrow histogram quantile)
> E.g. Size of objects/structure elements

Global Binarization [Otsu'79]

- Search for the threshold T that minimizes the withinclass variance $\sigma_{\text {within }}$ of the two classes separated by T

$$
\sigma_{\text {within }}^{2}(T)=n_{1}(T) \sigma_{1}^{2}+n_{2}(T) \sigma_{2}^{2}(T)
$$

where

$$
n_{1}(T)=\left|\left\{I_{(x, y)}<T\right\}\right|, \quad n_{2}(T)=\left|\left\{I_{(x, y)} \geq T\right\}\right|
$$

- This is the same as maximizing the between-class variance $\sigma_{\text {between }}$

$$
\begin{aligned}
\sigma_{\text {between }}^{2}(T) & =\sigma^{2}-\sigma_{\text {within }}^{2}(T) \\
& =n_{1}(T) n_{2}(T)\left[\mu_{1}(T)-\mu_{2}(T)\right]^{2}
\end{aligned}
$$

Algorithm

1. Precompute a cumulative grayvalue histogram h.
2. For each potential threshold T
a) Separate the pixels into two clusters according to T
b) Look up n_{1}, n_{2} in h and compute both cluster means
c) Compute $\sigma_{\text {between }}^{2}(T)=n_{1}(T) n_{2}(T)\left[\mu_{1}(T)-\mu_{2}(T)\right]^{2}$
3. Choose

$$
T^{*}=\arg \max _{T}\left[\sigma_{b e t w e e n}^{2}(T)\right]
$$

Local Binarization [Niblack'86]

- Estimate a local threshold within a small neighborhood window W

$$
T_{W}=\mu_{W}+k \cdot \sigma_{W}
$$

where $k \in[-1,0]$ is a user-defined parameter.

What is the hidden assumption here?

Effects

Original image

Additional Improvements

- Document images often contain a smooth gradient \Rightarrow Try to fit that gradient with a polynomial function

Figure 4: Face Dataset: We show the ROC curve for the foll set SVM of 1434 support vectors (bold solid line), two rodvoed set methods of 10 and 100 reduced sets (both in denhed line). The dached line of the 100 redtued seti evincide almost entirely with the full set of support vectors. In addition, we show two element sets of 200 and 576 clements (both in solid line). Note that an element set of 576 elements is equivalent to a single support vector. Hence, the $\$ 76$ element set is equivalent to the 10 rectuce. Hence, the 10 ciement set is equivalent to the 10 reduced set in terms

Original image

Fitted surface

Figure 4: Face Dataset: We show the ROC curve for the full set SVM of 1434 support vectors (bold solid line), two reduced set methods of 10 and 100 reduced sets (both in dashed line). The dashed line of the 100 reduced set coincide almost entirely with the full set of support vectors. In addition, we show two element sets of 200 and 576 elements (both in solid line). Note that an element set of 576 elements is equivalent to a single support vector. Hence, the $\$ 76$ element set is equivalent to the 10 reduced set in terms of classification power but uses much less memory.
Shading compensation

Figure 4: Face Dataset: We show the ROC curve for the mil sex SVM of 1434 support vectors (bold solid line), Iwo reduced sot methods of 10 and 100 reduced sets (both in dephed line). The dashed line of the 100 reduced set cotreckde almost entirely with the fuil set of support vectors. In sddition, we show two element sets of 200 and 576 clemana (both in solid line). Note that an element set of 576 dements is equivalent to a single support vector. Hence, the 576 element set is equivalent to the 10 reduced set in terms of ctansification power but uses much less memory.
Binarized result

Polynomial Surface Fitting

- Polynomial surface of degree d

$$
f(x, y)=\sum_{i+j=0}^{d} b_{i, j} x^{i} y^{j}
$$

- For an image pixel $\left(x_{0}, y_{0}\right)$ with intensity I_{0}, this means

$$
b_{0,0}+b_{1,0} x_{0}+b_{0,1} y_{0}+b_{2,0} x_{0}^{2}+b_{1,1,} x_{0} y_{0}+\cdots+b_{0,3} y_{0}^{3}=I_{0}
$$

- Least-squares estimation, e.g. for $d=3$

| $\left[\begin{array}{ccccccc}1 & x_{0} & y_{0} & x_{0}^{2} & x_{0} y_{0} & \cdots & y_{0}^{3} \\ 1 & x_{1} & y_{1} & x_{1}^{2} & x_{1} y_{1} & \cdots & y_{1}^{3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & y_{n} & x_{n}^{2} & x_{n} y_{n} & \cdots & y_{n}^{3}\end{array}\right]\left[\begin{array}{c}A b \\ b_{0,0} \\ b_{1,0} \\ \vdots \\ b_{0,3}\end{array}\right]=I$ |
| :---: |\(=\left[\begin{array}{c}I_{0}

I_{1}

\vdots

I_{n}\end{array}\right]\)| Solution with |
| :---: |
| pseudo-inverse: |
| $b=\left(A^{T} A\right)^{-1} A^{T} I$ |
| Matlab (using SVD): |
| $b=I \backslash A$ |

Surface Fitting

- Iterative Algorithm
1.) Fit parametric surface to all points in region.
2.) Subtract estimated surface.
3.) Apply global threshold (e.g. with Otsu method)

Initial guess
4.) Fit surface to all background pixels in original region.
5.) Subtract estimated surface.
6.) Apply global threshold (Otsu)
7.) Iterate further if needed...

- The first pass also takes foreground pixels into account.
, This is corrected in the following passes.
, Basic assumption here: most pixels belong to the background.

Result Comparison

Val. 50
No. 1
Spring
1996
Local (Niblack)
Insides: Eaftorsti: Chaplainey: The Greatell Story Never Toid bu Duvfo \& iflutimer
Artictive
The belegration af dinizal Pastural Eshuation wilh beminary Lexrninge Insterling the Student's nimisisiry Formation fir Ridseat C. Arukt:man
Prayer Eevrale gelict Imares of God trema Haspital Pravers

mon Tra fheme
Journal of Pastoral Care

Goest Fdinovist: Chaplaincr: T
The Journal of
Vol. 50
No. 1
5pring
1996

br invent il menmes
Artickre:
The loirg
 teaminge 1 notering the Stument'a iniaikiry Fismation by $\bar{\alpha}$ ceer Ca Anderson
Thorrlelining und Paslocat Cono by Ton Etomarrit
Prsyer Retceals Beliex trazges oi Gar from Hospilal Proyers
When Ching \& ilving: Hosplice Pastoral Care and Education

Global (Otsu)

Outline of Today's Lecture

- Convert the image into binary form Thresholding
- Clean up the thresholded image
, Morphological operators
- Extract individual objects

Connected Components Labeling

- Describe the objects

Region properties

Cleaning the Binarized Results

- Results of thresholding often still contain noise

- Necessary cleaning operations
, Remove isolated points and small structures
, Fill holes
\Rightarrow Morphological Operators

Morphological Operators

- Basic idea
, Scan the image with a structuring element
, Perform set operations (intersection, union) of image content with structuring element

- Two basic operations
, Dilation (Matlab: imdilate)
, Erosion (Matlab: imerode)
- Several important combinations
, Opening (Matlab: imopen)
, Closing (Matlab: imclose)
, Boundary extraction

Dilation

- Definition
, "The dilation of A by B is the set of all displacements z, such that $(B)_{z}$ and A overlap by at least one element".

A
, $\left((\hat{B})_{z}\right.$ is the mirrored version of B, shifted by z)

- Effects
, If current pixel z is foreground, set all pixels under $(B)_{z}$ to foreground.
\Rightarrow Expand connected components
\Rightarrow Grow features
\Rightarrow Fill holes

$A \oplus B_{2}$

Erosion

- Definition
, "The erosion of A by B is the set of all displacements z, such that $(B)_{z}$ is entirely contained in A ".

A

- Effects
, If not every pixel under $(B)_{z}$ is foreground, set the current pixel z to background.
\Rightarrow Erode connected components

\Rightarrow Shrink features
\Rightarrow Remove bridges, branches, noise

Effects

Original image

Dilation with circular structuring element

Erosion with circular structuring element

Effects

Original image

Dilation with circular structuring element

Erosion with circular structuring element

Opening

- Definition
, Sequence of Erosion and Dilation

$$
A \circ B=(A \ominus B) \oplus B
$$

- Effect
, $A \circ B$ is defined by the points that
 are reached if B is rolled around inside A.
\Rightarrow Remove small objects, keep original shape.

35

Effect of Opening

- Feature selection through size of structuring element

Thresholded

Opening with larger structuring element

Effect of Opening

- Feature selection through shape of structuring element

- How could we have extracted the lines?

Closing

- Definition
, Sequence of Dilation and Erosion

$$
A \cdot B=(A \oplus B) \ominus B
$$

- Effect
, $A \cdot B$ is defined by the points that
 are reached if B is rolled around on the outside of A.
\Rightarrow Fill holes, keep original shape.

Effect of Closing

- Fill holes in thresholded image (e.g. due to specularities)

Original image

Size of structuring element determines which structures are selectively filled.

Thresholded

Example Application: Opening + Closing

Original image

Opening

Closing

Structuring element

Eroded image

Dilated image

Application: Blob Tracking

§ Absolute differences from frame to frame $\overparen{\zeta}$

K Thresholding $\sqrt{\zeta}$

Computer Vision WS 16/17

B. Leibe

Computer Vision WS 16/17

B. Leibe

\section*{?}
 Morphological Boundary Extraction

- Definition
, First erode A by B, then subtract the result from the original A. $\beta(A)=A-(A \ominus B)$
- Effects
, If a 3×3 structuring element is used, this results in a boundary that is exactly 1 pixel thick.

Morphology Operators on Grayscale Images

- Sidenote
, Dilation and erosion are typically performed on binary images.
> If image is grayscale: for dilation take the neighborhood max, for erosion take the min.

Original

Eroded

Outline of Today's Lecture

- Convert the image into binary form Thresholding
- Clean up the thresholded image Morphological operators
- Extract individual objects
, Connected Components Labeling
- Describe the objects

Region properties

Connected Components Labeling

- Goal: Identify distinct regions

1	1	0	1	1	1	0	1
1	1	0	1	0	1	0	1
1	1	1	1	0	0	0	1
0	0	0	0	0	0	0	1
1	1	1	1	0	1	0	1
0	0	0	1	0	1	0	1
1	1	0	1	0	0	0	1
1	1	0	1	0	1	1	1

Binary image

1	1	0	1	1	1	0	2
1	1	0	1	0	1	0	2
1	1	1	1	0	0	0	2
0	0	0	0	0	0	0	2
3	3	3	3	0	4	0	2
0	0	0	3	0	4	0	2
5	5	0	3	0	0	0	2
5	5	0	3	0	2	2	2

Connected components labeling

Connected Components Example

connected components of 1 's from thresholded image

Connectedness

- Which pixels are considered neighbors?

Sequential Connected Components

- Labeling a pixel only requires to consider its prior and superior neighbors.
- It depends on the type of connectivity used for foreground (4-connectivity here).

(b) 犃

Equivalence table
B. Leibe

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
1.) If the next pixel to process is 1

i.) If only one of its neighbors (top or left) is 1 , copy its label.
ii.) If both are 1 and have the same label, copy it.
iii.) If they have different labels
- Copy the label from the left.
- Update the equivalence table.

iv.) Otherwise, assign a new label.

Equivalence table
\{1\}

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
1.) If the next pixel to process is 1

i.) If only one of its neighbors (top or left) is 1 , copy its label.
ii.) If both are 1 and have the same label, copy it.
iii.) If they have different labels
- Copy the label from the left.
- Update the equivalence table.
iv.) Otherwise, assign a new label.

Equivalence table
\{1\}

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
1.) If the next pixel to process is 1
i.) If only one of its neighbors (top or left) is 1 , copy its label.
ii.) If both are 1 and have the same label, copy it.
iii.) If they have different labels
- Copy the label from the left.
- Update the equivalence table.
iv.) Otherwise, assign a new label.

Equivalence table
\{1\}
\{2 \}

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
1.) If the next pixel to process is 1
i.) If only one of its neighbors (top or left) is 1 , copy its label.
ii.) If both are 1 and have the same label, copy it.
iii.) If they have different labels
- Copy the label from the left.
- Update the equivalence table.
iv.) Otherwise, assign a new label.

Equivalence table
$\{1\} 2\}$
\{2\}

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
1.) If the next pixel to process is 1
i.) If only one of its neighbors (top or left) is 1 , copy its label.
ii.) If both are 1 and have the same label, copy it.
iii.) If they have different labels
- Copy the label from the left.
- Update the equivalence table.

iv.) Otherwise, assign a new label.

Equivalence table
$\left\{\begin{array}{lll}\frac{1}{3}\{ & 2, & 7\} \\ 4 \\ 5\end{array}, 6,8\right\}$

Application: Segmentation of a Liver

Region Filling

Boundary Peeling

Outline of Today's Lecture

- Convert the image into binary form Thresholding
- Clean up the thresholded image Morphological operators
- Extract individual objects Connected Components Labeling
- Describe the objects
, Region properties

57

Region Properties

- From the previous steps, we can obtain separated objects.
- Some useful features can be extracted once we have connected components, including
, Area
, Centroid
, Extremal points, bounding box
, Circularity
, Spatial moments

Area and Centroid

- We denote the set of pixels in a region by R
- Assuming square pixels, we obtain
- Area:

$$
\begin{aligned}
& A=\sum_{(x, y) \in R} 1 \\
& \bar{x}=\frac{1}{A} \sum_{(x, y) \in R} x \\
& \bar{y}=\frac{1}{A} \sum_{(x, y) \in R} y
\end{aligned}
$$

, Centroid:

Circularity

- Measure the deviation from a perfect circle
- Circularity: $\quad C=\frac{\mu_{R}}{\sigma_{R}}$
where μ_{R} and σ_{R}^{2} are the mean and variance of the distance from the centroid of the shape to the boundary pixels $\left(x_{k} y_{k}\right)$.
, Mean radial distance:

$$
\mu_{R}=\frac{1}{K} \sum_{k=0}^{K-1}\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\|
$$

, Variance of radial distance:

$$
\sigma_{R}^{2}=\frac{1}{K} \sum_{k=0}^{K-1}\left[\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\|-\mu_{R}\right]^{2}
$$

Invariant Descriptors

- Often, we want features independent of location, orientation, scale.

$\left[a_{1}, a_{2}, a_{3}, \ldots\right]$

$\left[b_{1}, b_{2}, b_{3}, \ldots\right]$

Feature space distance

Central Moments

- S is a subset of pixels (region).
- Central $(j, k)^{\text {th }}$ moment defined as:

$$
\mu_{j k}=\sum_{(x, y) \in S}(x-\bar{x})^{j}(y-\bar{y})^{k}
$$

- Invariant to translation of S.
- Interpretation:
, $0^{\text {th }}$ central moment: area
, $2^{\text {nd }}$ central moment: variance
, $3^{\text {rd }}$ central moment: skewness
, $4^{\text {th }}$ central moment: kurtosis

Moment Invariants ("Hu Moments")

- Normalized central moments

$$
\eta_{p q}=\frac{\mu_{p q}}{\mu_{00}^{\gamma}}, \quad \gamma=\frac{p+q}{2}+1
$$

- From those, a set of invariant moments can be defined for object description.

$$
\begin{aligned}
& \phi_{1}=\eta_{20}+\eta_{02} \\
& \phi_{2}=\left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2} \\
& \phi_{3}=\left(\eta_{30}-3 \eta_{12}\right)^{2}+\left(3 \eta_{21}-\eta_{03}\right)^{2} \\
& \phi_{4}=\left(\eta_{30}+\eta_{12}\right)^{2}+\left(\eta_{21}+\eta_{03}\right)^{2}
\end{aligned}
$$

- Robust to translation, rotation \& scaling, but don't expect wonders (still summary statistics).

Moment Invariants

$$
\begin{aligned}
\phi_{5}= & \left(\eta_{30}-3 \eta_{12}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +\left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{21}+\eta_{03}\right)\left[3\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
\phi_{6}= & \left(\eta_{20}-\eta_{02}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +4 \eta_{11}\left(\eta_{30}+\eta_{12}\right)\left(\eta_{21}+\eta_{03}\right) \\
\phi_{7}= & =\left(3 \eta_{21}-\eta_{03}\right)\left(\eta_{30}+\eta_{12}\right)\left[\left(\eta_{30}+\eta_{12}\right)^{2}-3\left(\eta_{21}+\eta_{03}\right)^{2}\right] \\
& +\left(3 \eta_{12}-\eta_{30}\right)\left(\eta_{21}+\eta_{03}\right)\left[3\left(\eta_{30}+\eta_{12}\right)^{2}-\left(\eta_{21}+\eta_{03}\right)^{2}\right]
\end{aligned}
$$

Often better to use $\log _{10}\left(\phi_{i}\right)$ instead of ϕ_{i} directly...

Axis of Least Second Moment

- Invariance to orientation?
, Need a common alignment

Axis for which the squared distance to 2D object points is minimized (maximized).
, Compute Eigenvectors of $2^{\text {nd }}$ moment matrix (Matlab: eig(A))

$$
\left.\left[\begin{array}{ll}
\mu_{20} & \mu_{11} \\
\mu_{11} & \mu_{02}
\end{array}\right]=V D V^{T}=\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{22} & v_{22}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
v_{11} \\
v_{21}
\end{array}\right] \begin{array}{l}
v_{12} \\
v_{22}
\end{array}\right]^{T}
$$

\section*{R}
 Summary: Binary Image Processing

- Pros
, Fast to compute, easy to store
, Simple processing techniques
, Can be very useful for constrained scenarios
- Cons
, Hard to get "clean" silhouettes
> Noise is common in realistic scenarios
, Can be too coarse a representation
, Cannot deal with 3D changes

References and Further Reading

- More on morphological operators can be found in
, R.C. Gonzales, R.E. Woods, Digital Image Processing. Prentice Hall, 2001
- Online tutorial and Java demos available on
, http://homepages.inf.ed.ac.uk/rbf/HIPR2/

Questions?

Demo "Haribo Classification"

Computer Vision WS 16/17

You Can Do It At Home...

Accessing a webcam in Matlab:

function out $=$ webcam
\% uses "Image Acquisition Toolbox,,
adaptorName $=$ 'winvideo';
vidFormat $=$ 'I420_320x240';
vidObj1= videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1 ;
cam $=$ webcam ();
img=getsnapshot (cam) ;

Questions?

