RWTH//CHE RWTH CHET
Course Outline
¢ Image Processing Basics
Computer Vision - Lecture 9 « Segmentation
» Segmentation and Grouping
Sliding-Window based Object Detection I - Segmentation as Energy Minimization
¢ Recognition & Categorization
23.11.2016 » Sliding-Window Object Detection
~ N » Image Classification
§ g e Local Features & Matching
E . . E * 3D Reconstruction
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| RWTH Aachen | * Motion and Tracking
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Topics of This Lecture Recap: Sliding-Window Object Detection
* Recap: Classification with SVMs « If the object may be in a cluttered scene, slide a window
» Support Vector Machines around looking for it.
» HOG Detector
¢ Classification with Boosting
» AdaBoost
» Viola-Jones Face Detection Car/non-car
- . Discussion - Classifier
2 2
% i ¢ Essentially, this is a brute-force approach with many
E E local decisions.
o 3 o 4
B. Leibe ide credit: Kristen Grauman LA
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Recap: Support Vector Machine (SVM) Recap: Non-Linear SVMs

e Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

Up to now: consider linear classifiers

wix+b=0

¢ General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

' 2 .

. S @: x— @(x) = .

v

¢ Formulation as a convex optimization problem
» Find the hyperplane satisfying

1 2
arg min §HWH
under the constraints
ta(wix, +b) >1 Vn

based on training data points x,, and target values ¢,, € {—1,1}.
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http://www.autonlab.org/tutorials/svm.html
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Recap: Gradient-based Representations

« Consider edges, contours, and (oriented) intensity
gradients

=

* Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
» Contrast-normalization: try to correct for variable illumination

Computer Vision WS 16/17

Slide credit: Kristen Grauman 5. Lelbe
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Pedestrian Detection
¢ Detecting upright, walking humans using sliding window’s

appearance/texture; e.g.,

A AROSRTRAEN B
WEGRLERER

PERNEN

~
= .
§ SVM with Haar wavelets Space-time rectangle SVM with HoGs [Dalal &
” [Papageorgiou & Poggio, IJCV features [Viola, Jones & Triggs, CVPR 2005]
2 2000] Snow, ICCV 2003]
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HOG Descriptor Processing Chain

¢ Optional: Gamma compression
» Goal: Reduce effect of overly
strong gradients

» Replace each pixel color/intensity
by its square-root

e

= Small performance improvement

Gamma compression
= f
= Image Window
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ide adapted from Navoeet Dalal

Topics of This Lecture

¢ Recap: Classification with SVMs
» Support Vector Machines
» HOG Detector

¢ Classification with Boosting
» AdaBoost
» Viola-Jones Face Detection

¢ Discussion
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HOG Descriptor Processing Chain

Computer Vision WS 16/17

= Image Window

ide adanted from Navpeet Dalal

TOWTHACHET]
HOG Descriptor Processing Chain

¢ Gradient computation
» Compute gradients on all color
channels and take strongest one
~ Simple finite difference filters
work best (no Gaussian smoothing)

-1
[-1 0 1] {0}
1

‘ Compute gradients ‘
1
‘ Gamma compression ‘
f
Image Window
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HOG Descriptor Processing Chain

« Spatial/Orientation binning
» Compute localized histograms of
oriented gradients
» Typical subdivision:
8x 8 cells with 8 or 9 orientation bins

Weighted vote in spatial &
orientation cells
1
‘ Compute gradients ‘
1
‘ Gamma compression ‘

Image Window

Computer Vision WS 16/17

Slide adapted from Navneet Dalal
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HOG Cell Computation Details (2)

¢ Important for robustness: Tri-linear interpolation
» Each pixel contributes to (up to) 4
neighboring cell histograms
Weights are obtained by bilinear
interpolation in image space:

[r2,1)

[1‘1 . .11‘1)

v

T
T2 -1y v — l
~ h(’.f[-."fz)**lr"(l— 'T'_‘.‘)(”—i"')
g AV C e d (w1a0) | (#2,22)
rex -
n fi(.d_).!j]]**!f“(i‘) (17 y i"') I
= g — Y2 —1th
= - _
W ) 10+ (_) ( v )
s Tz —r Y2 —1t
E » Contribution is further split over
g (up to) 2 neighboring orientation bins
8 via linear interpolation over angles. ®
1] T

HOG Descriptor Processing Chain

¢ Feature vector construction
» Collect HOG blocks into vector

Collect HOGs over

‘ detection window ‘
1

‘ Contrast normalize over ‘

\ |

\ |

overlapping spatlal cells

St

Weighted vote in spatial &
EEOANNYAS
. \Y

orientation cells
Compute ;radlents
Gamma co:rlpr6551on
Image Vst/indow
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HOG Cell Computation Details

 Gradient orientation voting - _

» Each pixel contributes to localized T o
gradient orientation histogram(s)

» Vote is weighted by the pixel’s r.-

gradient magnitude —

/ 6 =tan~ 1(‘9f/8f)
k 1941 = /GO + D7

¢ Block-level Gaussian weighting
» An additional Gaussian weight is
applied to each 2x2 block of cells
» Each cell is part of 4 such blocks,
resulting in 4 versions of the
histogram.

Computer Vision WS 16/17
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HOG Descriptor Processing Chain

e 2-Stage contrast normalization
» L2 normalization, clipping, L2 normalization

Contrast normalize over
overlapping spanal cells

Weighted vote in spatial &
orientation cells

Compute grad1ents

Gamma compression
f
Image Window

Computer Vision WS 16/17
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HOG Descriptor Processing Chain

« SVM Classification Object/Non-object

» Typically using a linear SVM

s
Linear SVM
T
Collect HOGs over
detectlon window

overlapping spat1al cells

Weighted vote in spatial &
orientation cells
Compute ;rad1ents
Gamma co:npresswn
Image V‘;indow

‘ Contrast normahze over ‘
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Pedestrian Detection with HOG Non-Maximum Suppression

¢ Train a pedestrian template using a linear SVM
o At test time, convolve feature map with template

Clip detection score

After multi-scale dense scan

Map each detection to 3D

[x.,scale] space
Template

Detector response map

Goal

X
Apply robust mode detection,
e.g. mean shift

Computer Vision WS 16/17
Computer Vision WS 16/17

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

Fusion of multiple detections

Non-maximum suppression

Slide credit: Svetlana | azebnik B. Leibe

Image squrce: Navoeet Dalal, PhD Thesi:
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Pedestrian detection with HoGs & SVMs

RWTH CHET
Applications: Mobile Robot Navigation

| <
FSEUROPA

Select tour

Moving robot

“Home

e Dialog view
) Web view
5 ~ A
3 =) 27 ™
& 3 3
4 ‘£ ‘." - s :
c c ® 4
: g -y
] g
2 A Trioas. Hi . ' ) 2 link to the video
'+ Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection, £
S CVPR 2005 3 YS~EUROPA
24
ide credit: Kristen Grauman B. Leibe B. Leibe -
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Classifier Construction: Many Choices... Boosting
Nearest Neighbor Neural networks . g2 i
18ne . e  Build a strong classifier H by combining a number of
3 “weak classifiers” h,,...,h,;, which need only be better
i vl e |t than chance.
Shakhnarovich, Viola, Darrell 2003 LeCun, Bottou, Bengio, Haffner 1998 . Sequentia[ [earning process: at each iteration, add a
Berg, Berg, Malik 2005, Rowley, Baluja, Kanade 1998 weak classifier
Boiman, Shechtman, Irani 2008, ...
¢ Flexible to choice of weak learner
)| | Boosting Support \./eft‘" Machines | | Randomized Forests ~ . including fast simple classifiers that alone may be inaccurate
2 } ! ; E =4 « We’ll look at Freund & Schapire’s AdaBoost algorithm
%
5 . . S . Easy to implement
oy |\ i 5 . 7}
| Viola, Jones 2001, | | Vapnik, Schdlkopf 1,99‘5' Amit, Geman 1997, S » Base learning algorithm for Viola-Jones face detector
15| | Torralba et al. 2004, | Papageorgiou, Poggio ‘01, | Breiman 2001, 3
= | Opelt et al. 2006, Dalal, Triggs 2005, Lepetit, Fua 2006, 2
S | Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,... E Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japanese)|
o % 1 Society for Artificial Intelligence, 14(5):771-780, 1999. 27
ide adapted from Kristen Grauman B. Leibe ide credit: Kristen Grauman 5. Leibe



http://lear.inrialpes.fr/pubs/2005/DT05
http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
http://www.youtube.com/watch?v=d_S4CaxtQJU
http://www.cs.princeton.edu/~schapire/uncompress-papers.cgi/FreundSc99.ps
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AdaBoost: Intuition

e © Consider a 2D feature
| ) e e space with positive and
Classifier 1 e - - - o negative examples.
L ] ces N
wi ifi i
® Each weak classifier splits

the training examples with
at least 50% accuracy.

Examples misclassified by
a previous weak learner
are given more emphasis
at future rounds.

Figure adapted from Freund and Schapire

Slide credit: Kristen Grauman B. Leibe
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AdaBoost: Intuition
) @ Welghts _.-_i‘.
Weak ® [ ] [5) Increased ) 1
Classifier | ™= -==-=""" f °

o __
(Y Weak '@
e Classifier 2 -———>._q'

Weak ———————— .
classifier 3 o,

Final classifier is
combination of the
weak classifiers

ide credit: Kristen Grauman B. Leibe
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AdaBoost: Detailed Training Algorithm

1. Initialization: Set () = le forn=1,....N.

2. For m=1,...,M iterations

{x,,00x,}
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W (™ by minimizing the weighted error function
N

Im = Zwﬁm)l(hm(xn) #tn) 1A = {"

if A is true

0, else

n=1
b) Estimate the weighted error of this classifier on X:
Yoy 0" 1 (o (%) # ta)
Zf:rzl wi™

c) Calculate a weighting coefficient for h,,(x):

€m,

—€m
ay =1n

€m

d) Update the weighting coefficients:
W) = w(™ exp {am I (hn(Xn) # tn)}

B. Leibe
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AdaBoost: Intuition

e @ Weights 4
Weak ® [ ] (5] Increased ® .:
Classifier 1 .2 _-----""" Py
) Weak '@
@9 Classifier 2 —— @
29
ide credit: Kristen Grauman 8. Leibe

AdaBoost - Formalization

e 2-class classification problem
» Given: training set X = {x,, ..., X} °e
with target values T ={t,, ...ty }, ¢, € {-1,1}. X0,

» Associated weights W={wj, ..., wy} for each training point.

¢ Basic steps

» In each iteration, AdaBoost trains a new weak classifier h,,(x)
based on the current weighting coefficients W),

» We then adapt the weighting coefficients for each point

- Increase w, if x, was misclassified by h,,(x).

- Decrease w, if x, was classified correctly by h,,(x).
» Make predictions using the final combined model
M
H(x) = sign Z amhm(x)>

m=1
B. Leibe
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RWTH CHET
AdaBoost: Recognition

¢ Evaluate all selected weak classifiers on test data.
hi(x), - hm(x)

¢ Final classifier is weighted combination of selected
weak classifiers:

M
H(x) = sign (Z amhm(x)>

¢ Very simple procedure!
» Less than 10 lines in Matlab!
» But works extremely well in practice...




Example: Face Detection

¢ Frontal faces are a good example of a class where
global appearance models + a sliding window
detection approach fit well:

» Regular 2D structure
» Center of face almost shaped like a “patch”/window

HE TR DAY R B
PR LY LT R

7§ ak e 1A

* Now we’ll take AdaBoost and see how the Viola-
Jones face detector works

Computer Vision WS 16/17

Slide credit: Kristen Grauman B. Leibe

Example

Computer Vision WS 16/17

ide credit: Svetlana | azebnik B. Leibe
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AdaBoost for Feature+Classifier Selection

* Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

f : 0, : o, Resulting weak classifier:
T eresoresss
: : R £(x)> 0
e +eoeoe oo 00> h t t
: 1 ) { -1 otherwise
ebeeoeo ose o
[ 1 .
: 1 £x) For next round, reweight the

examples according to errors,
choose another filter/threshold
combo.

Outputs of a
possible rectangle
feature on faces
and non-faces.
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[Viola & Jones, CVPR 2001
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Feature extraction

“Rectangular” filters
E ‘ ] Feature output is difference
between adjacent regions
7 B

Value at (x,y) is
sum of pixels

Efficiently computable [ apove and to the

with integral image: any = left of (x,y) : : * .
sum can be computed ‘ R ﬂ:[
in constant time ] 1
Avoid scaling images 2>
scale features directly Integralimage  Deled-(2e3)
for same cost =A+(A+B+C+D)-(A+C+ A+ B)
=D
ide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2993]6
RWTH CHET
Large Library of Filters
— .— | Considering all
1] E = possible filter
parameters:
position, scale,
—_—— 1 il m=mm = and type:
. 180,000+ possible
B L L Il ] features
associated with
[ W | each 24 x 24
!l I ™ window

Use AdaBoost both to select the informative features
and to form the classifier

Weak classifier: filter output > 6?7

ide credit: Kristen Grauman B. Leibe

[Viola & Jones, CVPR 2001

RWTHACHEN
AdaBoost for Efficient Feature Selection

¢ Image features = weak classifiers
¢ For each round of boosting:
» Evaluate each rectangle filter on each example
» Sort examples by filter values
» Select best threshold for each filter (min error)
- Sorted list can be quickly scanned for the optimal threshold
Select best filter/threshold combination
Weight on this features is a simple function of error rate
Reweight examples

v

v

v

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

ide credit: Kristen Grauman 5. Leibe
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http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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Cascading Classifiers for Detection

* Even if the filters are fast to compute, each new image
has a lot of possible windows to search.

« For efficiency, apply less ——
accurate but faster classifiers STt T —
first to immediately discard T T T (R
windows that clearly appearto * * -~ * °

Rjact Sub-window

be negative; e.g.,
» Filter for promising regions with an initial inexpensive classifier

» Build a chain of classifiers, choosing cheap ones with low false
negative rates early in the chain

[Fleuret & Geman, 1JCV 2001]
[Rowley et al., PAMI 1998]
[Viola & Jones, CVPR 2001]

Computer Vision WS 16/17
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slide credit: Kristen Grauman B. Leibe Figure from Viola & Jones CVPR 2001
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Viola-Jones Face Detector: Summary
Train cascade of @
classifiers with I
AdaBoost - 2 B
4
S
§ - 3 Selected features,
%) Non-faces thresholds, and weights
2
5| ¢ Train with 5K positives, 350M negatives
2| « Real-time detector using 38 layer cascade
g e 6061 features in final layer
=| * [Implementation available in OpenCV:
S http://sourceforge.net/projects/opencvlibrary/]
43
ide credit. Kristen Grauman, B. Leibe
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Viola-Jones Face Detector: Results

JUDYBATS
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ide credit: Kriten Grauman B. Leibe

Cascading Classifiers

¢ Chain classifiers that are
progressively more complex and
have lower false positive rates: % False Pos

Receiver operating
characteristic

4

% Detection

~
&
«©
= 2
» 8
E
o
2
<
T T T

5 IMAGE
5 —
= SUB—WINDO @ @ FACE
g F

F F
o l
S NON-FACE NON-FACE NON-FACE

2
ide credit: Svetlana lazebnik

Practical Issue: Bootstrapping

Add to £
training

set

Initial set of Determine false
25.000 non- —| Retrain N} positives on large
faces Classifier set of non-face
images

e Problem: 1 face in 116’440 examined windows
» Can easily find negative examples, but which ones are useful?
» Apply iterative training approach

» False positives on negative validation images are included in
training set as “hard negatives”

Computer Vision WS 16/17
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ide adapted from Bernd Heisele
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Viola-Jones Face Detector: Results
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http://sourceforge.net/projects/opencvlibrary/

RWTHAACHE

Viola-Jones Face Detector: Results

Computer Vision WS 16/17
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Slide credit: Kristen Grauman B. Leibe

Example Application

Frontal faces
detected and
then tracked,
character

names inferred
with alignment]
of script and
subtitles.

Everingham, M., Sivic, J. and Zisserman, A.
“Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006.

http://www.robots.ox.ac.uk/~vgg/research/nface/index.html
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Feature Computation Trade-Off

¢ Linear SVM Detectors
» Same computations performed for each image window
» It pays off to precompute the features once
» Complex features can be used

¢ AdaBoost Cascaded Detectors
» Potentially different computations for each window location

» May be more efficient to evaluate the features on-the-fly for
each image window

» If cascading shall be used, simple features are preferable
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You Can Try It At Home...

¢ The Viola & Jones detector was a huge success
» First real-time face detector available
» Many derivative works and improvements

¢ C++ implementation available in OpenCV [Lienhart, 2002]
» http://sourceforge.net/projects/opencvlibrary/
¢ Matlab wrappers for OpenCV code available, e.g. here
» http://www.mathworks.com/matlabcentral/fileexchange/19912

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004
49

ide credit: Kristen Grauman B. Leibe

Summary: Sliding-Windows

* Pros
» Simple detection protocol to implement
» Good feature choices critical
» Past successes for certain classes
» Good detectors available (Viola & Jones, HOG, etc.)

e Cons/Limitations
» High computational complexity

- For example: 250,000 locations x 30 orientations x 4 scales =
30,000,000 evaluations!

- This puts tight constraints on the classifiers we can use.

- If training binary detectors independently, this means cost
increases linearly with number of classes.

» With so many windows, false positive rate better be low

ide credit: Kristen Grauman B. Leibe
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RWTH CHET
What Slows Down HOG (CUDA Implem.)

3.14%. 0.76% GPU Time (Total, %)
% o y )

3.44% __ i Block histogram
computation
& Linear SVM
11.69% evaluation

Gradient magnitudes
and orientations

i Block histogram
normalization

Image downscale

Others

¢ Results from fastHOG (10fps) [Prisacariu & Reid 2009]

ide credit: Prisacarii & Reid 2000 B. Leibe



http://sourceforge.net/projects/opencvlibrary/
http://www.mathworks.com/matlabcentral/fileexchange/19912
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Limitations: Low Training Resolutions

* Many (older) S/W detectors operate on tiny images
» Viola&Jones: 24x24 pixels
» Torralba et al.: 32x32 pixels
» Dalal&Triggs: 64x96 pixels (notable exception)

¢ Main reasons

» Training efficiency (exhaustive feature selection in AdaBoost)
» Evaluation speed
» Want to recognize objects at small scales

e But...
» Limited information content available at those resolutions
» Not enough support to compensate for occlusions!

Computer Vision WS 16/17
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Limitations (continued)

¢ Not all objects are “box” shaped

Computer Vision WS 16/17

ide credit: Kristen Grauman B. Leibe

Limitations (continued)

¢ If considering windows in isolation, context is lost

1.4
Detector’s view

Sliding window
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Figure credit: Derek Hoiem B. Leibe

Limitations: Changing Aspect Ratios

¢ Sliding window requires fixed window size
» Basis for learning efficient cascade classifier

¢ How to deal with changing aspect ratios?
» Fixed window size
= Wastes training dimensions

» Adapted window size
= Difficult to share features

» “Squashed” views [Dalal&Triggs]
= Need to squash test image, too

Computer Vision WS 16/17
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Limitations (continued)

¢ Non-rigid, deformable objects not captured well with
representations assuming a fixed 2D structure; or must
assume fixed viewpoint

¢ Objects with less-regular textures not captured well
with holistic appearance-based descriptions

Computer Vision WS 16/17

ide credit: Kristen Grauman B Lefbe

Limitations (continued)

¢ In practice, often entails large, cropped training set
(expensive)

¢ Requiring good match to a global appearance description
can lead to sensitivity to partial occlusions

Computer Vision WS 16/17

Image credit: Adam, Rivlin, & Shimshoni K. Grauman, B. Leibe
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References and Further Reading

¢ Read the Viola-Jones paper
» P. Viola, M. Jones,
Robust Real-Time Face Detection,
1JCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

¢ Viola-Jones Face Detector
» C++ implementation available in OpenCV [Lienhart, 2002]
- http://sourceforge.net/projects/opencvlibrary/
» Matlab wrappers for OpenCV code available, e.g. here
- http://www.mathworks.com/matlabcentral/fileexchange/19912

¢ HOG Detector
» Code available: http://pascal.inrialpes.fr/soft/olt/
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http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
http://sourceforge.net/projects/opencvlibrary/
http://www.mathworks.com/matlabcentral/fileexchange/19912
http://pascal.inrialpes.fr/soft/olt/

