Computer Vision - Lecture 12

Recognition with Local Features

05.12.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/
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Course Outline

 Image Processing Basics
e Segmentation & Grouping
e Object Recognition

e Object Categorization |
> Sliding Window based Object Detection

e Local Features & Matching

» Local Features - Detection and Description
> Recognition with Local Features
> Indexing & Visual Vocabularies

e Object Categorization Il
e 3D Reconstruction
 Motion and Tracking



Recap: Local Feature Matching Outline

1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

Similarity
measure

M <l

e.g. color e.g. color

d(f,, fz)<T

4. Compute a local
descriptor from the
normalized region

5. Match local
descriptors
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B. Leibe



RO ONVERSITY
Recap: Automatic Scale Selection

e Function responses for increasing scale (scale signature)
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Slide credit: Krystian Mikolajczyk B. Leibe



O ONVERSITY
Recap: Laplacian-of-Gaussian (LoG)

e Interest points:

> Local maxima in scale
space of Laplacian-of-
Gaussian
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Slide adapted from Krystian Mikolajczyk B. Leibe



RWTHAACHEN
. UNIVERSITY
Recap: Harris-Laplace mikolajczyk ‘01

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

o s

Harris-Laplace points
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Slide adapted from Krystian Mikolajczyk B. Leibe



Recap: SIFT Feature Descriptor

e Scale Invariant Feature Transform

e Descriptor computation:
~ Divide patch into 4x4 sub-patches: 16 cells

» Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch

> Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.
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Slide credit: Svetlana Lazebnik B. Leibe


http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

N~
—
~~
o
—
n
=
c
©
i
>
2
>
o
S
@)
@)

Topics of This Lecture

e Recognition with Local Features
~ Matching local features
» Finding consistent configurations
> Alignment: linear transformations
> Affine estimation
> Homography estimation

e Dealing with Outliers
» RANSAC
» Generalized Hough Transform

e Indexing with Local Features

> Inverted file index
> Visual Words

» Visual Vocabulary construction
-~ tf-idf weighting

B. Leibe
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Recognition with Local Features

e Image content is transformed into local features that
are invariant to translation, rotation, and scale

e Goal: Verify if they belong to a consistent configuration
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o Local Features,
§ e.g. SIFT
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Slide credit: David Lowe B. Leibe
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Concepts: Warping vs. Alignment
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Slide credit: Kristen Grauman

B. Leibe

Warping: Given a source
image and a transformation,
what does the transformed
output look like?

Alignment: Given two
images with corresponding
features, what is the
transformation between
them?

13



Parametric (Global) Warping

p’=(x"y’)
e Transformation 1'is a coordinate-changing machine:
p' = T(p)

= ¢ What does it mean that I'is global?
c;) > It’s the same for any point p
2 > It can be described by just a few nhumbers (parameters)
= o Let’s represent T as a matrix: —X,— _X
&
é p = Mp, = M
(@]
@)

Slide credit: Alexej Efros B. Leibe




RWNTH
What Can be Represented by a 2x2 Matrix?

e 2D Scaling?

X'=S§,*X X' s, 0] x
y':Sy*y yI __O Sy_ Y
e 2D Rotation around (0,0)?

X'=c0s@*xX—-sin@*y X'| [cos@ —sind || X
= y'=sin@*x+cosf*y y'| |sin@ cosé ||y
2
5 * 2D Shearing?

S X'=X+sh *y {x}_{l th}{x}
‘é y'=sh, *x+y y'| [sh, 1|y
S

15

Slide credit: Alexej Efros B. Leibe
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What Can be Represented by a 2x2 Matrix?

e 2D Mirror about y axis?
X'=—X

y' =y

e 2D Mirror over (0,0)?

X'=—X
y'=-y

e 2D Translation?
X'=X+t,
Y'Zyﬂy

Slide credit: Alexej Efros

B. Leibe

NO!

—1 0]] x
0 1)y

-1 0 || x

0

-1 y

16



2D Linear Transforms

a bl x
y'| |c d]ly

e Only linear 2D transformations can be represented with
a 2x2 matrix.

e Linear transformations are combinations of ...
> Scale,
> Rotation,
> Shear, and
> Mirror
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Slide credit: Alexej Efros B. Leibe
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Homogeneous Coordinates

e Q: How can we represent translation as a 3x3 matrix
using homogeneous coordinates?

X'=X+1,
y'=y+t,

e A: Using the rightmost column:

10 t
Translation={0 1 t,
0 0 1

Slide credit: Alexej Efros B. Leibe
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Basic 2D Transformations

e Basic 2D transformations as 3x3 matrices

x| [1 0 t |x x| s, 0 O
y'[=(0 1 t |y y'|=|0 s, O
1] |0 0 1)1 1] |0 0 1
Translation Scaling
[ x"| [cos® —sing O x| 'x'| [ 1 sh
y'|=[sind cos@é O]}y y'|=|sh, 1
1] | 0 0 1|1 1] [0 0
Rotation Shearing

Slide credit: Alexej Efros B. Leibe
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2D Affine Transformations

x| [a b ¢l x
y'i=|d e f|y
‘w| |0 0 1]w|

e Affine transformations are combinations of ...
> Linear transformations, and
> Translations

e Parallel lines remain parallel
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Slide credit: Alexej Efros B. Leibe



Projective Transformations

X a b c| x
y'i=|d e f|vy
‘W |9 h | Jw

e Projective transformations:
> Affine transformations, and
> Projective warps

e Parallel lines do not necessarily remain parallel
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Slide credit: AlexXej Efros



Alignment Problem

e We have previously considered how to fit a model to
image evidence

- E.g., a line to edge points

e |In alignment, we will fit the parameters of some
transformation according to a set of matching feature
pairs (“correspondences”).
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Slide credit: Kristen Grauman B. Leibe
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Let’s Start with Affine Transformations

e Simple fitting procedure (linear least squares)

e Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

e Can be used to initialize fitting for more complex models

23

Slide credit: Svetlana Lazebnik B. Leibe
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e Affine model approximates perspective projection of
planar objects

Slide credit: Kristen Grauman B. Leibe

24

Image source: David Lowe
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RWNTH
Fitting an Affine Transformation "

e Assuming we know the correspondences, how do we get
the transformation?

25

B. Leibe



RWTH
Recall: Least Squares Estimation

e Set of data points: (X,, X,),(X,, X,), (X, X))

e Goal: a linear function to predict X’s from Xs:
Xa+b=X

e« We want to find a and b.

e How many (X, X ) pairs do we need?

. X1a+b=X1l X, 1ja _ X.l Ax = B
S X,a+b=X, X, 1jb X,

%) . . .

= ¢ What if the data is noisy?

= - X, 1] [ Xl'_ Overconstrained Solution:

S . problem

“ X, 1l|a — AT

g X2 ) [b}: X? min ||Az — B||? v=A"B

3 3 Xs = Least-squares Matlab:

g R ] minimization T = A\B 26

Slide credit: Alexej Efros B. Leibe



RWNTH
Fitting an Affine Transformation

e Assuming we know the correspondences, how do we get
the transformation?
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RWTH
Fitting an Affine Transformation

ml
_ Tm | T
. y. 0 0 1 0| m, X
0 0 x ¥ 0 1|m| |y
u _tl I
L

e How many matches (correspondence pairs) do we need
to solve for the transformation parameters?

e Once we have solved for the parameters, how do we
compute the coordinates of the corresponding point for

(Xnew1 ynew) ?
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Slide credit: Kristen Grauman B. Leibe



Homography

e A projective transform is a mapping between any two
perspective projections with the same center of
projection.

- l.e. two planes in 3D along the same sight ray
e Properties
» Rectangle should map to arbitrary quadrilateral

~ Parallel lines aren’t
> but must preserve straight lines
e This is called a homography
wx' 11 x
PP1

B. Leibe
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Slide adapted from Alexej Efros



Homography

e A projective transform is a mapping between any two
perspective projections with the same center of
projection.

- l.e. two planes in 3D along the same sight ray

e Properties

» Rectangle should map to arbitrary quadrilateral
- Parallel lines aren’t

% > but must preserve straight lines

c;; e This is called a homography

S WX o hy R | X

= o h Set scale factor to 1
[ WY | = |y Ny 23 || )/// = 8 parameters left.
3 W [Ny Ny, @i 1

S p’ H p

Slide adapted from Alexej Efros B. Leibe
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Fitting a Homography

e Estimating the transformation

Homogenous coordinates

XA1 (_)XBl _Xl_ _hll
Xy, <> Xg, y'l=h,,
XAs (—)XBS _Z'_ _h31

Slide credit: Krystian Mikolajczyk

h,

h22

32

hg

h23 )

1

Image coordinates

Y a 1—X.— Matr"ix nclaizl:\tion
y y" 2; y' X=X
1 1 Z' XII — ilxl
- - - - - - Z

31
B. Leibe



N~
—
S~~~
(o)
—
%2
=
c
©
i
>
2
>
o
&
@)
@)

Fitting a Homography

e Estimating the transformation

Homogenous coordinates Image coordinates
XA1 <> X81 _Xl_ _hll h12 h13_ _X_ _Xﬂ_ _Xu_ Matl"'IX n?_ltatlon
X, <X , 1) —
A B2 y'i={hy hy hy [y y' | = o y X X
XA3 (—)XI33 7' h31 » 1 1 1 7! Xu _ 1 Xl
L — L — — — L — L — Z|
32
B. Leibe

Slide credit: Krystian Mikolajczyk



Fitting a Homography

e Estimating the transformation

N~
=
o)
» Homogenous coordinates Image coordinates
E XA1 <> X81 _Xl_ _hll h12 h13_ _X_ _Xﬂ_ _Xu_ Matl"'IX n?_ltatlon
9 X <_) X 1 J. 1 p—
_%) A2 B2 y'i={hy hy hy [y y' | = B y X X
_ XAs (—)X83 _Z'_ _h31 h32 1_ _1_ _1_/ _Z'_ Xu:ilxl
= 4 ‘
g ¥ = hy, Xg + huYBl +hy
N
O hyy Xg +hg,Yp +1 33
B. Leibe

Slide credit: Krystian Mikolajczyk



Fitting a Homography

e Estimating the transformation

N
Ly
O
; Homogenous coordinates Image coordinates
= Xp > Xp d _h11 h, h13_ "y e "] Matrix notation
S X, X X' = HX
:g k > Y =|hay Ny hylfy y’ ZI} y' -
X, €& X ' '
5 Aq B, | 7' _h31 h, 1 | _1_ 77 X":%X'
o
o
g ¥ = hy, Xg + h12YBl +hy B hy, Xg + h22y|31 +hyg
AT AT
O hyy X +hayYg +1 hyy Xg +hayYg +1 34
B. Leibe

Slide credit: Krystian Mikolajczyk
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Slide credit: Krystian Mikolajczyk

Fitting a Homography

e Estimating the transformation

Xp > Xg w = h,, Xg, T h12Y|31 +h;, . hy, Xg, T hzzyB1 +hy,

Xp, >Xg " hyXg +hyyg +1 % hy Xg +hyyg +1

Ao 31 7B,

X, < X, XAih31 XBl+XA1h32yBl+XAL =h, XBl_I_hlZyBl_l_hlB

B. Leibe

35



Fitting a Homography

e Estimating the transformation

Homogenous coordinates Image coordinates
Xp € Xg, x = hy, Xg, + h12yB1 +h;, _ h,, Xg, T hzzyB1 +hy,
AT AT
Xp, <> Xg. hyy Xg +hy,Yg +1 hyy Xg +hy,Yg +1

A € Xp, XAihSl XBl+XALh32yBi+XAL =hy, XBl"'hlzyBl"'hls
hll XB1 + hlZyBl + hl3_XAlh31 Xsl _X/slhszyal _XAl =0

Ny Xg +hooYe +13— Y hay Xg —YaM55Y5 =Y, =0
Slide credit: Krystian Mikolajczyk B. Leibe
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Fitting a Homography

e Estimating the transformation

Ny Xg +15Ye =X, ey Xg =X, Moy =X, =0

hyy Xg, +0y,Y5 + 3= Ya ey Xg —YaNyyYe —Ya =0

>
-
|

-

Q XA_[ < XBl X, Yo, 1 0 0 0 —=X.Xs —X\Yg =X, h;5 0
= 0 0 0 Xy Yo 1 =VYaXe —VYaVs, —VYal||Mu| |O
0 Xy, €>Xg S . o

g XA3 <> XB3 . . . . . . . . ) h23

(% | 1| | ]
>

) h

o 32

E 1

a

S

o

@)
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Slide credit: Krystian Mikolajczyk B. Leibe



Fitting a Homography

e Estimating the transformation

e Solution:
> Null-space vector of A
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Slide credit: Krystian Mikolajczyk B. Leibe
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Fitting a Homography

e Estimating the transformation

e Solution:

> Null-space vector of A
~ Corresponds to smallest

singular vector

SVD
X, € Xg, l
Xa < %e, A=UDV' =U
Xy €>Xg,

Slide credit: Krystian Mikolajczyk

B. Leibe

Minimizes least square error

39



RWTHAACHEN
. . . UNIVERSITY
Image Warping with Homographies
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2 Image plane in front :

= Black area

o) where no pixel

O maps to 40
B. Leibe

Slide credit: Steve Seitz



RWTHAACHEN
. UNIVERSITY
Uses: Analyzing Patterns and Shapes

° What is the shape of the b/w floor pattern?

Computer Vision WS 16/17

The floor (enlarged)

Slide credit; Antonio Criminisi B. Leibe
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Analyzing Pat

Automatic rectification

Slide credit: Antonio Criminisi

|l (T

terns and Shapes

From Martin Kemp The Science of Art
(manual reconstruction)

B. Leibe

42
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Topics of This Lecture

e Dealing with Outliers
> RANSAC
» Generalized Hough Transform

B. Leibe

43



UNI\IEF%II%I
Problem: Outliers

e Qutliers can hurt the quality of our parameter
estimates, e.g.,
> An erroneous pair of matching points from two images

> A feature point that is noise or doesn’t belong to the
transformation we are fitting.
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B. Leibe

Slide credit: Kristen Grauman



Example: Least-Squares Line Fitting

e Assuming all the points that belong to a particular line
are known
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. 45
B. Leibe Source: Forsyth & Ponce



- 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -8 -k -4 -2 0 2 4 B

N~
—
S~~~
(o)
—
%2
=
c
£
2
>
[2
>
o
&
o
@)

. 46
B. Leibe Source: Forsyth & Ponce
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B. Leibe Source: Forsyth & Ponce
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Strategy 1: RANSAC [Fischlers1]

e RANdom SAmple Consensus

e Approach: we want to avoid the impact of outliers, so
let’s look for “inliers”, and use only those.

e Intuition: if an outlier is chosen to compute the current
fit, then the resulting line won’t have much support
from rest of the points.

Slide credit: Kristen Grauman B. Leibe
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RANSAC

RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of transformation on
all of the inliers

e Keep the transformation with the largest number of
inliers
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Slide credit: Kristen Grauman B. Leibe
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RANSAC Line Fitting Example

e Task: Estimate the best line
» How many points do we need to estimate the line?

Slide credit: Jinxiang Chai B. Leibe

50



RANSAC Line Fitting Example

e Task: Estimate the best line

°
°
°

o o
™~ o
3 . ° .
n
2 $
S °
S Sample two points
‘ ° °
E ®
=
S

. 51

B. Leibe

Slide credit: Jinxiang Chai
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RANSAC Line Fitting Example

e Task: Estimate the best line

Fit a line to them

Slide credit: Jinxiang Chai B. Leibe
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RANSAC Line Fitting Example

e Task: Estimate the best line

-
-
-
-

-
-
-
-
-
-

-
-

-
-
-
-
-

-
-
-
-
-

Slide credit: Jinxiang Chai

-
-
-
-
-
-

-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-

Total number of points
within a threshold of
line.

B. Leibe

53



RANSAC Line Fitting Example

e Task: Estimate the best line

-
-
-
-
-
-
-
-
-

e
- "——”
e ‘ -
""""""""""""""""""""""""" “7 inlier points”
l:| - e ® 77
= o o
e e
- s
; - -
5 B .
= Total number of points
c ° ° oy
g within a threshold of
S o .
g line.
= 54
B. Leibe

Slide credit: Jinxiang Chai
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RANSAC Line Fitting Example

e Task: Estimate the best line

Repeat, until we get a
good result.

Slide credit: Jinxiang Chai B. Leibe

55
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RANSAC Line Fitting Example

e Task: Estimate the best line

" “11 inlier points”

Repeat, until we get a
good result.

Slide credit: Jinxiang Chai B. Leibe

56
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RANSAC: How many samples?

e How many samples are needed?
~ Suppose W is fraction of inliers (points from line).
> N points needed to define hypothesis (2 for lines)
> K samples chosen.

n

 Prob. that a single sample of n points is correct: w

e Prob. that all k samples fail is: (L—w")"

— Choose Kk high enough to keep this below desired failure
rate.

57

Slide credit: David Lowe B. Leibe



RANSAC: Computed k (p=0.99)

Sample | Proportion of outliers
Slrz,e 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
. 5 4 6 12 17 26 57 146
5 6 4 7 16 24 37 97 293
= 7 4 8 20 33 54 163 588
2 8 | 5 9 26 44 78 272 1177
@)

Slide credit: David Lowe B. Leibe



N~
—i
~
o
—i
n
=
c
2
L
>
8
-}
o
=
(@]
O

After RANSAC

e RANSAC divides data into inliers and outliers and yields
estimate computed from minimal set of inliers.

e Improve this initial estimate with estimation over all
inliers (e.g. with standard least-squares minimization).

e But this may change inliers, so alternate fitting with re-
classification as inlier/outlier.

B. Leibe

Slide credit: David Lowe
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RWTHAACHEN
. 4 UNIVERSITY
Example: Finding Feature Matches

e Find best stereo match within a square search window
(here 300 pixels?)

e Global transformation model: epipolar geometry

Images from Hartley & Zisserman

60
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Slide credit: David Lowe B. Leibe



UNIVEF?EI%
Example: Finding Feature Matches

e Find best stereo match within a square search window
(here 300 pixels?)

e Global transformation model: epipolar geometry

before RANSAC after RANSAC

Images from Hartley & Zisserman
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Problem with RANSAC

e |[n many practical situations, the percentage of outliers
(incorrect putative matches) is often very high (90% or
above).

e Alternative strategy: Generalized Hough Transform
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Strategy 2: Generalized Hough Transform
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e Suppose our features are scale- and rotation-invariant

> Then a single feature match provides an alighment hypothesis
(translation, scale, orientation).

N~
—
S~~~
(o)
—
%2
=
c
£
2
>
[2
>
o
&
o
@)

63
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Slide credit: Svetlana Lazebnik



Strategy 2: Generalized Hough Transform

e Suppose our features are scale- and rotation-invariant

> Then a single feature match provides an alighment hypothesis
(translation, scale, orientation).

~ Of course, a hypothesis from a single match is unreliable.

> Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.
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Pose Clustering and Verification with |IFT

e To detect instances of objects from a model base:

1. Index descriptors

* Distinctive features narrow down
possible matches
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Image source: David Lowe

Slide credit: Kristen Grauman B. Leibe



Image source: David Lowe

New image

Indexing Local Features
Model base

Slide credit: Kristen Grauman
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Pose Clustering and Verification with SIFT

e To detect instances of objects from a model base:

1. Index descriptors

* Distinctive features narrow down
possible matches

2. Generalized Hough transform
to vote for poses

* Keypoints have record of parameters
relative to model coordinate system

3. Affine fit to check for agreement
between model and image
features

* Fit and verify using features from
Hough bins with 3+ votes
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Image source: David Lowe
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Object Recognition Results
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Location Recognition

Training
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Recall: Difficulties of Voting

 Noise/clutter can lead to as many votes as true target.

e Bin size for the accumulator array must be chosen
carefully.

e (Recall Hough Transform)

e In practice, good idea to make broad bins and spread
votes to nearby bins, since verification stage can prune
bad vote peaks.

70
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Summary

e Recognition by alignment: looking for object and pose
that fits well with image
~ Use good correspondences to designate hypotheses.
> Invariant local features offer more reliable matches.

> Find consistent “inlier” configurations in clutter

- Generalized Hough Transform
- RANSAC

e Alignment approach to recognition can be effective
if we find reliable features within clutter.
> Application: large-scale image retrieval

» Application: recognition of specific (mostly planar) objects
- Movie posters
- Books
- CD covers
B. Leibe
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RWTH
References and Further Reading

e A detailed description of local feature extraction and
recognition can be found in Chapters 3-5 of Grauman &
Leibe (available on the L2P).

1 > K. Grauman, B. Leibe -':secouoeomon
Visual Object Visual Object Recognition Multinle View
REcopmition Morgan & Claypool publishers, 2011

Kristen Grauman
Bastian Leibe

> R. Hartley, A. Zisserman
Multiple View Geometry in P

— Computer Vision A e

S 2nd Ed., Cambridge Univ. Press, 2004

 More details on RANSAC can also be found in Chapter 4.7
of Hartley & Zisserman.



