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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Gaussian (or Normal) Distribution

* One-dimensional case
> Mean u

» Variance o> / \

2
Nl ) = ——exp {JQT‘”}

Vi(x|p.0?)

* Multi-dimensional case A
> Mean p
» Covariance ¥
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Announcements

* Exam dates
» We're in the process of fixing the first exam date

* Exercises
» The first exercise sheet is available on L2P now
» First exercise lecture on 30.10.2017

= Please submit your results by evening of 29.10. via L2P
(detailed instructions can be found on the exercise sheet)
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Topics of This Lecture

* Recap: Parametric Methods
» Gaussian distribution
» Maximum Likelihood approach

* Non-Parametric Methods
» Histograms
» Kernel density estimation
» K-Nearest Neighbors
» k-NN for Classification

* Mixture distributions
» Mixture of Gaussians (MoG)
» Maximum Likelihood estimation attempt
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Recap: Maximum Likelihood Approach

* Computation of the likelihood
» Single data point: p(ifn\e)

» Assumption: all data points X = {x1,...,x,}e independent

L(9) = p(X10) = ]| p(xl6)
» Log-likelihood nZIN
E(f) =—-IL(0) = - np(xn|0)

* Estimation of the parameters # (Learning)
» Maximize the likelihood (=minimize the negative log-likelihood)
= Take the derivative and set it to zero.
N &
17} oy 0
—EO)=-Y aeP@nl?) 1
00 p(xn|6)

ide credit Bernt Schigle B. Leibe
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Maximum Likelihood Approach

* When applying ML to the Gaussian distribution, we obtain
N
N 1
=N >
n=1
* In a similar fashion, we get

1
-2 22
6% = —nEZI(xn —ft)

“sample mean”

“sample variance”

« 0= (i1,6)is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

* This is a very important result.
* Unfortunately, it is wrong...
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Maximum Likelihood — Limitations
* Maximum Likelihood has several significant limitations

» It systematically underestimates the variance of the distribution!
» E.g. consider the case

N=1,X={z}

= Maximum-likelihood estimate:

1N
52 )2
6% = Nngl(.tn — )

» We say ML overfits to the observed data.

» We will still often use ML, but it is important to know about
this effect.

ide adapted from Bernt Schiele B. Leibe

Bayesian vs. Frequentist View

* To see the difference...

» Suppose we want to estimate the uncertainty whether the Arctic ice
cap will have disappeared by the end of the century.

This question makes no sense in a Frequentist view, since the event
cannot be repeated numerous times.

In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior « Likelihood x Prior

This generally allows to get better uncertainty estimates for many
situations.

v

v

v

v

* Main Frequentist criticism

» The prior has to come from somewhere and if it is wrong,
the result will be worse.
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Maximum Likelihood Approach
* Or not wrong, but rather biased...

* Assume the samples z,, z,, ..., z,, come from a true
Gaussian distribution with mean . and variance o2

» We can now compute the expectations of the ML estimates with
respect to the data set values. It can be shown that

E(umL) = p

Botn) = (T

= The ML estimate will underestimate the true variance.

* Corrected estimate:
N

~ N 1 N
& = maI%IL “N_-1 Z(zn - H)Z

n=1 8

Machine Learning Winter ‘17

B. Leibe

Deeper Reason

* Maximum Likelihood is a Frequentist concept

» In the Frequentist view, probabilities are the frequencies of random,
repeatable events.
These frequencies are fixed, but can be estimated more precisely
when more data is available.

v

* This is in contrast to the Bayesian interpretation

» In the Bayesian view, probabilities quantify the uncertainty about
certain states or events.

» This uncertainty can be revised in the light of new evidence.
/R’?

Bz
k.

* Bayesians and Frequentists do not like
each other too well...
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Bayesian Approach to Parameter Learning

* Conceptual shift

» Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

» In Bayesian learning, we consider 6 to be a random variable.

* This allows us to use knowledge about the parameters ¢
» i.e. to use a prior for 6 posterior

» Training data then converts this p(®1)
prior distribution on 6 into prior
a posterior probability density. p(8)

» The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.
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Bayesian Learning Topics of This Lecture
* Bayesian Learning is an important concept
» However, it would lead to far here.
= | will introduce it in more detail in the Advanced ML lecture.
* Non-Parametric Methods
» Histograms
» Kernel density estimation
» K-Nearest Neighbors
= = » k-NN for Classification
g 8
= £
2 =
o o
£ =
= £
3 8
- -
2 2
< <
) 13 14
B. Leibe B. Leibe
RWTH//CHE RWTH CHET
Non-Parametric Methods Histograms
* Non-parametric representations * Basic idea:
» Often the functional form of the distribution is unknown » Partition the data space into distinct
bins with widths A; and count the 2
number of observations, n;, in each
bin. ng 1
Pi= oAl
NA; 0
N 0 05 1
= X = » Often, the same width is used for all bins, A; = A.
E E » This can be done, in principle, for any dimensionality D...
=| + Estimate probability density from data 2 ‘47
£ » Histograms £ ‘:Z:ﬂ ...but the required
b . N ] . 8 —t number of bins
3 » Kernel density estimation (Parzen window / Gaussian kernels) 3 Hl . grows exponen
. | T T -
;E » k-Nearest-Neighbor g ‘ tially with D!
= 15 = D= B D=2 ’ 2 D=3 16
de credit Bernt Schiele B. Leibe B. Lelte Jmage source: G\, Bishop, 200
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Histograms Summary: Histograms
* The bin width A acts as a smoothing factor. * Properties
5 » Very general. In the limit (N—o0), every probability density can be
A=0.04 represented
not smooth enough i . . .
B » No need to store the data points once histogram is computed.
0 0.5 1 » Rather brute-force
5
A =0.08 .
about OK Proplem§ .
- o » High-dimensional feature spaces
b 00 05 1 < — D-dimensional space with M bins/dimension will require M bins!
E 5 A—025 - 2 = Requires an exponentially growing number of data points
% too smooth 2 § ="“Curse of dimensionality”
E o € ~ Discontinuities at bin edges
§ 0 0.5 1 § » Bin size?
2 2 — too large: too much smoothing
= =
& g — too small: too much noise
= 17 = 18
B. Leibe Jmage source: CM. Bishop, 200 de credit Bernt Schiele B. Leibe
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Statistically Better-Founded Approach

* Data point x comes from pdf p(x)
» Probability that z falls into small region R

P=/Rp(y)dy

* If R is sufficiently small, p(x) is roughly constant
» Let V' be the volume of R

P= /R p(y)dy =~ p(x)V

* |If the number N of samples is sufficiently large, we can
estimate Pas
K K
P=_— = N —
N P~ Ry
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Kernel Methods

* Parzen Window

» Hypercube of dimension D with edge length h:
1, wl < h, i=1,..,D
) = i il <3

0, else

“Kernel function”

N
K= Z k(x—xy)
n=1

» Probability density estimate:

N
K 1
p(x) NV NP Zlk(x—xn)
=

V= fk(u)du = hP

Machine Learning Winter ‘17
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Kernel Methods: Gaussian Kernel
* Gaussian kernel
» Kernel function
k(u) = ! e - u
= @iz TP 2
N
K:Zk(xfxn) V:/k(u)du:l
n=1

» Probability density estimate
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ide credit- Bernt Schigle B. Leibe
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Statistically Better-Founded Approach

() ~ 1

X)) " ——

P NV
fixed V'

determine K

fixed K
determine V

Kernel Methods

K-Nearest Neighbor
* Kernel methods
» Example: Determine -

the number K of data -

points inside a fixed .

hypercube... -

20

ide credit: Bernt Schiele B. Leibe

Kernel Methods: Parzen Window

* Interpretations
1. We place a kernel window # at
location x and count how many
data points fall inside it.

2. We place a kernel window % around
each data point x,, and sum up
their influences at location x.

= Direct visualization of the density.

¢ Still, we have artificial discontinuities at the cube
boundaries...
» We can obtain a smoother density model if we choose a smoother
kernel function, e.g. a Gaussian

22
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Gauss Kernel: Examples
h = 0.005
not smooth enough
olLA=
0 0.5 1
h=0.07
about OK A/\
0
0 0.5 1
h=02
too smooth %
o =
0 0.5 1
h acts as a smoother.
24
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Kernel Methods

* In general
» Any kernel such that

kw) = 0,

can be used. Then

fk(u)du ~- 1
N

K:Zk(x—xn)

n=1

» And we get the probability density estimate

N
K 1
p(x) ~ NV NZk(x—xn)
n=1

Machine Learning Winter ‘17
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K-Nearest Neighbor

* Nearest-Neighbor density estimation
» Fix K, estimate V from the data. K=3
» Consider a hypersphere centred @
on x and let it grow to a volume V'* oo @
that includes K of the given N data °
points.
» Then

* Side note

» Strictly speaking, the model produced by K-NN is not a true density
model, because the integral over all space diverges.
» E.g. consider K =1 and a sample exactly on a data point x = z;.

Machine Learning Winter ‘17
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Summary: Kernel and k-NN Density Estimation

* Properties
» Very general. In the limit (N—o0), every probability density can be
represented.
» No computation involved in the training phase
= Simply storage of the training set

* Problems
» Requires storing and computing with the entire dataset.
= Computational cost linear in the number of data points.
= This can be improved, at the expense of some computation during
training, by constructing efficient tree-based search structures.
» Kernel size / K in K-NN?
— Too large: too much smoothing
— Too small: too much noise
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Statistically Better-Founded Approach
K
p(x) ~ NV

fixed V' fixed K
determine K determine V

~ Kernel Methods K-Nearest Neighbor
5
£
2 )
2 = * K-Nearest Neighbor
§ LA » Increase the volume V'
2 - until the K next data
£ -] points are found.
§ ) : 26
ide credit: Bernt Schiele B. Leibe
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k-Nearest Neighbor: Examples

not smooth enough

K acts as a smoother.

50 0.5 1
| K=5
about OK /\
: ! o |
2 5 -
s K =30
E too smooth —/\
E 0 —
s 0 0.5 1
g
<
8
=
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K-Nearest Neighbor Classification
* Bayesian Classification
p(x[C;)p(C;)
Cilx) = —— 7
( ]‘ ) (%)
* Here we have
K
p(x) ~ NV
5 K _ K; NNV K,
] O~ gy —rGRNA R R R
g N. k-Nearest Neighbor
% p(C;) ~ W] classification
£
ide credit- Bernt Schiele. B. Leibe 30
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K-Nearest Neighbors for Classification K-Nearest Neighbors for Classification
* Results on an example data set
K=1 K-=3 K=31
@ T2 e esipnne (R
- N - z 2 z
. 3
= ® = 1 1= 1S
: ‘;\ ' .
® v
] ] L
~ 4 . ~
¥ x ap o ¥ . = 0 0 0
3 i & 1 £ 2 1 £ 2 1 2 2
£ ° £
s A s ,
£ % . % .® 2N K acts as a smoothing parameter.
E K=3 1 K=1 1 £ * Theoretical guarantee
2 ] » For N—oo, the error rate of the 1-NN classifier is never more than
§ § twice the optimal error (obtained from the true conditional class
= 2 = distributions). 2
B. Leibe Jmage source: C.M. Bishop. 200 B. Leibe Image source: C.M. Bishop 200
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Bias-Variance Tradeoff Discussion
* Probability density estimation * The methods discussed so far are all simple and easy to
» Histograms: bin size? _ apply. They are used in many practical applications.
— A too large: too smooth Too much bias « However...
— A too small: not smooth enough Too much variance

» Histograms scale poorly with increasing dimensionality.
= Only suitable for relatively low-dimensional data.

» Kernel methods: kernel size?

— h too large: too smooth

— h too small: not smooth enough
» K-Nearest Neighbor: K?

— K too large: too smooth

— K too small: not smooth enough

» Both k-NN and kernel density estimation require the entire data set
to be stored.

= Too expensive if the data set is large.

» Simple parametric models are very restricted in what forms of
distributions they can represent.

* This is a general problem of many probability density = Only suitable if the data has the same general form.

estimation methods

) ) ) * We need density models that are efficient and flexible!
» Including parametric methods and mixture models

= Next topic...

Machine Learning Winter ‘17
Machine Learning Winter ‘17
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Topics of This Lecture Mixture Distributions

* A single parametric distribution is often not sufficient
» E.g. for multimodal data

100 100
80 80

= = 60 60
8 . N 3
o Mixture distributions s
E . Mixture of Gaussians (MoG) E 40 40 =
E » Maximum Likelinood estimation attempt £ L 2 3 4 5 e Loz 2 4 B3 e
% % Single Gaussian Mixture of two
= £ Gaussians
=} =]
© ©
= =
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Mixture of Gaussians (MoG)

* Sum of M individual Normal distributions

" /\Z/A

T
= » In the limit, every smooth distribution can be approximated this way
g (if M is large enough)
H M
o
£ — . y
p(al8) = 3" p(l8;)p()
S j=1
£
=
8
s
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Mixture of Gaussians (MoG)

* “Generative model”

N “Weight” of mixture
p(j) = m; component

x Mixture

= p(a) /\(7& plx|6;) component
£ z
=
2 I Mixture density
: I M _
S i=1
2 T

ide credit- Bernt Schiele. B. Leibe 38

Mixture of Multivariate Gaussians
* Multivariate Gaussians

M
p(x10) = > p(x[0;)p(5)

=1

1 1 _
p(x\é'j) = WEXP {_f(x - ”j)TEj 1(x - l"j)}

» Mixture weights / mixture coefficients:

M
p(j) =mjwith 0- mi+ 1and Zﬂ'j:l @
j=1

05 M

0= (mo, by, Zn, - g Mg, Br) o O

0 05 1

» Parameters:
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ide credit- Bernt Schigle B. Leibe

Mixture of Gaussians

Likelihood of measurement x
given mixture component j

M
p(el6) = Y BGIOIF0]

p(x|0;) = N(|p;, 0%) = \%m_ exp {_ (z ;ff) }

J J

M
p(j) =mjwih 0 T 1ang Som=1 Prorol
j=1

~ component j

g

£

= * Notes

2 . The mixture density integrates to 1: /p(x)da: =1

I

(]

2 » The mixture parameters are

£

5 0 = (71, 1,015 - -+, M5 M5 O M)

= ; 38
ide adapted from Bernt Schiele B. Leibe

Mixture of Multivariate Gaussians

05
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Mixture of Multivariate Gaussians

* “Generative model”

Machine Learning Winter 17
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Mixture of Gaussians — 1t Estimation Attempt

* Maximum Likelihood

N
- Minimize E = —InL(#) = — Zlnp(xnw)
n=1
- Let's first look at p1;:

OE B
— =0 \/
op,

~

5 B

£

%, » We can already see that this will be difficult, since

= N

&

g Inp(X|m, 1, 2) = > I d > N (0 ., i)

£ n=1

S

2 This will cause problems!
ide adapted from Bernt Schiele B. Leibe
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Mixture of Gaussians — 1st Estimation Attempt
e But...
N TN (%0 (p2) 2y
b = Donef Xn 5 (%) = N Q i)

) e w:f\%y) =)

* |.e. there is no direct analytical solution!
oF
=f(m,p, 20,0,

op;
» Complex gradient function (non-linear mutual dependencies)
» Optimization of one Gaussian depends on all other Gaussians!

» Itis possible to apply iterative numerical optimization here,
but in the following, we will see a simpler method.

ﬂ’M?IJ’M7EM)

Machine Learning Winter ‘17
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Mixture of Gaussians — Other Strategy

* Assuming we knew the values of the hidden variable...

Jx)

X

ML for Gaussian #1 T I ML for Gaussian #2

E assumed known —> 1 111 22 2 2 j

£ h(j=1zn) = 1111 0 0 0

£ h(j =2lz,) = 0 000 1 1

E = Zﬁ%\} h(j = 1|zn)z, iy = Z 1 1 h(F = 2lzn) e,

k > i1 (G = 1lan) i h(j =2|zy) .
de credi Bery Schiele 5. Leibe
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Mixture of Gaussians — 1st Estimation Attempt
* Minimization: 0 oo, B) =
N Ty
oE (’i‘ (%n|6) 52060 — )N G, Z1)
6”7' n=1 Zk:l p(xnlak)

,i (21 X 7“) p(xnlej) )

Zkl-{=1 P(Xn|0k)

~
g
=
=)
=
£
8
3
Py
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=
S
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N
e S e AT N
n=1 —1 TeN (X |1y, 2
* We thus obtain = (%)
ZN71 Vi (%n)%p “responsibility” of
>p = =5 component j for x,,
217 (Xn)
B. Leibe 44
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Mixture of Gaussians — Other Strategy
* Other strategy: @
S(x[1) /
J1e) .
S(x[2)
» Observed data: . see e o . X
» Unobserved data: 1111 22 2 2
— Unobserved = “hidden variable™: j|x
h(j = llan) = 1111 000 0
h(j = 2lan) = 0 000 11 1
46
de credit Bernt Schiele B. Lelte
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Mixture of Gaussians — Other Strategy

* Assuming we knew the mixture components...

J*HI

p(j =2|v)
1 lll 22 2 2 J

* Bayes decision rule: Decide j =1 if

(i = 1zn) > p(j = 2Jzn)

48
de credit Bernt Schiele B, Leibe
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Mixture of Gaussians — Other Strategy

* Chicken and egg problem — what comes first?

S

We don’t know
any of those!
111 22 2 2 J

* In order to break the loop, we need an estimate for j.
» E.g. by clustering...
= Next lecture...

ide credit: Bernt Schiele B. Leibe
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References and Further Reading

* More information in Bishop’s book
» Gaussian distribution and ML:
» Bayesian Learning:
» Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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Ch.1.2.4 and 2.3.1-2.3.4.
Ch.1.2.3 and 2.3.6.

51




