Machine Learning — Lecture 3

Probability Density Estimation Il
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Announcements

* Exam dates
> We're in the process of fixing the first exam date

* EXercises
> The first exercise sheet is available on L2P now
> First exercise lecture on 30.10.2017

= Please submit your results by evening of 29.10. via L2P
(detailed instructions can be found on the exercise sheet)
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks e I
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Topics of This Lecture

* Recap: Parametric Methods
> Gaussian distribution
> Maximum Likelihood approach

* Non-Parametric Methods
> Histograms
> Kernel density estimation
» K-Nearest Neighbors
> k-NN for Classification

* Mixture distributions
> Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt
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RWNTH
Recap: Gaussian (or Normal) Distribution

* One-dimensional case ‘
> Mean u
> Variance o2

Nislp,o?) = ——exp {10

2mo 202

A
N(z|p,0?)

 Multi-dimensional case
> Mean u
> Covariance J,
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RWNTH
Recap: Maximum Likelihood Approach

* Computation of the likelihood
. Single data point: P(Zn|0)

> Assumption: all data points X = {a:l,.. , T, 1€ independent
L(0) = p(X|0) = H p(x,|0)

> Log-likelihood
E(0) = —InL(0) = — Zln p(,]0)

* Estimation of the parameters 6 (Learning)

> Maximize the likelihood (=minimize the negative log-likelihood)
— Take the derivative and set it to zero

Z aep (27|0) Lo
p(x,|0)

Slide credit: Bernt Schiele B. Leibe
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Maximum Likelihood Approach

* When applying ML to the Gaussian distribution, we obtain

1 N
w = N Z Tn sample mean
n=1
* In a similar fashion, we get
1N
A2 _ N 2 i“ . 7
0" = = zjl(xn i) sample variance
n—

0 = (i1, 6)is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

* This is a very important result.
* Unfortunately, it is wrong...

B. Leibe



Maximum Likelihood Approach

* Or not wrong, but rather biased...

* Assume the samples =, x., ..., £,y come from a true
Gaussian distribution with mean p and variance o~

> We can now compute the expectations of the ML estimates with
respect to the data set values. It can be shown that

E(pvi) = p

N

= N —1

o) 12 0'2 = _ 02

(o3) -

=

I = The ML estimate will underestimate the true variance.
C

GF « Corrected estimate:

- N
§ 6° = al UML T Z
= N —1 —1 —

B. Leibe



RWNTH
Maximum Likelihood — Limitations

* Maximum Likelihood has several significant limitations
> It systematically underestimates the variance of the distribution!
> E.g. consider the case

N=1X={z} I T
— Maximum- Iikelihood estimate: ¢ 5‘ — O !
5 1
= = Z |
[ xL

> We say ML overfits to the observed data.

> We will still often use ML, but it is important to know about
this effect.
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Deeper Reason

 Maximum Likelihood is a Frequentist concept

> In the Frequentist view, probabillities are the frequencies of random,
repeatable events.

> These frequencies are fixed, but can be estimated more precisely
when more data is available.

* This is in contrast to the Bayesian interpretation

> In the Bayesian view, probabilities quantify the uncertainty about
certain states or events.

> This uncertainty can be revised in the light of new evidence.

* Bayesians and Freqguentists do not like AN
each other too well... =

s

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

B. Leibe



N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Bayesian vs. Freqguentist View

* To see the difference...

> Suppose we want to estimate the uncertainty whether the Arctic ice
cap will have disappeared by the end of the century.

> This question makes no sense in a Frequentist view, since the event
cannot be repeated numerous times.

> In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

> If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior o< Likelihood X Prior

> This generally allows to get better uncertainty estimates for many
situations.

* Main Frequentist criticism

> The prior has to come from somewhere and if it is wrong,

the result will be worse. 1
B. Leibe
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RWTH
Bayesian Approach to Parameter Learning

* Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

> In Bayesian learning, we consider 6 to be a random variable.

* This allows us to use knowledge about the parameters 6

~» i.e.to use a prior for posterior
p(8ly)

> Training data then converts this .
prior distribution on 6 into prior
a posterior probability density. p(8)

> The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.

Slide adapted from Bernt Schiele B. Leibe
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Bayesian Learning

* Bayesian Learning is an important concept
> However, it would lead to far here.
— | will introduce it in more detail in the Advanced ML lecture.
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Topics of This Lecture

* Non-Parametric Methods
> Histograms
> Kernel density estimation
» K-Nearest Neighbors
> k-NN for Classification
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Non-Parametric Methods

* Non-parametric representations
> Often the functional form of the distribution is unknown

X

* Estimate probability density from data
> Histograms
> Kernel density estimation (Parzen window / Gaussian kernels)
> k-Nearest-Neighbor

Slide credit: Bernt Schiele B. Leibe

15



Histograms

* Basic idea:

> Partition the data space into distinct
bins with widths A, and count the
number of observations, n;, in each

x1

0 0.5 1

...but the required
number of bins
grows exponen-
tially with D!

16
Image source: C.M. Bishop, 2006

bin.
Uz
Pi =

NA,;
~ > Often, the same width is used for all bins, A, = A.
_*qg’ > This can be done, in principle, for any dimensionality D...
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Histograms

* The bin width A acts as a smoothing factor.

5 .
A =10.04
not smooth enough
0

50 0.5 1
A = 0.08 '
about OK
= 0
= 0 0.5 1
€ 5 '
= A =0.25
=2 too smooth
=
© 0
9 0 0.5 1
g
c
&
>

17
Image source: C.M. Bishop, 2006
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Summary: Histograms

* Properties

> Very general. In the limit (N—o0), every probability density can be
represented.

> No need to store the data points once histogram is computed.
> Rather brute-force

* Problems

> High-dimensional feature spaces
— D-dimensional space with M bins/dimension will require M? bins!
= Requires an exponentially growing number of data points
="“Curse of dimensionality”

> Discontinuities at bin edges

> Bin size?
— too large: too much smoothing
— too small: too much noise

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Statistically Better-Founded Approach

* Data point x comes from pdf p(x)
> Probability that « falls into small region R

P = /R p(y)dy

* If R is sufficiently small, p(x) is roughly constant
> LetV be the volume of R

g P= | plydy sV

2 R

=

= * Ifthe number N of samples is sufficiently large, we can
g estimate P as

o K K

; P=y =rx~gy

. 19
Slide credit: Bernt Schiele B. Leibe



Statistically Better-Founded Approach

K

p(x) ~ NV

fixed V fixed K
determine K determine V

Kernel Methods K-Nearest Neighbor

=

o

c

= 4

= ¢ Kernel methods .

% > Example: Determine -

o the number K of data -* R
= points inside a fixed - 1

<§% hypercube... - .

Slide credit: Bernt Schiele B. Leibe
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Kernel Methods

* Parzen Window
> Hypercube of dimension D with edge length A:

k(u) ={

0, else

1, Jwl<zh, i=1,..,D

“Kernel function”
N
K = zk(x—xn) V= jk(u)duth
n=1

> Probability density estimate:

N
K 1
pO) ~ o = o ) k(X = Xp)
n=1

NV N

Slide credit: Bernt Schiele B. Leibe
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Kernel Methods: Parzen Window

* Interpretations

1. We place a kernel window £ at by
location x and count how many © o 0 °
data points fall inside it. o °

2. We place a kernel window k around
each data point x, and sum up :
their influences at location x. i

= Direct visualization of the density.

* Still, we have artificial discontinuities at the cube
boundaries...

> We can obtain a smoother density model if we choose a smoother
kernel function, e.g. a Gaussian

B. Leibe
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Kernel Methods: Gaussian Kernel

* Gaussian kernel
> Kernel function

1 u’
bW = Gy P {‘27}

K:Zk(x—xn) V:/k(u)du:l

> Probability density estimate

)~ K] AR | . 1% — X, |2
X)) N —-— = — X —
PYENY T N L& enper Y 2h?
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Gauss Kernel: Examples

h = 0.005
not smooth enough

about OK

too smooth

0 0.5 |

N~
3
<
=
(@))
C
c
®
()]
|
()]
= h acts as a smoother.
&

=

24
Image source: C.M. Bishop, 2006
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Kernel Methods

* In general
> Any kernel such that

k(u) > 0, /k(u)du =

can be used. Then
N

Z k(x —x,)

n=1

K

> And we get the probability density estimate

N
K 1

Slide adapted from Bernt Schiele B. Leibe

25



Statistically Better-Founded Approach

K

p(x) ~ NV

fixed V fixed K
determine K determine V

Kernel Methods K-Nearest Neighbor

=

o

c

= A

= - ¢ K-Nearest Neighbor
§ _' > . - Increase the volume V
° °° . until the K next data
= . points are found.

o L

©

=

. 26
Slide credit: Bernt Schiele B. Leibe



K-Nearest Neighbor

* Nearest-Neighbor density estimation
» Fix K, estimate V from the data. K =3

~ Consider a hypersphere centred @
on x and let it grow to a volume V* °® (@
that includes K of the given N data °

points.
> Then

* Side note

> Strictly speaking, the model produced by K-NN is not a true density
model, because the integral over all space diverges.

- E.g. consider K =1 and a sample exactly on a data point x = x .
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not smooth enough

about OK
S
g
c
=
=2 too smooth
= 5 , ol
9 0 0.5 1
o
= K acts as a smoother.
&
=
_ 28
B. Leibe
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RWTH
Summary: Kernel and k-NN Density Estimation

* Properties

> Very general. In the limit (N—o0), every probability density can be
represented.

> No computation involved in the training phase
= Simply storage of the training set

* Problems
> Requires storing and computing with the entire dataset.
— Computational cost linear in the number of data points.

= This can be improved, at the expense of some computation during
training, by constructing efficient tree-based search structures.
> Kernel size / K in K-NN?
— Too large: too much smoothing
— Too small: too much noise
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K-Nearest Neighbor Classification

* Bayesian Classification

p(Cjlx) = = (ngg(cj)
* Here we have
p(x) ~ ]\If—v
)= gy MR R
"e)~ e g

Slide credit: Bernt Schiele B. Leibe
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K-Nearest Neighbors for Classification e
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RWTH
K-Nearest Neighbors for Classification

* Results on an example data set

=1 K=3 K =31
‘.. .g ® ® ‘.. .g ® ° L] .g ® Y
e geo l!..m g ° e goe l!“@; g o e §oe l!..éb g ®
X7 . X7 L X7
° ° °
20 20 o0
1 . 1F - - 1 é
re = o KA e .
] - s ® ¢ .
6e ® o g.: _ b el . o
g. ® o L o0 o g. ® e
@ : *o® : E 4 P
* wh% “® o o lﬁé&% ~ . & ‘%ﬁ% “® .
0 a® ry Y 0 a® ry Y 0 . a 8
0 1 Te 2 0 1 Te 2 0 1 Te 2

* K acts as a smoothing parameter.

* Theoretical guarantee

> For N—oo, the error rate of the 1-NN classifier is never more than
twice the optimal error (obtained from the true conditional class
distributions).
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Bias-Variance Tradeoff

* Probability density estimation

> Histograms: bin size? _
— A too large: too smooth Too much bias
— A too small: not smooth enough Too much variance

> Kernel methods: kernel size?
— h too large: too smooth
— h too small: not smooth enough

> K-Nearest Neighbor: K?
— K too large: too smooth
— K too small: not smooth enough

* This is a general problem of many probability density
estimation methods
> Including parametric methods and mixture models

Slide credit: Bernt Schiele B. Leibe
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Discussion

* The methods discussed so far are all simple and easy to
apply. They are used in many practical applications.

°* However...
> Histograms scale poorly with increasing dimensionality.
= Only suitable for relatively low-dimensional data.

> Both k-NN and kernel density estimation require the entire data set
to be stored.

= Too expensive if the data set is large.

> Simple parametric models are very restricted in what forms of
distributions they can represent.

= Only suitable if the data has the same general form.

* We need density models that are efficient and flexible!
= Next topic...

B. Leibe
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Topics of This Lecture

* Mixture distributions
> Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt
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Mixture Distributions

* A single parametric distribution is often not sufficient
> E.g. for multimodal data

100 : : : : 100
R0 | 80 |
= 60 | 60 |
o
E
=
g 1 2 3 4 5 6 1 2 3 4 5 6
(4]
% Single Gaussian Mixture of two
= Gaussians
®
=

36
Image source: C.M. Bishop, 2006
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Mixture of Gaussians (MoG)

e Sum of M individual Normal distributions

f(z)]

=

XL

> In the limit, every smooth distribution can be approximated this way
(if M is large enough)
M
p(xl0) = > p(x10;)p(5)
J=1

Slide credit: Bernt Schiele B. Leibe
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Mixture of Gaussians

M
p(z|0) = S:p(xwg)k?(]) Likelihood of measurement
j=1 given mixture component j
1 (z — pji)?
p(x|0;) = N(xmj,a?) = —— expy — >
V270 207
M
) — T i . . L Prior of

p(j) = 5 with 0- - 1 and Z = component j

* Notes
> The mixture density integrates to 1. /p(:c)daz =1

> The mixture parameters are

0 = (717M17017°°°77WM7MM70M)
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Mixture of Gaussians (MoG)

e “Generative model”

, “Weight” of mixture
@ p(j) = m; component
1
2 3\
. Mixture
p(z) ‘ M p(x|6;) component
ZB >

=
I \ Mixture density
| ) =
/% p(x10) = 3 p(z]6;)p())
- . j=1
iz 7%
39

Slide credit: Bernt Schiele B. Leibe
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Mixture of Multivariate Gaussians

057
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Mixture of Multivariate Gaussians

 Multivariate Gaussians

p(x|0) = Zp x|0;)p

1

p<x\9j>=(%)szﬂlmexp{ S0 1) T2 )

~ > Mixture weights / mixture coefﬂuents

o : 1

£ =miwith 0+ m; - 1and ;=1

: p(j) =, ) Z j

g 03

= - Parameters:

(<))

-l

2 9:(7717[1'17217-”77‘-M7“’M72M) 0

.CC% 0 0.5 1
= 41

Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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Mixture of Multivariate Gaussians

e “Generative model”
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Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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Mixture of Gaussians — 15t Estimation Attempt

* Maximum Likelihood

N
. Minimize £ =—1InL(0) = — Zlnp(xnw)
n=1

- Let's first look at 1 N
OF E
o
H

> We can already see that this will be difficult, since

N
Inp(X|7m, p, ) = Zln < TN (Xn | Ek)}
n=1

This will cause problems!

Slide adapted from Bernt Schiele B. Leibe
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RWTH
Mixture of Gaussians — 15t Estimation Attempt

e Minimization: 0

—N(Xn|/~"k7 2k:) —
N L X 9 au’j
8_E — 8’;3'19( n‘ J) 7% — )N (Xa |1y, )
al“l'j n=1 Zk 1p(Xn‘9k)
Zk 1P Xn|8k

[::, _ _¥—1 Z(X 7Tg (Xn |, 35 !
= n=1 17TkN Xn |, 2
(@)
% * We thus obtain N =, (xy)
= > 17 (Xn)Xn “responsibility” of
= = K = ~ component j for x_
CE% anl VJ(X’NJ)

44
B. Leibe
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RWTH
Mixture of Gaussians — 15t Estimation Attempt

* But...

N

1w, = anlmn N(Xn H EJ)
Tt R

* |.e. there is no direct analytical solution!

OF
— = ... >
ap,j (7‘-17“’17 1, s TTM s b g s M)

> Complex gradient function (non-linear mutual dependencies)
> Optimization of one Gaussian depends on all other Gaussians!

> Itis possible to apply iterative numerical optimization here,
but in the following, we will see a simpler method.

45
B. Leibe



* Other strategy:

f(lny
£

1

Mixture of Gaussians — Other Strategy

= » Observed data: * ooe
{-’- > Unobserved data: 1 111
= — Unobserved = “hidden variable™ j|x
(@)

- h(j =1lz,) = 1111
-l

£ h(j =2|zn) = 0 000
g

Slide credit: Bernt Schiele B. Leibe

2
00 O
11 1

1
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RWTH
Mixture of Gaussians — Other Strategy

* Assuming we knew the values of the hidden variable...

S(x)
X
ML for Gaussian #1 T T ML for Gaussian #2
assumed known —> 1 111 22 2 2 i

hj=1r,)= 1111 00 0 0
h(j =2|zn) = 0 000 11 1 1

N . N .
B anl h(j = lzy,)z, B Zn:1 h(j = 2|zn)z,

H1 = M2 =

SN h(G = 1]z,) SN h(j = 2|z,

Slide credit: Bernt Schiele B. Leibe
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Mixture of Gaussians — Other Strategy

* Assuming we knew the mixture components...

f(x) assumed known
X
p(i=1la) | | 2l =2)
1 111 22 2 2 j

* Bayes decision rule: Decide j =1 if

p(j = lzn) > p(J = 2|24)

Slide credit: Bernt Schiele B. Leibe
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RWTH
Mixture of Gaussians — Other Strategy

* Chicken and egg problem — what comes first?

S (x)

We don’t know
any of those!
1 111 22 2 2 9

* In order to break the loop, we need an estimate for j.

> E.g. by clustering...
— Next lecture...

Slide credit: Bernt Schiele B. Leibe
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References and Further Reading

* More information in Bishop’s book
> Gaussian distribution and ML.: Ch. 1.2.4 and 2.3.1-2.3.4.
> Bayesian Learning: Ch. 1.2.3 and 2.3.6.
> Nonparametric methods: Ch. 2.5.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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