Machine Learning — Lecture 4

Mixture Models and EM

23.10.2017
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RWTH Aachen
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

* Deep Learning
> Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks e I
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Recap: Histograms

* Basic idea:

> Partition the data space into distinct
bins with widths A, and count the
number of observations, n;, in each

x1

0 0.5 1

...but the required
number of bins
grows exponen-
tially with D!

4
Image source: C.M. Bishop, 2006
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~ > Often, the same width is used for all bins, A, = A.
_*qg’ > This can be done, in principle, for any dimensionality D...
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Recap: Kernel Density Estimation

« Approximation formula: K EXerf,iz
7
PX 7
(%) NV
fixed V fixed K
determine K determine V
~ Kernel Methods K-Nearest Neighbor
:E
c
= o _
= ¢ Kernel methods - ¢ K-Nearest Neighbor
% > Place a kernel window k _' > . > Increase the volume V
o at location x and count - . until the K nearest
= how many data points - | . data points are found.
ks fall inside it. -

Slide adapted from Bernt Schiele B. Leibe
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Topics of This Lecture

* Mixture distributions
> Recap: Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt

* K-Means Clustering
> Algorithm
> Applications

EM Algorithm

> Credit assignment problem
> MoG estimation

> EM Algorithm
Interpretation of K-Means
Technical advice

Y

Y

* Applications

B. Leibe
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Recap: Mixture of Gaussians (MoG)

e “Generative model”

, “Weight” of mixture
@ p(j) = ; component
. Mixture
p(z) ‘ M p(x|6;) component
ZB >

é

I \ Mixture density
| ) =
/% p(a(0) = > p(10;)p())
- . j=1

ke 7%

Slide credit: Bernt Schiele B. Leibe
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Recap: Mixture of Multivariate Gaussians

 Multivariate Gaussians

p(x|0) = Zp x|0;)p

1 1 _
J

~ > Mixture weights / mixture coefﬂuents
o : 1
£ =7; with 0+ 7;- 1 and ) 7; =1
: p(j) =, ) Z j
g 03
= - Parameters:
(<))
-l
2 9:(7717[1'17217-”77‘-M7“’M72M) 0
.CC% 0 0.5 1
=
8

Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006



RWTH
Mixture of Gaussians — 15t Estimation Attempt

* Maximum Likelihood

N
. Minimize £ =—1InL(0) = — Zlnp(xnw)
n=1

- Let's first look at 1 N
OF E
o
H

> We can already see that this will be difficult, since

N
Inp(X|7m, p, ) = Zln < TN (Xn | Ek)}
n=1
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This will cause problems!

Slide adapted from Bernt Schiele B. Leibe



RWTH
Mixture of Gaussians — 15t Estimation Attempt

e Minimization: 0

—N(Xn|/~"k7 2k:) —
N L X 9 au’j
8_E — 8’;3'19( n‘ J) 7% — )N (Xa |1y, )
al“l'j n=1 Zk 1p(Xn‘9k)
Zk 1P Xn|8k

[::, _ _¥—1 Z(X 7Tg (Xn |, 35 !
= n=1 17TkN Xn |, 2
(@)
% * We thus obtain N =, (xy)
= > 17 (Xn)Xn “responsibility” of
= = K = ~ component j for x_
CE% anl VJ(X’NJ)

. 10
B. Leibe
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RWTH
Mixture of Gaussians — 15t Estimation Attempt

* But...

N

1w, = anlmn N(Xn H EJ)
Tt R

* |.e. there is no direct analytical solution!

OF
— = ... >
ap,j (7‘-17“’17 1, s TTM s b g s M)

> Complex gradient function (non-linear mutual dependencies)
> Optimization of one Gaussian depends on all other Gaussians!

> Itis possible to apply iterative numerical optimization here,
but in the following, we will see a simpler method...

11
B. Leibe



* Other strategy:

f(lny
£

1

Mixture of Gaussians — Other Strategy

= » Observed data: * ooe
{-’- > Unobserved data: 1 111
= — Unobserved = “hidden variable™ j|x
(@)

- h(j =1lz,) = 1111
-l

£ h(j =2|zn) = 0 000
g

Slide credit: Bernt Schiele B. Leibe
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RWTH
Mixture of Gaussians — Other Strategy

* Assuming we knew the values of the hidden variable...

S(x)
X
ML for Gaussian #1 T T ML for Gaussian #2
assumed known —> 1 111 22 2 2 i

hj=1r,)= 1111 00 0 0
h(j =2|zn) = 0 000 11 1 1

N . N .
B anl h(j = lzy,)z, B Zn:1 h(j = 2|zn)z,

H1 = M2 =

SN h(G = 1]z,) SN h(j = 2|z,

Slide credit: Bernt Schiele B. Leibe
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Mixture of Gaussians — Other Strategy

* Assuming we knew the mixture components...

f(x) assumed known
X
p(i=1la) | | 2l =2)
1 111 22 2 2 j

* Bayes decision rule: Decide j =1 if

p(j = lzn) > p(J = 2|24)

Slide credit: Bernt Schiele B. Leibe

14
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Mixture of Gaussians — Other Strategy

* Chicken and egg problem — what comes first?

S (x)

We don’t know
any of those!
1 111 22 2 2 J
* In order to break the loop, we need an estimate for j.

> E.g. by clustering...

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Clustering with Hard Assignments "

* Let’s first look at clustering with “*hard assignments”

J(x)

A

X
. :
=~ o 000 o0 L L
5
=
2
% vy v \4
@ Vv VVY
£ 1 111 22 2 2 ]
8
=

Slide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

* K-Means Clustering
> Algorithm
> Applications
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K-Means Clustering

* |terative procedure

1. |Initialization: pick K arbitrary
centroids (cluster means)

2. Assign each sample to the closest
centroid.

3. Adjust the centroids to be the
means of the samples assigned
to them.

4. Go to step 2 (until no change)

e Algorithm is guaranteed to
converge after finite #iterations.
> Local optimum

> Final result depends on initialization.
B. Leibe
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Slide credit: Bernt Schiele
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K-Means — Example with K=2

2t 2f . o
° [ )
[
)
[ ]
ol ot ° &
$ ':&.
(J
_2, _2,
2 -2 0 2
N~
>
_:G__J' 2t 2) ..o
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B. Leibe Image source: C.M. Bishop, 2006



K-Means Clustering

* K-Means optimizes the following 1000}, J
objective function:

N K
T=3" rakln — 27

n=1 k=1

> where 1 2 3 4

1 ifk:argminjHXn—Msz
Yok = :
0 otherwise.

> l.e., IS an indicator variable that checks whether u; is the
nearest cluster center to point x,,.

> In practice, this procedure usually converges quickly to a local
optimum.
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Image source: C.M. Bishop, 2006
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Example Application: Image Compression

K-Means
Clustering

L

Image source: C.M. Bishop, 2006

Take each pixel
as one data point.

Set the pixel color
to the cluster mean.
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Example Application: Image Compression

K=2 K=3 K =10 Original image

Machine Learning Winter ‘17

22

B. Leibe Image source: C.M. Bishop, 2006
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Summary K-Means

Slide credit: Kristen Grauman

Pros
> Simple, fast to compute

> Converges to local minimum
of within-cluster squared error

Problem cases

Y

Setting k?

> Sensitive to initial centers

> Sensitive to outliers

Detects spherical clusters only

Y

Extensions

> Speed-ups possible through
efficient search structures

outher

outher

(B): Ideal clusters

(A): Two natural clusters

> General distance measures: k-medoids

B. Leibe

(B): &-means clusters

23
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Topics of This Lecture

* EM Algorithm

> Credit assignment problem
> MoG estimation

> EM Algorithm

> Interpretation of K-Means
> Technical advice
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EM Clustering

* Clustering with “soft assignments”
> Expectation step of the EM algorithm

£(x)

i) | \ \ /
p(1|x) 0.99 0.8 0.2 0.01
p(2|x) 0.01 0.2 0.8 0.99

Slide credit: Bernt Schiele B. Leibe

25



EM Clustering

* Clustering with “soft assignments”
> Maximization step of the EM algorithm

N .
J{x) o S plile)x,
J N .
X

S
E e o9 ] e @ ® e
g R
=
£ p(llz) 099 08 02 001 Maximum Likelihood
s p(2|r) 00102 08 0.99 estimate
g
=

26

Slide credit: Bernt Schiele B. Leibe



Credit Assignment Problem

* “Credit Assignment Problem”

> If we are just given x, we don’t know which mixture component this
example came from

p(x|0) ijp x|6;)

> We can however evaluate the posterior probability that an observed
x was generated from the first mixture component.

p(.? — 17X|9)
p(x[0)

p(j = 1,x0) =p(x|j = 1,0)p(j = 1) = p(x[61)p(j = 1)

_1x, g) = PXOIPG = 1)
PU =IO = S e )

Slide credit: Bernt Schiele B. Leibe

p(J — 1‘X7 ‘9) —

= Yj (%)
“responsibility” of
component j for x. 27
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EM Algorithm

* Expectation-Maximization (EM) Algorithm
> E-Step: softly assign samples to mixture components
WjN(Xn’“'ja Zj)

>t TN (| )

> M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

V5 (Xn) =

N
Nj + ) 7;(xn) = soft number of samples labeled ;
n=1
-new , 1V
J W
’\neW
Xn
J ﬂ 1
E?GW Z 73 Xn Xn . new>(xn B /:\L?GW)T
J n=1

Slide adapted from Bernt Schiele B. Leibe

Vi=1,....K, n=1,...

, N

31
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EM Algorithm —

2 L

RWTHAACHEN
UNIVERSITY

An Example

2| ° o’. 7 ?|
. S5
B,

O, .. ° 3.. ° 1 O

.'o °,. e
-2l b 8° 1 =27
—2 0 2 -2 0 2
2 2
L=5 L=20

32

B. Leibe Image source: C.M. Bishop, 2006



EM — Technical Advice

* When implementing EM, we need to take care to avoid
singularities in the estimation!
> Mixture components may collapse on single data points.
> E.g. consider the case X, — a,%I (this also holds in general)

> Assume component j is exactly centered on data point x,,. This data
point will then contribute a term in the likelihood function

1 \
N(x,|Xn, 032-1) —

E \/%O’j p(z)

é - For o; — 0, this term goes to infinity!

g

=1 = Need to introduce regularization :
% > Enforce minimum width for the Gaussians

'?Eé . E.g., instead of 33!, use (X + o, I)!

=

33
Image source: C.M. Bishop, 2006
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EM — Technical Advice (2)

* EM is very sensitive to the initialization
~ Will converge to a local optimum of E.
> Convergence is relatively slow.

= Initialize with k-Means to get better results!

> k-Means is itself initialized randomly, will also only find a
local optimum.

> But convergence is much faster.

* Typical procedure
> Run k-Means M times (e.g. M = 10-100).
> Pick the best result (lowest error J).

> Use this result to initialize EM
— Set i, to the corresponding cluster mean from k-Means.

— Initialize X', to the sample covariance of the associated data points.
B. Leibe
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RWTH
Summary: Gaussian Mixture Models

* Properties
> Very general, can represent any (continuous) distribution.
> Once trained, very fast to evaluate.
> Can be updated online.

* Problems / Caveats

> Some numerical issues in the implementation
= Need to apply regularization in order to avoid singularities.

> EM for MoG is computationally expensive
— Especially for high-dimensional problems!
— More computational overhead and slower convergence than k-Means
— Results very sensitive to initialization
= Run k-Means for some iterations as initialization!

> Need to select the number of mixture components K.

= Model selection problem (see Lecture 16)
B. Leibe
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Topics of This Lecture

Mixture distributions
> Recap: Mixture of Gaussians (MoG)
> Maximum Likelihood estimation attempt

K-Means Clustering
> Algorithm
> Applications

EM Algorithm

> Credit assignment problem
> MoG estimation

> EM Algorithm

> Interpretation of K-Means

> Technical advice

Applications

B. Leibe

RWTHAACHEN

UNIVERSITY
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Applications

* Mixture models are used in
many practical applications.

> Wherever distributions with complex
or unknown shapes need to be
represented...

05¢

* Popular application in Computer Vision
> Model distributions of pixel colors.
> Each pixel is one data point in, e.g., RGB space.
= Learn a MoG to represent the class-conditional densities.
— Use the learned models to classify other pixels.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

39
Image source: C.M. Bishop, 2006

B. Leibe



RWTH
Application: Background Model for Tracking

* Train background MoG for each pixel N Gaussian
- Model “common“ appearance | /\ - | Mixture
variation for each background pixel. T A~
> Initialization with an empty scene. N —— PN
> Update the mixtures over time . -_A__

— Adapt to lighting changes, etc.

* Used in many vision-based tracking
applications

> Anything that cannot be explained
by the background model is labeled
as foreground (=object).

> Easy segmentation if camera is fixed.

C. Stauffer, E. Grimson, Learning Patterns of Activity Using Real-Time Tracking,
IEEE Trans. PAMI, 22(8):747-757, 2000. 40

B. Leibe Image Source: Daniel Roth, Tobias Jaggli
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http://people.csail.mit.edu/people/stauffer/Home/_papers/vsam-pami-tracking.pdf

Application: Image Segmentation

(a) input image (b) user input (¢) inferred segmentation

* User assisted image segmentation
> User marks two regions for foreground and background.
> Learn a MoG model for the color values in each region.
> Use those models to classify all other pixels.

= Simple segmentation procedure
(building block for more complex applications)
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Interested to Try It?

* Here's how you can access a webcam in Matlab:

function out = webcam

% uses "Image Acquisition Toolbox,

adaptorName = 'winvideo';

vidFormat = 'I420 320x240';

v1idObjl= videoinput (adaptorName, 1, vidFormat);
set (vidObjl, 'ReturnedColorSpace', 'rgb');

set (vidObjl, 'FramesPerTrigger',6 1);

out = vidObjl ;

cam = webcam/() ;

img=getsnapshot (cam) ;

_ 43
B. Leibe
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* Additional information

References and Further Reading

* More information about EM and MoG estimation is available

iIn Chapter 2.3.9 and the entire Chapter 9 of Bishop’s book
(recommendable to read). R

4 PATTERN RECOGNITION

§ avo MACHINE LEARNING
CHRISTOPHER M. BISHOP g

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

> Qriginal EM paper:
— A.P. Dempster, N.M. Laird, D.B. Rubin, ,Maximum-Likelihood from

incomplete data via EM algorithm”, In Journal Royal Statistical Society,
Series B. Vol 39, 1977

> EM tutorial;

— J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models®,
TR-97-021, ICSI, U.C. Berkeley, CA,USA

B. Leibe
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http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/bilmes-emgentletutorial-tr97.pdf

