

RWIHAA UNIVERS Recap: Gradient Descent • Example: Quadratic error function $E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$ • Sequential updating leads to delta rule (=LMS rule) $w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$ $= w_{ki}^{(\tau)} - \eta \delta_{kn} \phi_i(\mathbf{x}_n)$ where $\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$ \Rightarrow Simply feed back the input data point, weighted by the classification error. B. Leibe

RNTHAA Recap: Gradient Descent · Cases with differentiable, non-linear activation function $y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{i=0}^M w_{ki}\phi_j(\mathbf{x}_n)\right)$ Gradient descent (again with quadratic error function) $\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$ $w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$ $\delta_{kn} = rac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}
ight)$

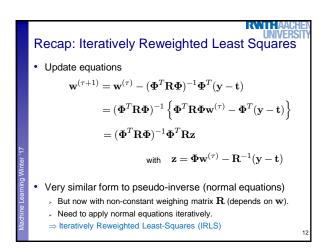
whe

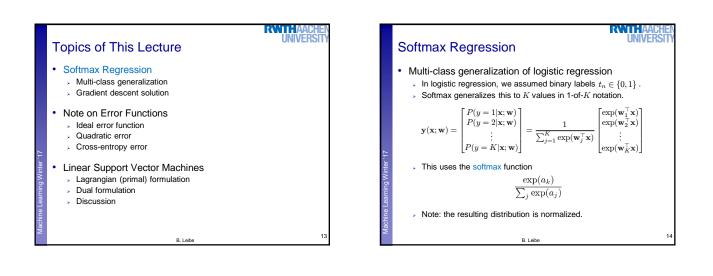
≻ T

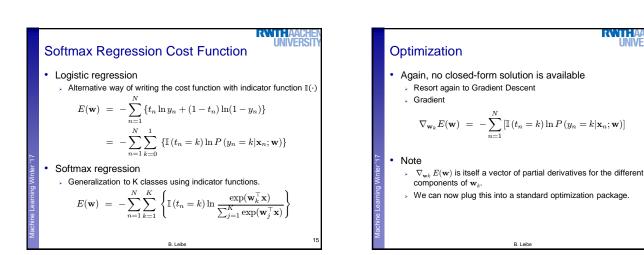
_		
	Recap: Probabilistic Discriminative Models	ITY
	Consider models of the form	
	$p(\mathcal{C}_1 oldsymbol{\phi}) \;=\; y(oldsymbol{\phi}) = \sigma(\mathbf{w}^Toldsymbol{\phi})$	
	with $p(\mathcal{C}_2 oldsymbol{\phi}) ~=~ 1 - p(\mathcal{C}_1 oldsymbol{\phi})$	
	This model is called logistic regression.	
Machine Learning Winter '17	 Properties Probabilistic interpretation But discriminative method: only focus on decision hyperplane Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling p(φ C_k) and p(C_k). 	
Ë	B. Leibe	10

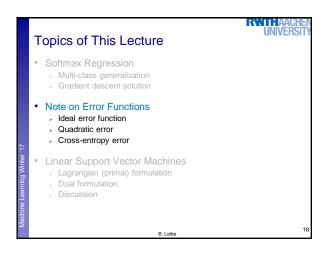
Recap: Logistic Regression
• Let's consider a data set
$$\{\phi_n, t_n\}$$
 with $n = 1, ..., N$,
where $\phi_n = \phi(\mathbf{x}_n)$ and $t_n \in \{0, 1\}$, $\mathbf{t} = (t_1, ..., t_N)^T$.
• With $y_n = p(C_1 | \phi_n)$, we can write the likelihood as
 $p(\mathbf{t} | \mathbf{w}) = \prod_{n=1}^N y_n^{t_n} \{1 - y_n\}^{1 - t_n}$
• Define the error function as the negative log-likelihood
 $E(\mathbf{w}) = -\ln p(\mathbf{t} | \mathbf{w})$
 $= -\sum_{n=1}^N \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$
• This is the so-called cross-entropy error function.

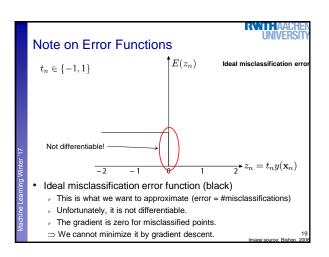
RAN HAA



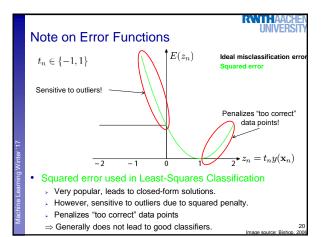


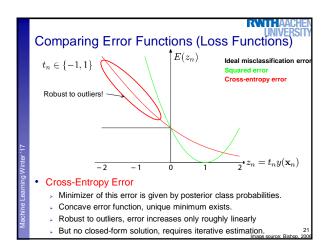


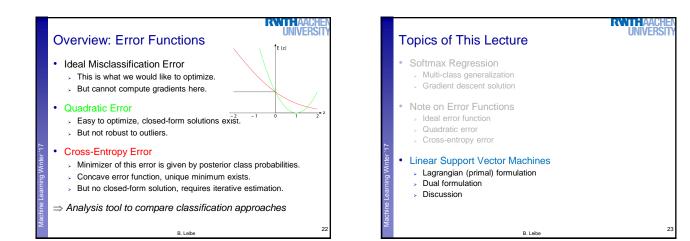


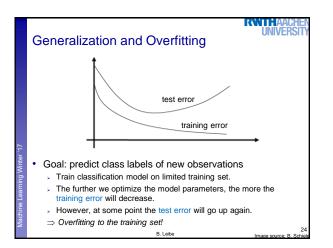


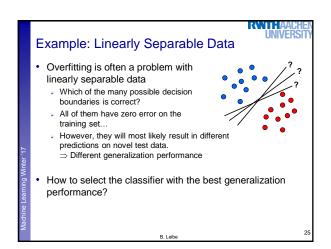
RAVE A

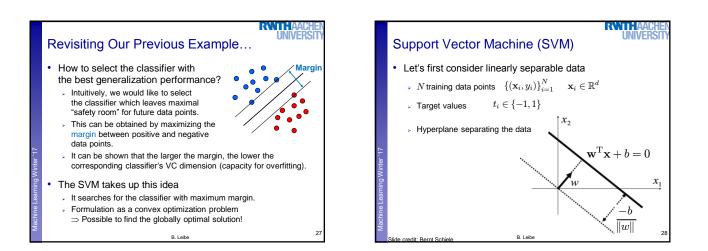


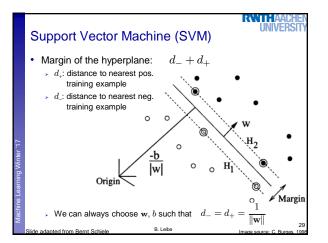


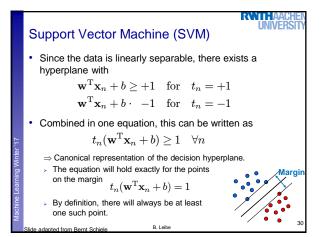


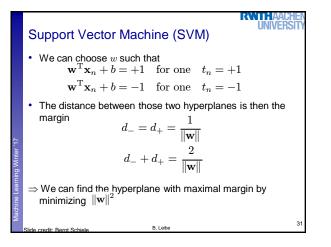


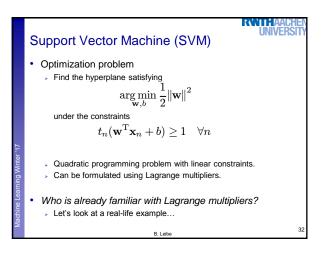


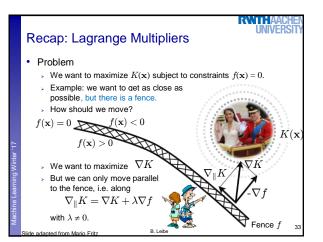


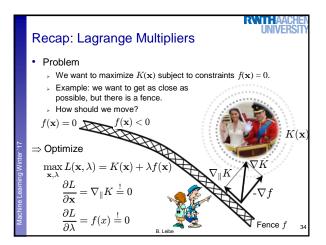


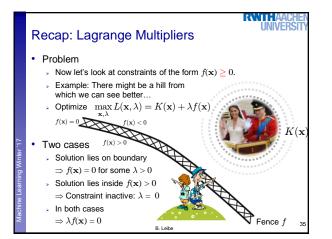


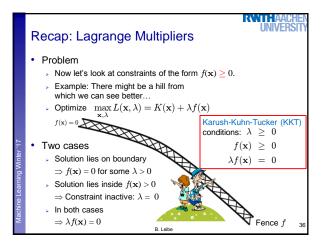


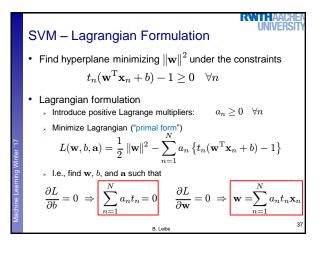




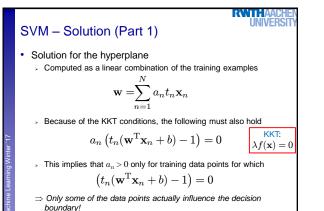








	SVM – Lagrangian Formulation
	Lagrangian primal form
	$L_p = \frac{1}{2} \ \mathbf{w}\ ^2 - \sum_{n=1}^{N} a_n \left\{ t_n(\mathbf{w}^{\mathrm{T}} \mathbf{x}_n + b) - 1 \right\}$
	$= rac{1}{2} \left\ \mathbf{w} ight\ ^2 - \sum_{n=1}^N a_n \left\{ t_n y(\mathbf{x}_n) - 1 ight\}$
zt. 17	• The solution of L_p needs to fulfill the KKT conditions
Machine Learning Winter '17	 Necessary and sufficient conditions
ning	$a_n \ge 0$ $\lambda \ge 0$
eal	$t_n y(\mathbf{x}_n) - 1 \hspace{.1in} \geq \hspace{.1in} 0 \hspace{1.5in} f(\mathbf{x}) \hspace{.1in} \geq \hspace{.1in} 0$
chine	$a_n \left\{ t_n y(\mathbf{x}_n) - 1 ight\} \;=\; 0 \qquad \qquad \lambda f(\mathbf{x}) \;=\; 0$
Ma	B. Lebe 38



B. Leibe

