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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Support Vector Machine (SVM)

* Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

Up to now: consider linear classifiers

wix+b=0

v

* Formulation as a convex optimization problem
» Find the hyperplane satisfying

1 2
arg min §HWH
under the constraints
to(wTx, +b) >1 Vn

based on training data points x,, and target values ¢, € {—1,1}
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Announcements

* Exam dates
1stdate: Monday, 07.03., 13:30h — 16:00h
2nd date: Monday, 29.03., 10:30h — 13:00h

v

v

The lecture dates have been optimized to avoid overlaps with
other Computer Science Master lectures as much as possible.

» If you still have conflicts with both exam dates, please tell us.

v

» If you're not a CS/SSE/MI student and want to take the exam and
cannot register on Campus, please do NOT yet register with us.
— We will collect those registrations in mid-January

* Please register for the exam on Campus until next week
Friday (17.11.)!
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Topics of This Lecture

* Support Vector Machines
» Recap: Lagrangian (primal) formulation
» Dual formulation
» Soft-margin classification

* Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
» Mercer’s condition
» Popular kernels

* Analysis
» Error function

* Applications
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Recap: SVM - Lagrangian Formulation

* Find hyperplane minimizing ||wH2 under the constraints
tn(WTXn +b)—-1>0 Vn

* Lagrangian formulation

» Introduce positive Lagrange multipliers: a, >0 Vn

» Minimize Lagrangian (“primal form”)
1 N
L(w,b,a) =  [w]* Zlan {tn(w'x, +b) — 1}

» le., find w, b, and a such that

RWTHACHE
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Recap: SVM — Primal Formulation
* Lagrangian primal form

1 N
L, 5 (w2 7;(1” {tn(waner)fl}

RWTHAACHE

N
1 2
= 5 lwl® - D an {tay(xn) — 1}
n=1
i * The solution of L, needs to fulfill the KKT conditions
£ » Necessary and sufficient conditions
i KKT:
g an > 0 A >0
8 ty(xp) =1 > 0 fx) >0
@
% QAp {tny(xn) - 1} =0 Af(x) =0
2
B. Leibe 8
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SVM — Support Vectors
* The training points for which a,, > 0 are called
“support vectors”.
* Graphical interpretation:
» The support vectors are the * .
points on the margin. @__
. They define the margin h *
~ and thus the hyperplane. o W
§ = Robustness to “too correct” w2
2 points! .
E ®,
2 one 8>
:F;a o Margin
= 1n
ide adapted from Berat Schiele B. Leibe Image source: G Burges, 199

SVM - Discussion (Part 1)

¢ Linear SVM
» Linear classifier
» SVMs have a “guaranteed” generalization capability.
» Formulation as convex optimization problem.
= Globally optimal solution!

* Primal form formulation

» Here: D variables = O(D3)
» Problem: scaling with high-dim. data (“curse of dimensionality”)
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ide adapted from Bernt Schiele B. Leibe

» Solution to quadratic prog. problem in M variables is in O(M?).

14

SVM — Solution (Part 1)

* Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E AnlnXn
n=1

» Because of the KKT conditions, the following must also hold

~ T KKT:

= an (th(w x, +b)—1) =0

3 n (tn(w'xn +0) — 1) A(x) =0

£

é, » This implies that a,, > 0 only for training data points for which

€ T —

§ (tn(W'x +0) —1) =0

_E = Only some of the data points actually influence the decision

2 boundary!

= 10
de adapied from Bernf Schiele B. Leibe

SVM — Solution (Part 2)

* Solution for the hyperplane
» To define the decision boundary, we still need to know b.
» Observation: any support vector x,, satisfies

KKT:

f(x)>0

toy(Xn) = tn Z amtmx;rnxn +b] =1
meS

» Using tﬁ =1 we can derive: b=t, — E a,,Lt,,,Lx;rnx,L
meS

» In practice, it is more robust to average over all support vectors:

b= Nis Z tn — Z amtmx;xn

nes meS

Machine Learning Winter ‘17
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SVM — Dual Formulation

* Improving the scaling behavior: rewrite L, in a dual form

N
1
L,= 5 wl|? — Zan {tn(wan +0b)— 1}
n=1

1 N N =0 N
= 2P =3 antw - b;aﬁ 3 an
n=1 =1 n=1
N
» Using the constraint Z apt,= 0 we obtain % =0
n=1

1 N N
L,= 3 Iwl)® — Z AntnW x, + Zan
n=1 n=1
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RWTH//CHEN RWTH/CHED
SVM — Dual Formulation SVM — Dual Formulation
1 N N 1 N N N
Ly= 5 WP =Y antawxn + > an L= 2wl =303 tnantatm (i) +
n=1 n=1 n=1m=1 n=1
al oL 1 1 N
. Using the constraint W :Z ant,Xp we obtain —P2_9 » Applying = HWHQ: —w'w and again using w :Z AntnXn
ne1 ow 2 2 n=1
N N
N N N 1 1
_1 2 T —wlw= - Anmtptm(XEX,)
- LpfinH 7Zantn2amtmxmxn+2an - 3 2;; nminlm (X, Xn
b n=1 m=1 n=1 e
2 2
= N N N = . X
= 1 B » Inserting this, we get the Wolfe dual
g = b) ”W”2 - Z Z anamtntM(xyTnxn) + Zan g N 1 N N
E n=1m=1 n=1 8 Ly(a) = Z an = 5 Z Z UG tptom (XL %,)
2 2 n=1 n=1m=1
S ks
© ©
= 16 = 17
ide adapted from Bernt Schiele B. Leibe de adapied from Bernf Schiele B. Leibe
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SVM — Dual Formulation SVM - Discussion (Part 2)

* Maximize * Dual form formulation
» In going to the dual, we now have a problem in N variables (a,,).

» Isn't this worse??? We penalize large training sets!

N
Ld(a) = an —
1

n=

N =

N N
DO anamtntm(x5%0)
n=1m=1

* However...
1. SVMs have sparse solutions: a,, # 0 only for support vectors!
= This makes it possible to construct efficient algorithms
— e.g. Sequential Minimal Optimization (SMO)
— Effective runtime between O(N) and O(N?).

under the conditions

0 Vn

Y

Qn
N
g apt, = 0
n=1

» The hyperplane is given by the N support vectors:

Ns
w = E AnlnXn
n=1

ide adapted from Bernt Schiele B. Leibe

2. We have avoided the dependency on the dimensionality.

= This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions ¢(x).

= We'll see that later in today’s lecture...

Machine Learning Winter ‘17
Machine Learning Winter ‘17

18 19
B. Leibe

So Far... SVM — Non-Separable Data
* Only looked at linearly separable case...

» Current problem formulation has no
solution if the data are not linearly

* Non-separable data
» Le. the following inequalities cannot be satisfied for all data points

separable! wix, +b>+1 for t,=+1
» Need to introduce some tolerance to T o
outlier data points. W Xp+bo -1 for 1, = -1

» Instead use

wix, +b>+1—¢, for t,=+1
wix, +b- —14¢&, for t,=—1

with “slack variables”

& >0 Vn
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SVM - Soft-Margin Classification

* Slack variables
» One slack variable £, > 0 for each training data point.

* Interpretation
» &, = 0 for points that are on the correct side of the margin.
» &, = |t, — y(x,)| for all other points (linear penalty).

Point on decision
boundary: ¢, = 1

Misclassified point:
&>1

» We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

4
B. Leibe
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SVM — New Primal Formulation

* New SVM Primal: Optimize

——HWH2+CZ§n Zan tny(Xn) — 1+ &n) — Zunén

n= n=1
L H/_J
Constraint Constraint
tny(xn) >1-¢, & >0
S * KKT conditions
5 KKT:
2 thy(xn) —14+& > 0 &n > fx) >0
E n(tny(xn)_1+£n) =0 pnén = 0 AM(x) =0
L

26
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SVM — New Solution

* Solution for the hyperplane
» Computed as a linear combination of the training examples

w = E antnXy,
n=1

» Again sparse solution: a,, = 0 for points outside the margin.

~ = The slack points with £, > 0 are now also support vectors!

[}

% » Compute b by averaging over all N, points with 0 < a,, < C:
2

€ 1

8 b= No E tn — E amtmx;rnxn

] M

£ nemM meM

8

=
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SVM — Non-Separable Data
* Separable data 1 ) Trade-off
> Minimize 3 HW” parameter!
* Non-separable data | N
. Minimize 5 W17 HCD _ n
~ n=1
g 25
B. Leibe
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SVM — New Dual Formulation

* New SVM Dual: Maximize

N N
1
Ld(a) = Z a, — 5 Z Z anamtntm(xaxn)
n=1

n=1m=1

under the conditions o
C This is all

0- an- that changed!

N
Zantn =0
n=1

* This is again a quadratic programming problem
= Solve as before... (more on that later)

Machine Learning Winter ‘17
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de adanted from Bernt Schiele B. Leibe

Interpretation of Support Vectors

* Those are the hard examples!
» We can visualize them, e.g. for face detection

NON-FACES
M — 0 m] 1
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Topics of This Lecture

* Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
» Mercer’s condition
» Popular kernels

B. Leibe

30

Nonlinear SVM
* Linear SVMs
» Datasets that are linearly separable with some noise work well:

| o
ol 7 x

» But what are we going to do if the dataset is just too hard?

0 X

» How about... mapping data to a higher-dimensional space:
x2 °

ide credit- Ravmond Moone: B. Leibe
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Nonlinear SVM

* General idea
» Nonlinear transformation ¢ of the data points x,,:

xeRP ¢:RP - H
» Hyperplane in higher-dim. space H (linear classifier in H)

wlp(x)+b=0

= Nonlinear classifier in RP.

ide credit- Bernt Schigle B. Leibe
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So Far...

Only looked at linearly separable case...
Current problem formulation has no
solution if the data are not linearly
separable! b
Need to introduce some tolerance to
outlier data points.

= Slack variables.

* Only looked at linear decision boundaries...
» This is not sufficient for many applications.

» Want to generalize the ideas to non-linear
boundaries.

B. Leibe Image sowrce: B, Schoelkonf. A, Smola, 200

TRWTH/ T
Nonlinear SVM — Feature Spaces

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training

set is separable:
r . .

38
de credit- Ravmond Mooney
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What Could This Look Like?

* Example:
» Mapping to polynomial space, x, y € R2

» Motivation: Easier to separate data in higher-dimensional space.
» But wait — isn’t there a big problem?
— How should we evaluate the decision function?
40

B. Leibe Jmage source: . Burges, 199;
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Problem with High-dim. Basis Functions

* Problem
» In order to apply the SVM, we need to evaluate the function

y(x) = WTo(x) + b

» Using the hyperplane, which is itself defined as

N
w :Z antn¢(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?
» Oh-oh...

Machine Learning Winter ‘17
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Back to Our Previous Example...

* 2nd degree polynomial kernel:

2 2
1 Yi

o(x)To(y) = | V2z122 || V20190
a3 Y3

=23y} + 2120110 + THY;

= (x"y)? = k(x,y)

» Whenever we evaluate the kernel function k(x,y) = (x"y)? we
implicitly compute the dot product in the higher-dimensional feature
space.

Machine Learning Winter ‘17
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B Leibe Jmage souice: C, Burges, 199

Which Functions are Valid Kernels?

* Mercer’s theorem (modernized version):
» Every positive definite symmetric function is a kernel.

* Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

- k(xpXe) | K(X) | K(xgXs) e ke,

5 Kogxs) [ KOG | kOxpX) KO %,)

E

2 K=

£

£ .

§

= k(xpXp) | K(XyXp) | k(X X3) k(X3 Xq)

£

E (positive definite = all eigenvalues are > 0)

45

ide credit- Ravmond Moone B. Leibe
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Solution: The Kernel Trick

* Important observation
» ¢(x) only appears in the form of dot products ¢(x)T¢(y):
y(x) = wio(x)+b

N
= 3 antud(x,)"0(x) + b

n=1
. Trick: Define a so-called kernel function k(x,y) = ¢(x)T¢(y).

» Now, in place of the dot product, use the kernel instead:
N
y(x) = Z antnk(xn: X) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!

42
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SVMs with Kernels

* Using kernels
» Applying the kernel trick is easy. Just replace every dot product by a
kernel function...
T
xy — kxy)
» ...and we're done.

» Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the data
is more easily separable.

* Wait — does this always work?

» The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).
» When is this the case?

B. Leibe
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TRWTH/ T
Kernels Fulfilling Mercer's Condition
* Polynomial kernel

k(x,y) = (x"y +1)"

* Radial Basis Function kernel

X — v)2
k(x,y) = exp {—%} e.g. Gaussian

* Hyperbolic tangent kernel

k(x, y) = Tanintrmely 3] _

Actually, this was wrong in
the original SVM paper...

e.g. Sigmoid

(and many, many more...)

46

ide credit Bernt Schigle B. Leibe




Example: Bag of Visual Words Representation

* General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
» Compare two images by any histogram kernel, e.g. x2 kernel

RWTHAACHE
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Summary: SVMs

Limitations
» How to select the right kernel?
— Best practice guidelines are available for many applications
» How to select the kernel parameters?
— (Massive) cross-validation.
— Usually, several parameters are optimized together in a grid search.
» Solving the quadratic programming problem
— Standard QP solvers do not perform too well on SVM task.
— Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
— Evaluating y(x) scales linearly in the number of SVs.
— Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
» Training for very large datasets (millions of data points)
— Stochastic gradient descent and other approximations can be used

B. Leibe

1 (h; — h)?
F2(h By =exp [ — J__J
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SVM Demo
]
g
=
=
2
€
b3
it
g change | Fun || ciear | Saw | Load [41-d 1o - 1000
e Applet from libsvm
= (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 4
B. Leibe
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Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize
V N N

N
1
Lg(a) = E O = 5 E E Qb k(X X,,)
n=1 n=1m=1

under the conditions

0- a,: C

N
~
; Z anpty, = 0
§ n=1
o
= * Classify new data points using
= N
-
@ = . )
2 y(x) = D antuk(x,,x) +b
S n=1
s 48
B. Leibe
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Summary: SVMs

* Properties
Empirically, SVMs work very, very well.
» SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature vectors
(e.g. graphs, sequences, relational data) by designing kernel
functions for such data.
SVM techniques have been applied to a variety of other tasks

— e.g. SV Regression, One-class SVMs, ...
The kernel trick has been used for a wide variety of applications. It
can be applied wherever dot products are in use

— e.g. Kernel PCA, kernel FLD, ...

— Good overview, software, and tutorials available on http://www.kernel-
machines.org/

v

v

v v
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Topics of This Lecture

* Analysis
» Error function
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.kernel-machines.org/

SVM — Analysis
* Traditional soft-margin formulation
N
. 1 2 “Maximize
min — |w C
weRD, ¢, R+ 2 b= + 712::15" the margin
subject to the constraints

“Most points should
tay(xn) = 16,

be on the correct
side of the margin”

=8 « Different way of looking at it
E » We can reformulate the constraints into the objective function.
H 1 N
=3 . 2
£ min - ||w[|*+C 1—t,y(x
£ b 3 [[wl Z[ nY( n)]+
K n=1
@ . “ »
% L, regularizer Hinge loss
= where [z], := max{0,z}. o
ide adapted from Christoph | ampert B. Leibe
RWTHAACHE
Recap: Error Functions
by € {_]. 1} E(z,,_) Ideal misclassification errol

Squared error

Sensitive to outliers!

Penalizes “too correct”
data points!

=2 -1 0 - [
* Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 58

2 Zn = tny(xfrz)

Machine Learning Winter ‘17

lmage source: Bishop, 200¢
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SVM - Discussion

¢ SVM optimization function

N
. 1 2

) [[wl* + 02—21 [1—tay(xn)l,
=
L, regularizer Hinge loss

* Hinge loss enforces sparsity

» Only a subset of training data points actually influences the decision
boundary.
This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

v

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

v

v

v
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ide adapted from Clyistonh | ampert B. Leibe
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Recap: Error Functions

Ideal misclassification erro

fne{-1,1} Elzn)

Not differentiable! ——8M — o

2 - N\ 1 2" An = tny(xn)

* |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 57

Image source: Bishop, 2001

Machine Learning Winter ‘17
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Error Functions (Loss Functions)
E(zn) Ideal misclassification erro
Squared error
Hinge error
Robust to outliers!
~ Not differentiable! / Favors sparse
= \ / solutions!
5 - P
g 3 - 0 Y—="% = tny(xn)
2 . » .
= * “Hinge error” used in SVMs
§ » Zero error for points outside the margin (z, > 1) = sparsity
E » Linear penalty for misclassified points (z, < 1) = robustness
§ » Not differentiable around z,= 1 = Cannot be optimized directly.
B. Lelte Lmage source: Bishop, 922

Topics of This Lecture

* Applications
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RWTH/THE
Example Application: Text Classification

* Problem:
» Classify a document in a number of categories

* Representation:

» “Bag-of-words” approach

» Histogram of word counts (on learned dictionary)
— Very high-dimensional feature space (~10.000 dimensions)
— Few irrelevant features

* This was one of the first applications of SVMs
» T.Joachims (1997)

62
B. Leibe
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Example Application: Text Classification

* This is also how you could implement a simple spam filter...

D|ct|0nary

'+> — SVM

Incoming email Word activations

Mailbox

“l—]
1

Trash

64

B. Leibe

Historical Importance

* USPS benchmark
» 2.5% error: human performance

* Different learning algorithms
» 16.2% error: Decision tree (C4.5)
> 5.9% error: (best) 2-layer Neural Network
» 5.1% error: LeNet 1 — (massively hand-tuned) 5-layer network

* Different SVMs
> 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel  (0=0.3, 291 support vectors)

66
B. Leibe
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Example Application: Text Classification
* Results:
SVM (poly) SVM (rbl)
degree d = width v =
\Bayes|Rocchio|C45k-NNj| 1 | 2 | 3 | 4 | 5 Jlo6]0o8|10]12
earn 95.9 | 96.1 [96.1[97.3 [|98.2[98.4[98.5/98.4]98.3][08.5[08.5[98.4]098.3
acq 9L5 | 92.1 |85.3[92.0 [[92.6/94.6[95.2]95.2|55.3 || 95.0[95.3] 95.3|95.4]
money-fx || 62.9 | 67.6 |69.4]78.2 ||66.9 2_#_.‘:75.4 74.9|76.2]/74.075.4|76.3| 75.9
%grain 725 | 79.5 [89.1(82.2 [91.3[93.1{92.4]91.3[89.9]/93.1]91.9/91.9|90.6
crude 81.0 | 81.5 |75.5|85.7 ||86.0[87.3[88.6[88.0/87.888.9|=9.0[88.9[8% 2
trade 50.0 | 77.4 |59.2|77.4 |[69.2[75.5]76.6 [ 77.3|77.1]| 76.978.0(77.8| 76 8
interest 58.0 | 725 |49.1]74.0 [|69.863.3]67.9[73.1|76.2|74.4|75.0(76.2|76.1
ship 78.7 | 83.1 |80.9]79.2([82.0[85.4]86.0[86.5[86.0|[85.4|86.5|87.6[87.1
wheat 60.6 | 79.4 |85.5|76.6 [[83.1[84.5]85.2[85.0]83.8 [[85.2[85.9/85.9[85.9
corn 473 | 62.2 |B7.7[77.9 [[86.0]86.5/85.3]85.7|83.9 ||85.1[85.7/85.7 845
microavg. | 72.0 | 79.9 |79.4|82.3 84.2 S5A1Lt_§5,9‘;86.2 83.9/86.4 86..5 86.3|86.2
86.0 combined: 86.4
B. Leibe 63
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Example Application: OCR

* Handwritten digit 24pLEALDBEE) 2521002000450

IEEETANNEES EANNER § 91 530 e

recognition
» US Postal Service Database

» Standard benchmark task
for many learning algorithms

A5919§2919$2Q£°£AJ oA LR
L4, QL2R7L0L225TR209955
3 ,21291&.9”‘ A RENEETE- TR
LLELLIeQRTAR2LL014TININES
SIS AS 100328400500

505129915354 13893322373
;;az;vxxzaﬁJ4}3:9;33;9311
Va1t ])9kadladislalan Ly
VYFIsIEE AR L LA LELRS
51&9;aﬁ2111;154391a35;
a4 i

LLLLA3
BAlABTkIRESSEAALYRTIASHER
lelilze ey 1299300341828
01(!‘170'75?133 1222010511088
1678 LT255152 801310010143
ISHALIEREAS2L08ILORS
LZERLREARIREIFRSLIALERS

65

B. Leibe

Example Application: OCR

* Results
» Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynorial feature space vectors | error
1 256 282 8.9
2 == 33000 227 4.7
3 21 x 108 274 4.0
4 a1 x 107 321 4.2
5 a1 x 1012 374 43
6 a1 % 101 377 4.5
7 1 x 1018 422 45
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Example Application: Object Detection Example Application: Pedestrian Detection
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* E.g. histogram representation (HOG)
» Map each grid cell in the input window to a
histogram of gradient orientations.
» Train a linear SVM using training set of :
pedestrian vs. non-pedestrian windows. TN
[Dalal & Triggs, CVPR 2005]

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning Winter ‘17
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Many Other Applications References and Further Reading
* Lots of other applications in all fields of technology
. OCR
» Text classification
» Computer vision

* More information on SVMs can be found in Chapter 7.1 of
Bishop’s book. You can also look at Schélkopf & Smola
(some chapters available online).

Christopher M. Bishop

Pattern Recognition and Machine Learning
Springer, 2006

g
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B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.ora/

* A more in-depth introduction to SVMs is available in the
following tutorial:
» C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2), pp.
121-167 1998.

» High-energy physics

» Monitoring of household appliances

» Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
http://www.learning-with-kernels.org/
http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
http://www.learning-with-kernels.org/

