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Topics of This Lecture

* Recap: Nonlinear Support Vector Machines

* Analysis
» Error function

* Applications

* Ensembles of classifiers
» Bagging
» Bayesian Model Averaging

* AdaBoost
» Intuition
» Algorithm
» Analysis
» Extensions
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Recap: SVM — Dual Formulation
* Maximize
N 1 N N
Ly(a) = an — 5 Z Z Unmtnton(XE%,)
n=1 n=1m=1

under the conditions

0 Vn

Y

Qan

N
§ anly
n=1
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* Comparison
» L, is equivalent to the primal form L,, but only depends on a,,.
» L, scales with O(D?).
» L, scales with O(I\N®) — in practice between O(N) and O(NN?).
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ide adapted from Bernt Schiele B. Leibe

Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning

wr e RS .
» Foundations
» Convolutional Neural Networks E‘. Lr

» Recurrent Neural Networks
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Recap: Support Vector Machine (SVM)

* Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

» Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem
» Find the hyperplane satisfying

1 2
argmin [[w]|
under the constraints
ty(WTx, +b) >1 Vn
based on training data points x,, and target values ¢, € {—1,1}
4

Machine Learning Winter ‘17

B. Leibe

TOWTHACHET]
Recap: SVM for Non-Separable Data

* Slack variables
» One slack variable £, > 0 for each training data point.

* Interpretation
» &, = 0 for points that are on the correct side of the margin.
> &, = |t, — y(x,)| for all other points.

Point on decision
boundary: £, =1

Misclassified point:
£ >1

> We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

B. Leibe
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Recap: SVM — New Dual Formulation

* New SVM Dual: Maximize
N

N N
Ld(a) = Z ap — Z Z anamtntm(x?nxn)
n=1m=1

n=1

N =

under the conditions o
C This is all

0- an- that changed!

N
Zantn =0
n=1

* This is again a quadratic programming problem
= Solve as before...
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Recap: The Kernel Trick

* Important observation
» ¢(x) only appears in the form of dot products ¢(x)T¢é(y):

y(x) = wio(x) +b

N
=) anta(x)"$(x) +b
n=1

. Define a so-called kernel function k(x,y) = ¢(x)To(y).

» Now, in place of the dot product, use the kernel instead:
N
y(X) = Z antnk(xm X) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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Summary: SVMs

* Properties
Empirically, SVMs work very, very well.
SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature vectors
(e.g. graphs, sequences, relational data) by designing kernel
functions for such data.
SVM techniques have been applied to a variety of other tasks

— e.g. SV Regression, One-class SVMs, ...
The kernel trick has been used for a wide variety of applications. It
can be applied wherever dot products are in use

— e.g. Kernel PCA, kernel FLD, ...

— Good overview, software, and tutorials available on http://www.kernel-
machines.org/
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Recap: Nonlinear SVMs
* General idea: The original input space can be mapped to

some higher-dimensional feature space where the training
set is separable:

de credit Raymond Moope,

TWTH A
Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize
N N N

1
La(@) = ) au =5 D D Gntmtuton k(X X2)

n=1 n=1m=1
under the conditions

0- a, - C
N
Zantn =0
n=1

* Classify new data points using

N
y(x) = > antuk(x,,x) +b

n=1

B. Leibe

~
g
£
=)
=
£
8
3
Py
=
=
S
)
=

Summary: SVMs

* Limitations
» How to select the right kernel?
— Best practice guidelines are available for many applications
» How to select the kernel parameters?
— (Massive) cross-validation.
— Usually, several parameters are optimized together in a grid search.
» Solving the quadratic programming problem
— Standard QP solvers do not perform too well on SVM task.
— Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
— Evaluating y(x) scales linearly in the number of SVs.
— Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
» Training for very large datasets (millions of data points)
— Stochastic gradient descent and other approximations can be used

13
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Topics of This Lecture

* Analysis
» Error function
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Recap: Error Functions

Ideal misclassification errof

t, e {-1.1} Elz)

Not differentiable! ———— 5

) a0 ] 7" #n = ty(%n)

* |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 16
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Error Functions (Loss Functions)
E(zn) Ideal misclassification errol
Squared error
Hinge error
Robust to outliers!
Not differentiable! / Favors sparse
\ / solutions!

/
) . 0 Y—="% = tny(xn)

* “Hinge error” used in SVMs
» Zero error for points outside the margin (z, > 1) = sparsity
» Linear penalty for misclassified points (z, < 1) = robustness
» Not differentiable around z,= 1 = Cannot be optimized directly.
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SVM — Analysis
* Traditional soft-margin formulation
N
. 1 2 “Maximize
weRD 6 crt 2 wel* + C;&L the margin”

subject to the constraints

“Most points should
tay(xn) = 1-6,

be on the correct
side of the margin”

 Different way of looking at it
» We can reformulate the constraints into the objective function.
N
1 2
min = |[|w|* +C 1—t,y(x
min 5wl Zjl (1= tay(xn)]
H_J -
L, regularizer “Hinge loss”
where [z], := max{0,z}.
de adapted from Chyistoph | ampert B. Leibe »
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Recap: Error Functions
i, E {_1: 1} E(zn) Ideal misclassification erro

Squared error

Sensitive to outliers!

Penalizes “too correct”
data points!

N /

=

2 - 0 2" An = tny(xn)

* Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 17

lmage source: Bishop, 2001
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SVM — Discussion
* SVM optimization function

N
. 1 2
i, 303 1= b,

n=1
L, regularizer

Hinge loss

* Hinge loss enforces sparsity

» Only a subset of training data points actually influences the decision
boundary.
This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

v

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

v

v

v
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» US Postal Service Database

» Standard benchmark task
for many learning algorithms

RWTH/ACHEN RWTH/ACHEN
Topics of This Lecture Example Application: Text Classification
* Problem:
» Classify a document in a number of categories
. < ?
* Applications
* Representation:
~ ~ » “Bag-of-words” approach
“E § » Histogram of word counts (on learned dictionary)
§ é — Very high-dimensional feature space (~10.000 dimensions)
2 2 — Few irrelevant features
£ £
© ©
% % * This was one of the first applications of SVMs
£ £ . T. Joachims (1997)
© ©
= =
20 21
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Example Application: Text Classification Example Application: Text Classification
* Results: * This is also how you could implement a simple spam filter...
SVM (poly) SVM (:bf)
degree d = width v =
Bayes|Rocchio|C4 5[k-NNjj 1 | 2 | 3 | 4 | 5 0608|1012
[earn 95.9 | 96.1 [96.1]97.3 [[98.2[98.4]98.5]98.4] 98.3][08.5[98. 5] 03.4] 98.3 |
acq 915 | 92.1 [85.3192.0[92.6/94.6]95.2]95.2]95.3]95.0/95.3]95.3|95.4
money-fx || 62.9 | 67.6 [69.4[78.2 [66.9]72.5]75.4|74.9 75.2”]40 75.4|76.3[75.9 DlCthﬂafy g
|_grain 72.5 | 795 |80.1|82.2 [91.3]93.1[92.4[91.3|89.5][08.1|01.9|61.9|90.6 Mailb
crude 810 | 81.5 755|857 |[86.0[87.3]86.6 |58.0|87.8 |88.0|R0.0| #8.0 |88 2 aitbox
S [frade [ 50.0 | 774 [59.2| 774 [[69.2[75.5] 76.6| 77.377.1]| 76.6 [78.0[77.8| 76.8 = +’ —> SVM
] interest || 58.0 | 725 |49.1[74.0 [[69.8[63.3[67.0]73.1|76.2]| 74.4 |75.0/76.2] 76.1 8
§ ship 78.7 | 831 |80.9]79.2 WA 86.0[86.5]86.0 |[85.4]86.5|87.6 | 87.1 § -
o 'wheat 60.6 | 794 [85.5|76.6 [83.1[84.5]85.2]85.9|83.8(|85.2[85.9/85.9]85.9 (= Incoming email Word activations =
£ corn 473 | 622 |87.7|77.0 |86.0[86.5]85.3|85.7|83.0 ||85.1|85.785.7 | 845 €
3 . §4.2[85.1]85.9]86.2]85.9 | 86.4]86.5] 86.3 ] 86.2 3
E microavg.|| 72.0 | 79.9 |79.4(82.3 H combined: 86.0 combined: 86.4 Tgl iy
.":a’ § Trash
= 2 = 23
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Example Application: OCR Historical Importance
¢ Handwritten digit %Méiﬁigééﬁﬂi?i;il rgg; e USPS benchmark
it S8R & .
recognition Aégiggggigﬁzm%u FEYEITE » 2.5% error: human performance

329&12519121559“.72955
y 0. * Different learning algorithms
» 16.2% error: Decision tree (C4.5)
» 5.9% error: (best) 2-layer Neural Network
» 5.1% error: LeNet 1 — (massively hand-tuned) 5-layer network

1|+\:|£a\:\9|‘;u.1|9|qu
LLELRAZGIZER 2}.“-#,&‘1“
9221211722502 JQJ.

* Different SVMs
> 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel  (0=0.3, 291 support vectors)

910910155133)3730).28L1088
18143L8 258 L5540 02 0100 2
LIZASRLERENERARLERISLEDLT
1AE5 10830 3REIFROLIATERY
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Example Application: OCR

* Results
» Almost no overfitting with higher-degree kernels.

degree of || dimensionality of | support | raw
polynomial feature space vectors | error
1 256 282 8.9
2 =2 33000 227 4.7
= 3 = 1x 10¢ 274 4.0
g 4 a1 % 10° 321 4.2
2 5 ~1x 101 374 4.3
5 6 ~1x 10" 377 4.5
8 7 = 1 x 1016 422 4.5
o
é
B. Leibe 2
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Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Machine Learning Winter ‘17
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So Far...

* We've seen already a variety of different classifiers
+ kNN

~ Bayes classifiers

» Linear discriminants

» SVMs

* Each of them has their strengths and weaknesses...
» Can we improve performance by combining them?
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Example Application: Object Detection
* Sliding-window approach gZZZ,"'"e
e/

* E.g. histogram representation (HOG)
» Map each grid cell in the input window to a
histogram of gradient orientations.
» Train a linear SVM using training set of A
pedestrian vs. non-pedestrian windows. 4 D
[Dalal & Triggs, CVPR 2005]

Machine Learning Winter ‘17
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Topics of This Lecture
* Ensembles of classifiers
» Bagging
= » Bayesian Model Averaging
%
= 29
B. Leibe
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Ensembles of Classifiers

* Intuition
» Assume we have K classifiers.
» They are independent (i.e., their errors are uncorrelated).
» Each of them has an error probability p < 0.5 on training data.
— Why can we assume that p won't be larger than 0.5?

» Then a simple majority vote of all classifiers should have a
lower error than each individual classifier...
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/

Constructing Ensembles

* How do we get different classifiers?
» Simplest case: train same classifier on different data.
» But... where shall we get this additional data from?
— Recall: training data is very expensive!

* |dea: Subsample the training data

» Reuse the same training algorithm several times on different
subsets of the training data.

* Well-suited for “unstable” learning algorithms

» Unstable: small differences in training data can produce very
different classifiers
— E.g., Decision trees, neural networks, rule learning algorithms,...
» Stable learning algorithms
— E.g., Nearest neighbor, linear regression, SVMs,...

Machine Learning Winter ‘17
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Bayesian Model Averaging

* Model Averaging
» Suppose we have H different models h = 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) =Y p(X|h)p(h)

h=1

* Interpretation
» Just one model is responsible for generating the entire data set.
» The probability distribution over h just reflects our uncertainty
which model that is.
As the size of the data set increases, this uncertainty reduces,
and p(X|h) becomes focused on just one of the models.

v

Machine Learning Winter ‘17
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Model Averaging: Expected Error
e Combine M predictors y,,(x) for target output h(x).

» E.g. each trained on a different bootstrap data set by bagging.
» The committee prediction is given by

1 M
yoou (%) = 4= > ym(x)
m=1
» The output can be written as the true value plus some error.
y(x) = h(x) +e(x)

» Thus, the expected sum-of-squares error takes the form

Ex = [{ym () = h()}| = Ex [em(x)]
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Constructing Ensembles

* Bagging = “Bootstrap aggregation” (Breiman 1996)
» In each run of the training algorithm, randomly select M samples
from the full set of N training data points.

» If M = N, then on average, 63.2% of the training points will be
represented. The rest are duplicates.

* Injecting randomness

» Many (iterative) learning algorithms need a random initialization
(e.g. k-means, EM)

» Perform mutliple runs of the learning algorithm with different
random initializations.

33
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TRWTH/JCHEN
Note the Different Interpretations!

* Model Combination (e.g., Mixtures of Gaussians)
~ Different data points generated by different model components.
» Uncertainty is about which component created which data point.
= One latent variable z,, for each data point:

p(X) = Hp(xn) = H Zp(xnvzn)

n=1 z,

* Bayesian Model Averaging
» The whole data set is generated by a single model.
» Uncertainty is about which model was responsible.
= One latent variable z for the entire data set:

p(X) = Zp(xv z)

35
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Model Averaging: Expected Error

* Average error of individs\llal models
1
Eav = ivi Z Ex [Em(x)z}

m=1

* Average error of committee

1 I ’ 1 & ‘]
Ecom = Ex {M;ym(x)*h(x)} = Ex {—,me(X)}

* Assumptions

. Errors have zero mean: By [em(X)] =0

- Errors are uncorrelated:  Ex [ (X)€;(x)] =0
Isn g
sﬂecraé‘zgr?

1
* Then: Ecom = M]EAV

37
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Model Averaging: Expected Error
* Average error of committee
1
E =_E
coM i3 AV
» This suggests that the average error of a model can be reduced by a
factor of M simply by averaging M versions of the model!

» Spectacular indeed...
» This sounds almost too good to be true...

* Anditis... Can you see where the problem is?

» Unfortunately, this result depends on the assumption that the errors
are all uncorrelated.

» In practice, they will typically be highly correlated.
» Still, it can be shown that
Ecoum - Eav

B. Leibe
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AdaBoost: Intuition

Consider a 2D feature space
with positive and negative
examples.

Weak
Classifier 1|

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.

Machine Learning Winter ‘17
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AdaBoost: Intuition

® (o] Welghts
—_ Increased
Weak ® .‘
Classifier | 2 ---=-"""
® [°] Weak
Classifier 2 ——
® e
- Weaak ——F—=
T classifier 3 ."
°9 @
2 The final classifier is a ' 9
= linear combination of .‘..
g the weak classifiers
s
[}
£
£
=}
©
=
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AdaBoost — “Adaptive Boosting”

* Main idea [Freund & Schapire, 1996]
» lteratively select an ensemble of component classifiers
» After each iteration, reweight misclassified training examples.
— Increase the chance of being selected in a sampled training set.
— Orincrease the misclassification cost when training on the full set.
¢ Components
> h,(x): “weak” or base classifier
— Condition: <50% training error over any distribution
» H(x): “strong” or final classifier
* AdaBoost:

» Construct a strong classifier as a thresholded linear combination of
the weighted weak classifiers:

M
H(x) = sign (Z amhm(x)>

Machine Learning Winter ‘17

m=1
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AdaBoost: Intuition

e @ Weights ..
Weak Increased |
Classifier 1 f [ ] o
i

L}

Weak
@9 Classifier 2 ——

Machine Learning Winter ‘17
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AdaBoost — Formalization

* 2-class classification problem
» Given: training set X = {x,, ..., Xy}
with target values T ={t,, ..., ty }. ¢, € {-1,1}.
» Associated weights W={wy, ..., wy} for each training point.

* Basic steps

» In each iteration, AdaBoost trains a new weak classifier h,,(x) based
on the current weighting coefficients W(m),

We then adapt the weighting coefficients for each point

v

— Increase w, if x,, was misclassified by h,,,(x).
- Decrease w, if x,, was classified correctly by h,,,(x).
Make predictions using the final combined model
M

v
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AdaBoost — Algorithm

e 1
1. Initialization: Set  w(! = Frns 1,...,N.
2. Form=1,...,M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N

T = Y () £1) s

0, else

n=1
b) Estimate the weighted error of this classifier on X:

z Sy () £ )
g €m = S a—
§ Zn:l Wn,
o c) Calculate a weighting coefficient for h,,,(x):
§ ay =7
-
e d) Update the weighting coefficients: I;ow .Shm"d we
= o this exactly?
S w(m+1) =7
= n
44
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AdaBoost — Minimizing Exponential Error

* Exponential error function
N

E= Z €xXp {7tnf7n(xn)}
n=1
» where f,,(x) is a classifier defined as a linear combination of base

classifiers hy(x):
m

Fnlo) = 5> eulu(x)
=1

]
3
E
=1 * Goal
E » Minimize E with respect to both the weighting coefficients «; and the
3 parameters of the base classifiers h(x).
£
£
8
= 46
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AdaBoost — Minimizing Exponential Error
al 1
E= Z wflm> exp {7 itnamhm(xn)}
n=1
» Observation:
— Correctly classified points: t,h,,(x,) = +1 = collectin 7,
— Misclassified points: th,(x,) =-1 = collectin F,,
- » Rewrite the error function as
% B=eon/2 37wl
é n€Tm
£
£
g N
& = (e ) D2 Wl han (x0) # )
5 n=1
©
=
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AdaBoost — Historical Development

* Originally motivated by Statistical Learning Theory
» AdaBoost was introduced in 1996 by Freund & Schapire.
» It was empirically observed that AdaBoost often tends not to overfit.
(Breiman 96, Cortes & Drucker 97, etc.)
As a result, the margin theory (Schapire et al. 98) developed, which
is based on loose generalization bounds.
— Note: margin for boosting is not the same as margin for SVM.
— A bit like retrofitting the theory...

v

~
; » However, those bounds are too loose to be of practical value.
=
= + Different explanation (Friedman, Hastie, Tibshirani, 2000)
g » Interpretation as sequential minimization of an exponential error
o function (“Forward Stagewise Additive Modeling”).
_E » Explains why boosting works well.
§ » Improvements possible by altering the error function.
45
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AdaBoost — Minimizing Exponential Error

* Sequential Minimization

» Suppose that the base classifiers h,(x),..., h,,.,(x) and their
coefficients a,,...,a,,_, are fixed.

1Emey

= Only minimize with respect to «,, and h,,,(x).
N

B =Y exp{—tufulx)} with ful) = 3> amx
=1

n=1

N
= Z exp {—tnfm,l(xn) - ;tnamhm(xn)}
n=1 N

= const.

v 1
= Z wgm) exp {7 5ifnozmhm(xn) }
n=1

B. Leibe
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AdaBoost — Minimizing Exponential Error

N
1
E= Z wﬁbm) exp {7§tnamhm(xn)}

n=1

> Observation:
— Correctly classified points: ¢,h,,(x,) = +1 = collectin 7,
— Misclassified points: t,h(x,) = -1 = collectin F,,

» Reuwrite the error function as

PR Y D

[~

N

N
_ (eam/z _ efam/z) Zwﬁ[’”[(hm(xn) A1) +eom/? Zwslm)
n=1 n=1
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AdaBoost — Minimizing Exponential Error

L . . OF !
Minimize with respect t?v ho(x): ) 0 i
E— (eam/z _ e—am/z) S W (i (%) # ta) + €702y " wfm
n=1 n—1
%/—/ %/—/
= const. = const.

= This is equivalent to minimizing

~
g
=
o
=
=
S
®
3
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=
S
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N
T = 3w I (x) # ta)
n=1
(our weighted error function from step 2a) of the algorithm)
= We’re on the right track. Let’s continue...
50
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AdaBoost — Minimizing Exponential Error
* Remaining step: update the weights
» Recall that
al 1
E= Z wflm> exp {7 itnamhm(xn)}
n=1
This becomes w{™ 1)
in the next iteration.
» Therefore
1
wm D) = (M) exp {—gtnamhm(xn)}
= wi™ exp {amI (hun(x0) # t)}
= Update for the weight coefficients.
52
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AdaBoost — Analysis

* Result of this derivation

» We now know that AdaBoost minimizes an exponential error function
in a sequential fashion.

» This allows us to analyze AdaBoost’s behavior in more detail.
» In particular, we can see how robust it is to outlier data points.

54
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AdaBoost — Minimizing Exponential Error
* Minimize with toa, o
inimize with respect to «,,,: B
N N
E= (e”m/z - e"’”"/z) Z W I (R (Xp) # tn) + e/ Zu/(n"’)
n=1 n=1
N , N
<zeam/2 n %/cfu.n/z) Zwifn)l(hm(xn) £t,) = Ze—um/z ngn)
n=1 n=1
v _
= weighted _ e om/?
8 error me eom/2 I g—am/2
£
H 1
> €m = —
E m eam + 1
3 . 1—ep
B = Update for the « coefficients: ap = In -
= m
©
=
51
B. Leibe
RWTH CHET
AdaBoost — Final Algorithm
T 1
1. Initialization: Set w§}> = N)r n=1,.,N.
2. Form=1,....M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W) bv\minimizinq the weighted error function
I = Z W (A (%) # tn)
n=1
b) Estimate the weighted error of this classifier on X:
= I m
= S W T (i (%) # t)
€ = ———
§ SN W™
) c) Calculate a weighting coefficient for h,,(x):
g a;, =1In o
S €m
2 d) Update the weighting coefficients:
S
8 W = (™ exp {am I (hyn(xn) # tn)}
= 53
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RWTH CHET
Recap: Error Functions
= {_1: 1} E(zn) Ideal misclassification erro

Not differentiable! ——

2 - N\ 1 2" An = tny(xn)

* |deal misclassification error function (black)
» This is what we want to approximate,
» Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent.
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RWTH/THE
Recap: Error Functions

E(z,) Ideal misclassification erro
Squared error

t, e {-1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

=2 -1 0 - [
* Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 56
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RWTH LGN
Discussion: AdaBoost Error Function

Ideal misclassification errof
Squared error

Hinge error

Exponential erro

) 7 0 - 7 5 Zn:tny(x'rz)

* Exponential error used in AdaBoost
» Continuous approximation to ideal misclassification function.

» Sequential minimization leads to simple AdaBoost scheme.
» Properties?

Machine Learning Winter ‘17
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Discussion: Other Possible Error Functions
E(zn) Ideal misclassification errol
Squared error
Hi‘nge error
Exponential erro

Cross-entropy error

B==Y {talny, + (1 —t,) In(1 —y,)} |2

3 Zn = tny(xfrz)

¢ “Cross-entropy error” used in Logistic Regression
» Similar to exponential error for z>0.
» Only grows linearly with large negative values of z.
= Make AdaBoost more robust by switching to this error function.
= “GentleBoost” B. Leibe
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Recap: Error Functions
E(z,) Ideal misclassification erroj
Squared error
Hinge error
Robust to outliers!
Not differentiable! / Favors sparse
\ / solutions!

/
) I 0 V——= %= tny(%n)

* “Hinge error” used in SVMs
» Zero error for points outside the margin (z, > 1) = sparsity
» Linear penalty for misclassified points (z, < 1) = robustness
» Not differentiable around z, = 1 = Cannot be optimized directly.
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RWTHACHE
Discussion: AdaBoost Error Function
E(zn) Ideal misclassification erro
Squared error
Hinge error
Sensitive to outliers! Exponential error
= - — 3" 2 = ty(Xn)

* Exponential error used in AdaBoost
» No penalty for too correct data points, fast convergence.
~ Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!
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Summary: AdaBoost

* Properties

» Simple combination of multiple classifiers.

» Easy to implement.

» Can be used with many different types of classifiers.
— None of them needs to be too good on its own.
— In fact, they only have to be slightly better than chance.

» Commonly used in many areas.

» Empirically good generalization capabilities.

* Limitations
» Original AdaBoost sensitive to misclassified training data points.
— Because of exponential error function.
— Improvement by GentleBoost
» Single-class classifier

— Multiclass extensions available
61
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* More information on Classifier Combination and Boosting
can be found in Chapters 14.1-14.3 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
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* A more in-depth discussion of the statistical interpretation
of AdaBoost is available in the following paper:
» J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a

Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),
pages 337-374, 2000.
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