Machine Learning — Lecture 10

AdaBoost

i/

20.11.2017

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

| -
)]
)
c
(@))
=
c
S
@®©
(D)
—l
Q
=
<
&)
©
=

leibe@vision.rwth-aachen.de

Course Outline

A Fundamentals
s Bayes Decision Theory

« Probability Density Estimation

A Classification Approaches
« Linear Discriminants
« Support Vector Machines
« Ensemble Methods & Boosting
« Random Forests

i/

A Deep Learning
« Foundations
« Convolutional Neural Networks
« Recurrent Neural Networks

jons Subsampling Full connection

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

B. Leibe

Recap: SVM i1 Analysis

A Traditional soft-margin formulation

min 1ka2+CX\I AMaxi mi ;
— D,

w2RP :», 2R? 1>n the mar (

n=

subject to the constraints

N
—i

AMost poi |
thy(x,) > 1—-&, be on the correct
side of t

> A Different way of looking at it

= s We can reformulate the constraints into the objective function.
= 1, X

£ min = kwk® + C [1i thy(Xn)l,

= w2RD 2

@ \ J nh=1 Y

;'J ' '

= L, regularizer AHIi nge | osso
&)

©

>

where [x], := max{0x}.

Slide adapted from Christoph Lampert B. Leibe

RWTH
Recap: Bayesian Model Averaging

A Model Averaging
« Suppose we have H different models h = 1 K &ith prior
probabilities p(h).
« Construct the marginal distribution over the data set

X!
p(X) = p(Xjh)p(h)

h=1

i/

A Average error of committee

Ecom = M—EAV

a This suggests that the average error of a model can be reduced by a
factor of M simply by averaging M versions of the model!

s Unfortunately, this assumes that the errors are all uncorrelated. In
practice, they will typically be highly correlated.

| -
)]
)
c
(@))
=
c
1
©
(¢D)
-l
(&}
=
<
(&)
©
=

B. Leibe

Topics of This Lecture

A AdaBoost
o Algorithm
o Analysis
o Extensions

i/

A Analysis
s Comparing Error Functions

A Applications
o AdaBoost for face detection

A Decision Trees
i« CART
« Impurity measures, Stopping criterion, Pruning
« Extensions, Issues
s Historical development: ID3, C4.5

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

B. Leibe

RWTH
AdaBoosti n Adapti ve Boost

A Main idea [Freund & Schapire, 1996]
« Iteratively select an ensemble of component classifiers

« After each iteration, reweight misclassified training examples.
I Increase the chance of being selected in a sampled training set.
I Or increase the misclassification cost when training on the full set.

AComponents
« h,(X): nNnweako or base classifier

N
—i

2 I Condition: <50% training error over any distribution
< « HX): Astrongo or final <c¢cl assifie
= A AdaBoost:
c
c% s Construct a strong classifier as a thresholded linear combination of
Q the weighted weak classifiers:
2 W
S H(x) = sign ®h him (X)
= m=1
6

B. Leibe

AdaBoost: Intuition

/
O © Consider a 2D feature space
Weak P @ 3 with positive and negative
Classifier 1 ~Hooo---=--~"
@ o examples.
O - .
» © Each weak classifier splits

the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

8
Figure adapted from Freund & Schapire

Slide credit: Kristen Grauman B. Leibe

i/

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

AdaBoost: Intuition

Weak
Classifier 1

—
— -
i
—

Slide credit: Kristen Grauman

Weights
Increased

Weak
Classifier 2

B. Leibe

9
Figure adapted from Freund & Schapire

AdaBoost: Intuition

® O Weights

o0
Weak O ® Increased .|
O O o

Classifier1 ~ _o_--=---"""

© o Weak }.__': O
O @) Classifier 2 q

N
—i

" Weak " .
w classifier 3 .l‘ O

c 1

- ° @

i The final classifier is a \ o)
£ linear combination of .'1.

5 the weak classifiers

|

(ab]

=

e

(@]

@®

=

10
Figure adapted from Freund & Schapire

Slide credit: Kristen Grauman B. Leibe

AdaBoost T Formalization

A 2-class classification problem
« Given: training set X ={X,, By}
with target values T = {t,, te.t, 2 {-1,1}.
« Associated weights W ={w, @/, } for each training point.

N
—i

A Basic steps
« In each iteration, AdaBoost trains a new weak classifier h.,(x) based

® on the current weighting coefficients W (M),

c s We then adapt the weighting coefficients for each point

= i Increase W, if X, was misclassified by h,(X).

(@))

= i Decrease W, if X,, was classified correctly by h,(X).

§ « Make predictions using the final combined model

E S

S H(x) = sign ®n hm (X)

= m=1 11

B. Leibe

AdaBoost 1 Algorithm

Vd

1. Initialization: Set w(Y = Ni forn=1N.é,

2. Form= 1M éterations

a) Train a new weak classifier h,(Xx) using the current weighting
coefficients W (M by minimizing the weighted error function

>(\I A e b
Im = ng)l (hm(X) 6 t,) I(A) = {1- it A is true

0. else
n=1 '

N
—i

b) Estimate the weighted error of this classifier on X :

() -

= > — E:lvyélm)l(hm(x) 6 tn)

c m — N (m)

= n=1 Wn

E c) Calculate a weighting coefficient for h_(X):

c

S ®y = 7

—l

2 d) Update the weighting coefficients: dHc?\t/\rl]izhg;;it\lNi
: wimt = 2 i

12

B. Leibe

RWTH
AdaBoost i Historical Development

A Originally motivated by Statistical Learning Theory
« AdaBoost was introduced in 1996 by Freund & Schapire.

« It was empirically observed that AdaBoost often tends not to overfit.
(Breiman 96, Cortes & Drucker 97, etc.)

« As a result, the margin theory (Schapire et al. 98) developed, which
IS based on loose generalization bounds.
I Note: margin for boosting is not the same as margin for SVM.
TA bit like retrofitting the theor

s However, those bounds are too loose to be of practical value.

i/

A Different explanation [Friedman, Hastie, Tibshirani, 2000]

« Interpretation as sequential minimization of an exponential error
functi on StagewiserAarn d i ve Model i ngo

s Explains why boosting works well.
« Improvements possible by altering the error function.

| -
((b)
)
c
(@))
=
c
1
©
(<]
-l
(&}
=
<
(&)
©
=

13

B. Leibe

RWNTH
AdaBoost T Minimizing Exponential Error

A Exponential error function
X

E = expfi thfm(Xn)g
n=1
« where f (X) is a classifier defined as a linear combination of base
classifiers h,(x):
1 X
1:m(x): P ®h|(X)

2
=1

i/

A Goal

« Minimize E with respect to both the weighting coefficients ® and the
parameters of the base classifiers h(X).

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
(&)
©
=

14

B. Leibe

RWNTH
AdaBoost T Minimizing Exponential Error

A Sequential Minimization

« Suppose that the base classifiers h,(x) , & ,(X) and their
coefficients ®,, é®). , are fixed.

Y Only minimize with respect to ®., and h_,(x).

» X X
E = expfi thfm(Xn)g with fm(x)= 5 ® h; (x)
— n=1 =1
- 72 1 YZ
a3 = exp i thfm; 1(Xn) | itn@m hm (Xn)
i n=1 A ~ J
= = const.
§)(\I /2 1 4
é - ng) eEXP i ztn®m Nm (Xn)
S n=1
=

. 15
B. Leibe

AdaBoost i Minimizing Exponential Error

W 72 1 7
— m .
n=1
« Observation:
i Correctly classified points: t h.(x,) =+1 Y collectin T,,

N
—i

i Misclassified points: t.h, (x,) =-1 Y collectin F_,

" s Rewrite the error function as
— —_— i ®n =2 o m

= E=¢®n wim +

§ n2Tm

(@))

c

c

o = 7 ng)l (hm (Xn) 6 tn)
% n=1
@®

S

16

B. Leibe

AdaBoost i Minimizing Exponential Error

W 72 1 vz
E = wi™ exp Ztn@m hm (X))
n=1
« Observation:
~ i Correctly classified points: t h_(x,) = +1 Y collectin T,,
—
i Misclassified points: t.h, (x,) =-1 Y collectin F

a Rewrite the error function as

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

17

B. Leibe

RWNTH
AdaBoost 1 Minimizing Exponential Error

A Minimize with respect to h_(x): & .,
) @m (Xn)
S e, X o X
E= &2 ®? wMi(hn(xn) 6 ty)+ e =2 wim
n=1 n=1

- ~ J - ~ J
N
— = consit. = consit.

Y This is equivalent to minimizing

X
Jn= wW™Il(hn(x) 6 tp)
n=1

(our weighted error function from step 2a) of the algorithm)

Y Wedre on the right track. Letods

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

18

B. Leibe

RWNTH
AdaBoost 1 Minimizing Exponential Error

L . Ca
A Minimize with respect to ®,: @ 0
A o
E= &2 ®2 w™i(hn(x,) 6 ty)+e ™2 wim
n=1 n=1

A

N
—i

LN | A
Ze®m=2+gei O =2 W(m)l(hm(xn)St) = gei On =2 wim)

n=1

= weighted | n= r(1m)| (hm(Xn) 6 tn gi ®m =2

c error 1W$1m) ®n =2 + @i ®n =2
; —

c’ —

E e®m + 1

§ ¢ . ~ 1 2y

@ Y Update for the ® coefficients: Bn = In —

% m

@®©

=

B. Leibe

19

i/

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

RWNTH
AdaBoost 1 Minimizing Exponential Error

A Remaining step: update the weights

s Recall that o . »
E = wi™ exp i itn@n hm (X))
n=1

- J
hd

This becomes w{™*
In the next iteration.

a Therefore

I

. .-
wim* D = wim exp étn®n hm (Xn)

= W{™ expf@nl (hm(Xn) 6 tn)g
Y Update for the weight coefficients.

B. Leibe

20

i/

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

AdaBoost T Final Algorithm

1. Initialization: Set w(V = Ni)r n= 1N.e,

2. Form= 1M éterations

a) Train a new weak classifier h,(Xx) using the current weighting
coefficients W (™ by minimizing the weighted error function

X
Im = ng)l (hm(x) 6 tn)
n=1
b) Estimate the weighted error of this classifier on X :

e
s W (g (%) 6)
m = N (m)

c) Calculate a weighting coefficient for h,,,(X):
1 2
®y = In '2 il
m
d) Update the weighting coefficients:
wim* D = wim expf @y, (hm (Xn) 6 th)g

B. Leibe

21

AdaBoost i Analysis

A Result of this derivation

« We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

« This allows us to analyze A d a B o doshaviisin more detail.
« In particular, we can see how robust it is to outlier data points.

i/

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

22

B. Leibe

RWTHAACHEN
UNIVERSITY

Topics of This Lecture

i/

A Analysis
s Comparing Error Functions

| -
)]
—
c
(@))
=
c
S
@©
]
—l
b)
=
<
&)
©
=

23
B. Leibe

RWNTH
Recap: Error Functions

t, € {_]_’ 1} E(Zn) Ideal misclassification error

i/

Not differentiable!

\

5 1 AV 1 5*Zn = thy(Xn)

A Ideal misclassification error function (black)
« This is what we want to approximate,
« Unfortunately, it is not differentiable.
s The gradient is zero for misclassified points.
Y We cannot minimize it by gradient descent. 24

Image source: Bishop, 2006

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

i/

| -
)]
)
c
(@))
=
c
S
@©
]
—l
Q
=
<
&)
©
=

Recap: Error Functions

tn, € {—1,1}

Sensitive to outliers!

Ideal misclassification error
Squared error

Penali zes nt
data points!

N e

-2

-1

0

= 1& zhzn — tny(xn)

A Squared error used in Least-Squares Classification
« Very popular, leads to closed-form solutions.
s However, sensitive to outliers due to squared penalty.
At oo
Y Generally does not lead to good classifiers. 25

s Penall zes

correcto data po

Image source: Bishop, 2006

RWNTH
Recap: Error Functions

E(Zn) Ideal misclassification error
Squared error
Hinge error

Robust to outliers!

i/

Favors sparse
/s solutions!

Zn = thY(Xn)

Not differentiable! \

-2 -1 0

ARAHin g e usedrin S¥iso
s Zero error for points outside the margin (z,> 1) Y sparsity
s Linear penalty for misclassified points (z,< 1) Y robustness
: Not differentiable around z,=1 Y Cannot be optimized directly.

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

26
Image source: Bishop, 2006

B. Leibe

Discussion: AdaBoost Error Function

n
E(Zn) Ideal misclassification error

Squared error
Hinge error
Exponential error

i/

) 1 5> 4n = thy(Xn)

A Exponential error used in AdaBoost
s Continuous approximation to ideal misclassification function.
s Sequential minimization leads to simple AdaBoost scheme.
« Properties?

| -
)]
)
c
(@))
=
c
S
@©
]
—l
Q
=
<
&)
©
=

_ 27
B. Leibe Image source: Bishop, 2006

RWTHAACHEN
Discussion: AdaBoost Error Function

RSITY
&

E(Zn) Ideal misclassification error
Squared error
Hinge error

. : Exponential error
Sensitive to outliers!

i/

) 1 5> 4n = thy(Xn)

A Exponential error used in AdaBoost
s No penalty for too correct data points, fast convergence.
s Disadvantage: exponential penalty for large negative values!
Y Less robust to outliers or misclassified data points!

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

28
Image source: Bishop, 2006

B. Leibe

. . . UNIVERSITY
Discussion: Other Possible Error Functions

'

E(Zn) Ideal misclassification error
Squared error

Hinge error

Exponential error
Cross-entropy error

i/

o ftainye + (10 t)In(Li yo)g [N

E: .-.-";
.-.__."'I
9 1 0 : 5™ Zn = thy(Xn)
AﬁCra’-}snstropy erroro used in L

« Similar to exponential error for z>0.

« Only grows linearly with large negative values of z.

Y Make AdaBoost more robust by switching to this error function.

. L 29
YNnGent| eBoost ®tebe Image source: Bishop, 2006

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

Summary: AdaBoost

A Properties
« Simple combination of multiple classifiers.
Easy to implement.

« Can be used with many different types of classifiers.
I None of them needs to be too good on its own.
I In fact, they only have to be slightly better than chance.

Commonly used in many areas.
Empirically good generalization capabilities.

i/

c:

c:

A Limitations

« QOriginal AdaBoost sensitive to mislabeled training data points.
I Because of exponential error function.
I Improvement by GentleBoost

« Single-class classifier
I Multiclass extensions available

| -
)]
)
c
(@))
=
c
S
©
(¢D)
-l
(&}
=
<
(&)
©
=

30

B. Leibe

RWTHAACHEN
UNIVERSITY

Topics of This Lecture

i/

A Applications
o AdaBoost for face detection

| -
)]
—
c
(@))
=
c
S
@©
]
—l
b)
=
<
&)
©
=

. 31
B. Leibe

Example Application: Face Detection

A Frontal faces are a good example of a class where
global appearance models + a sliding window detection
approach fit well:

« Regqular 2D structure

i/

i Center of face almost shaped |

ANow wedl | t ake AdaBooslonesand
face detector works

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

32

Slide credit: Kristen Grauman B. Leibe

Feature extraction

ARectangularo filters

Feature output is difference
between adjacent regions

N
—i

Value at (x,y) is
sum of pixels

Efficiently computable

— et : above and to the | | 5

% with integral image: any left of (x,y) 1 ,

= sum can be computed in .)

= constant time xy) . 4

(@)

= Avoid scaling images A

= .

© scale feat;Jres directly for Integral image 0 @) Qr)
2 same coS . .

= (@) Q)
&

>

| | 33
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]

Large Library of Filters

.: = Considering all
possible filter

parameters:

position, scale, and

| fYPE:

N
180,000+ possible
features associated

]
B]
with each 24 x 24
window
- . =

Use AdaBoost both to select the informative features
and to form the classifier

=

“u

i/

| -
)]
)
c
(@))
=
c
S
@©
]
—l
Q
=
<
&)
©
=

| | 34
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]

RWNTH
AdaBoost for Feature+Classifier Selection

A Want to select the single rectangle feature and threshold that
best separates positive (faces) and negative (non-faces)
training examples, in terms of weighted error.

Resulting weak classifier:

i/

| | R R
' eleee oee oo I(x) {H it £(x)> 0,

-1 otherwise

For next round, reweight the

examples according to errors,
Outputs of a choose another filter/threshold
possible rectangle combo.

feature on faces
and non-faces.

| -
)]
)
c
(@))
=
c
S
©
(¢D)
-l
(&}
=
<
(&)
©
=

| | 35
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]

RWNTH
AdaBoost for Efficient Feature Selection

A Image features = weak classifiers

A For each round of boosting:
« Evaluate each rectangle filter on each example
« Sort examples by filter values

s Select best threshold for each filter (min error)
I Sorted list can be quickly scanned for the optimal threshold

s Select best filter/threshold combination
o Weight on this features is a simple function of error rate
« Reweight examples

i/

P. Viola, M. Jones, Robust Real-Time Face Detection, 1JCV, Vol. 57(2), 2004.
(first version appeared at CVPR 2001)

B. Leibe

| -
)]
)
c
(@))
=
c
1
©
(¢D)
-l
(&}
=
<
(&)
©
=

36

Slide credit: Kristen Grauman

http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf

Viola-Jones Face Detector: Results

i/

| -
)]
)
c
(@))
=
c
S
©
(¢D)
-l
(&}
=
<
(&)
©
=

B. Leibe

Slide credit: Kristen Grauman

i/

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

B. Leibe

Slide credit: Kristen Grauman

References and Further Reading

A More information on Classifier Combination and Boosting
can be found in Chapters 14.1-1 4. 3 of Bl s hoy

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

i/

A A more In-depth discussion of the statistical interpretation
of AdaBoost is available in the following paper:

o J. Friedman, T. Hastie, R. Tibshirani, Additive Loqgistic Reqgression: a
Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),
pages 337-374, 2000.

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

39

B. Leibe

http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

RWTHAACHEN
UNIVERSITY

Topics of This Lecture

i/

A Decision Trees
i« CART
« Impurity measures, Stopping criterion, Pruning
« Extensions, Issues
s Historical development: ID3, C4.5

B. Leibe

| -
)]
)
c
(@))
=
c
S
@©
]
—l
b)
=
<
&)
©
=

40

.

"’i‘"

Decision Trees

A Very old technigue
« Origin in the 60s, might seem outdated.

ABut é

s Can be used for problems with nominal data
I E.qg. attributes color 2 {red, green, blue} or weather 2 {sunny, rainy}.
I Discrete values, no notion of similarity or even ordering.

i/

Interpretable results
I Learned trees can be written as sets of if-then rules.

c:

s Methods developed for handling missing feature values.

s Successfully applied to broad range of tasks
I E.g. Medical diagnosis
I E.g. Credit risk assessment of loan applicants

i Some i1 nteresting novel devel opm

| -
)]
)
c
(@))
=
c
S
©
(¢D)
-l
(&}
=
<
(&)
©
=

41

B. Leibe

Decision Trees

Outlook
Sunny Overcast Rain
. / \
— Humidity Ves Wind
High Normal Strong Weak
No Yes No Yes

A Example:

« hClassi fy Saturday mornings acc
suitable for playing tennis. o

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

42
Image source: T. Mitchell, 1997

B. Leibe

Decision Trees

Outlook
Sunny Overcast Rain
- |
— Humidity Ves Wind
High Normal Strong Weak
No Yes No Yes

A Elements
s Each node specifies a test for some attribute.
s Each branch corresponds to a possible value of the attribute.

Machine Learning Wi nt er

43
Image source: T. Mitchell, 1997

B. Leibe

Decision Trees

A Assumption
o Links must be mutually distinct and exhaustive
« l.e. one and only one link will be followed at each step.

Outlook

N~
) I
Sunny Overcast Rain
. e N
A Interpretability Hinidit ves Wind
s Information in a tree can then be /\ A
rendered as logical expressions. High — Normal Sirong Weak
P /N AR

« In our example: No Fes
(Outlook = Sunny » Humidity = Normal)

_ (Outlook = Overcast)
_ (Outlook = Rain » Wind = Weak)

Machine Learning Wi nt er

_ 44
B. Leibe Image source: T. Mitchell, 1997

RWTH
Training Decision Trees

A Finding the optimal decision treeisNP-h ar d é

A Common procedure: Greedy top-down growing
« Start at the root node.
s Progressively split the training data into smaller and smaller subsets.
« In each step, pick the best attribute to split the data.

o If the resulting subsets are pure (only one label) or if no further
attribute can be found that splits them, terminate the tree.

« Else, recursively apply the procedure to the subsets.

i/

A CART framework
s Classification And Regression Trees (Breiman et al. 1993)
« Formalization of the different design choices.

| -
)]
)
c
(@))
=
c
1
©
(¢D)
-l
(&}
=
<
(&)
©
=

45

B. Leibe

i/

| -
)]
)
c
(@))
=
c
S
©
(¢D)
—l
(&}
=
<
(&)
©
=

CART Framework

A Six general questions

1. Binary or multi-valued problem?
I l.e. how many splits should there be at each node?

2. Which property should be tested at a node?
I l.e. how to select the query attribute?

3. When should a node be declared a leaf?
I l.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?
I Goal: reduce overfitting.

5. How to deal with impure nodes?
I l.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

B. Leibe

46

CART 1 1. Number of Splits

A Each multi-valued tree can be converted into an equivalent
binary tree:

yes no
color = yellow?

no ves

shape = round?
1O

N
—i

Watermelon

— — .
O Watermelon Apple Grape Apple @
o yes no yes no ves
sweet sour
c
— Grapefruit Lenton Cherry Grape Apple Grape Banana Apple
i ves no ves 1o
=
E Grapefruit Lemon Cherry Grape
@
(D)
—
o . .
= YOnly consider Dbinary trees
(@]
©
=
47

B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

RWNTH
CART 1 2. Picking a Good Splitting Feature

A Goal
« Want a tree that 1 s as simplels
« But: Finding a minimal tree is an NP-hard optimization problem.

i/

A Greedy top-down search
« Efficient, but not guaranteed to find the smallest tree.

« Seek a property T at each node s; that makes the data in the child
nodes as pure as possible.

« For formal reasons more convenient to define impurity I(s;).
s Several possible definitions explored.

| -
)]
)
c
(@))
=
c
S
©
(¢D)
—l
(&}
=
<
(&)
©
=

48

B. Leibe

RWTHAACHEN
UNIVERSITY

CART T Impurity Measures

Problem:

Aj . : —
() / discontinuous derivative!

,;:PQ

~ 3
— 5{51;,;"5-"

&
-~ &
- ~P
- 0 0.5 1
‘gg A Misclassification impurity AFracti on
I rfr c oz T training patterns
3 @) o | Amo i) in category G, that
2 endupinnodes;. 0
S
©
>

_ 49
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

RWTHAACHEN

. . UNIVERSITY
CART T Impurity Measures
4i(P)
- %;gs-‘f
égf"
» P
0 0.5 1

A Entropy impurity et

Q) (6 i)1 T g6 |i) entropy=gainin

| nf or mat

| -
)]
)
c
(@))
=
c
S
@©
]
—l
b)
=
<
&)
©
=

. 50
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

RWTHAACHEN
UNIVERSITY

CART T Impurity Measures

i/

A Gini impurity (variance impurity))
ANExpected
Q) N6 [i)n(é i) rate at node s if

the category label is
selected r

| -
)]
)
c
(@))
=
c
S
@©
]
—l
b)
=
<
&)
©
=

g[p n (6 |i)])

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

CART T Impurity Measures

A Which Impurity measure should we choose?

« Some problems with misclassification impurity.
I Discontinuous derivative.
Y Problems when searching over continuous parameter space.

I Sometimes misclassification impurity does not decrease when Gini
impurity would.

i/

o Both entropy impurity and Gini impurity perform well.
I No big difference in terms of classifier performance.

I In practice, stopping criterion and pruning method are often more
important.

| -
)]
)
c
(@))
=
c
S
©
(¢D)
—l
(&}
=
<
(&)
©
=

B. Leibe

RWNTH
CART 1 2. Picking a Good Splitting Feature

A Application
s Select the query that decreases impurity the most
@) @) 0@r) (p 0D
0 fraction of
points at left
A Multiway generalization (gain ratio impurity): child node i ;
« Maximize

Pl .« 5 e
Q) g)g@) L QX ;

i/

« where the normalization factor ensures that large K are not
Inherently favored:

A 011 Q¢

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
(&)
©
=

53

B. Leibe

RWNTH
CART T Picking a Good Splitting Feature

A For efficiency, splits are often based on a single feature
« AiMonothetic decisinon traecn

’Rl
X2 X3 R, [R, / /]
f 3 “ R-.: / ,/; ,/"
‘ X2 /R
N~ | A I
R,
—

L x} s 4 s - ’l]f

A Evaluating candidate splits
« Nominal attributes: exhaustive search over all possibilities.
« Real-valued attributes: only need to consider changes in label.
I Order all data points based on attribute X;.
I Only need to test candidate splits where label(X;) , label(X;,4).

B. Leibe

| -
)]
)
c
(@))
=
c
S
©
(¢D)
—l
(&}
=
<
(&)
©
=

54

CART 1T 3. When to Stop Splitting

A Problem: Overfitting

« Learning a tree that classifies the training data perfectly may not lead
to the tree with the best generalization to unseen data.

« Reasons

I Noise or errors in the training data.

I Poor decisions towards the leaves of the tree that are based on very
little data.

i/

A Typical behavior

S

on training data

on test data

accuracy

A 4

hypothesis complexity

| -
)]
)
c
(@))
=
c
S
©
(¢D)
—l
(&}
=
<
(&)
©
=

55

Slide adapted from Raymond Mooney B. Leibe

RWTH
CART 1T Overfitting Prevention (Pruning)

A Two basic approaches for decision trees

s Prepruning: Stop growing tree as some point during top-down
construction when there is no longer sufficient data to make reliable
decisions.

« Postpruning: Grow the full tree, then remove subtrees that do not
have sufficient evidence.

i/

A Label leaf resulting from pruning with the majority class of
the remaining data, or a class probability distribution.

Gv = argmax p(GJN) | |||

P(GIN)

| -
)]
)
c
(@))
=
c
1
©
(¢D)
-l
(&}
=
<
(&)
©
=

56

Slide adapted from Raymond Mooney B. Leibe

RWTH
Decision Trees i Computational Complexity

A Given
« Data points {X{, Xy}
« Dimensionality D

~ A Complexity
. Storage: O(N)
s Test runtime: O(logN)

. Training runtime: ~ O(DN?logN)
I Most expensive part.
I Critical step: selecting the optimal splitting point.
I Need to check D dimensions, for each need to sort N data points.

O(DN logN)

| -
)]
)
c
(@))
=
c
S
@®©
(]
—l
Q
=
<
&)
©
=

66

B. Leibe

i/

| -
)]
)
c
(@))
=
c
S
@©
]
—l
Q
=
<
&)
©
=

Summary: Decision Trees

A Properties
s Simple learning procedure, fast evaluation.
s Can be applied to metric, nominal, or mixed data.
o Often yield interpretable results.

B. Leibe

67

i/

| -
)]
)
c
(@))
=
c
1
©
(¢D)
-l
(&}
=
<
(&)
©
=

Summary: Decision Trees

A Limitations
« Often produce noisy (bushy) or weak (stunted) classifiers.
s Do not generalize too well.
« Training data fragmentation:
I As tree progresses, splits are selected based on less and less data.

« QOvertraining and undertraining:

I Deep trees: fit the training data well, will not generalize well to new test
data.

I Shallow trees: not sufficiently refined.
o Stability
I Trees can be very sensitive to details of the training points.

I If a single data point is only slightly shifted, a radically different tree may
come out!

Y Result of discrete and greedy learning procedure.

s EXpensive learning step
I Mostly due to costly selection of optimal split. 68

RWTHAACHEN
UNIVERSITY

References and Further Reading

A More information on Decision Trees can be found in
Chapters 8.2-8.4 of Duda & Hart.

Pattern
R.O. Duda, P.E. Hart, D.G. Stork [Classisicdtion
Pattern Classification
2"d Ed., Wiley-Interscience, 2000

i/

| -
)]
)
c
(@))
=
c
S
@©
]
—l
b)
=
<
&)
©
=

69

B. Leibe

