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Course Outline

ÅFundamentals

ü Bayes Decision Theory

ü Probability Density Estimation

ÅClassification Approaches

ü Linear Discriminants

ü Support Vector Machines

ü Ensemble Methods & Boosting

ü Random Forests

ÅDeep Learning

ü Foundations

ü Convolutional Neural Networks

ü Recurrent Neural Networks

B. Leibe
2
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Recap: SVM ïAnalysis

ÅTraditional soft-margin formulation

subject to the constraints

ÅDifferent way of looking at it

ü We can reformulate the constraints into the objective function.

where [x]+ := max { 0,x} .
3

B. Leibe

ñHinge lossòL2 regularizer

ñMost points should 

be on the correct

side of the marginò

ñMaximize 

the marginò
min

w 2 RD ; »n 2 R+

1

2
kwk2 + C

NX

n= 1

»n

min
w 2 RD

1

2
kwk2 + C

NX

n = 1

[1 ¡ tn y(xn )]+

Slide adapted from Christoph Lampert
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Recap: Bayesian Model Averaging

ÅModel Averaging

ü Suppose we have H different models h= 1,é,H with prior 

probabilities p(h).

ü Construct the marginal distribution over the data set

ÅAverage error of committee

ü This suggests that the average error of a model can be reduced by a 

factor of M simply by averaging M versions of the model!

ü Unfortunately, this assumes that the errors are all uncorrelated. In 

practice, they will typically be highly correlated.
4

B. Leibe

p(X ) =

HX

h= 1

p(X jh)p(h)

ECOM =
1

M
EAV
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Topics of This Lecture

ÅAdaBoost
ü Algorithm

ü Analysis

ü Extensions

ÅAnalysis
ü Comparing Error Functions

ÅApplications
ü AdaBoost for face detection

ÅDecision Trees
ü CART

ü Impurity measures, Stopping criterion, Pruning

ü Extensions, Issues

ü Historical development: ID3, C4.5
5

B. Leibe
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AdaBoost ïñAdaptive Boostingò 

ÅMain idea [Freund & Schapire, 1996]

ü Iteratively select an ensemble of component classifiers

ü After each iteration, reweight misclassified training examples.

ïIncrease the chance of being selected in a sampled training set.

ïOr increase the misclassification cost when training on the full set.

ÅComponents

ü hm(x ): ñweakò or base classifier

ïCondition: <50% training error over any distribution

ü H (x ): ñstrongò or final classifier

ÅAdaBoost: 

ü Construct a strong classifier as a thresholded linear combination of 

the weighted weak classifiers:

6
B. Leibe

H (x) = sign

Ã
MX

m = 1

®m hm (x)

!
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AdaBoost: Intuition

8
B. Leibe

Consider a 2D feature space 

with positive and negative

examples.

Each weak classifier splits 

the training examples with at 

least 50% accuracy.

Examples misclassified by a 

previous weak learner are 

given more emphasis at 

future rounds.

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire
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AdaBoost: Intuition

9
B. LeibeSlide credit: Kristen Grauman Figure adapted from Freund & Schapire
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AdaBoost: Intuition

10
B. Leibe

The final classifier is a 

linear combination of 

the weak classifiers

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire
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AdaBoost ïFormalization

Å2-class classification problem

ü Given: training set X = {x 1, é, x N}

with target values  T = { t1,  é, tN } , tn 2 { -1,1}.

ü Associated weights W ={w1, é, wN} for each training point.

ÅBasic steps

ü In each iteration, AdaBoost trains a new weak classifier hm(x ) based 

on the current weighting coefficients W (m).

ü We then adapt the weighting coefficients for each point

ïIncrease  wn if x n was misclassified by hm(x ).

ïDecrease wn if x n was classified correctly by hm(x ).

ü Make predictions using the final combined model

11
B. Leibe

H (x) = sign

Ã
MX

m = 1

®m hm (x)

!
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Jm =

NX

n= 1

w(m )
n I (hm (x) 6= tn )

AdaBoost ïAlgorithm

1. Initialization: Set                for n = 1,é,N.

2. For m= 1,é,M iterations

a) Train a new weak classifier hm(x ) using the current weighting 

coefficients W (m) by minimizing the weighted error function 

b) Estimate the weighted error of this classifier on X :

c) Calculate a weighting coefficient for hm(x ):

d) Update the weighting coefficients:

12
B. Leibe

w(1)
n =

1

N

²m =

P N

n= 1 w
(m )
n I (hm (x) 6= tn )

P N

n= 1 w
(m )
n

®m = ?

w(m+ 1)
n = ?

How should we

do this exactly?
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AdaBoost ïHistorical Development

ÅOriginally motivated by Statistical Learning Theory

ü AdaBoost was introduced in 1996 by Freund & Schapire. 

ü It was empirically observed that AdaBoost often tends not to overfit. 

(Breiman 96, Cortes & Drucker 97, etc.)

ü As a result, the margin theory (Schapire et al. 98) developed, which 

is based on loose generalization bounds. 

ïNote: margin for boosting is not the same as margin for SVM.

ïA bit like retrofitting the theoryé

ü However, those bounds are too loose to be of practical value.

ÅDifferent explanation [Friedman, Hastie, Tibshirani, 2000]

ü Interpretation as sequential minimization of an exponential error 

function (ñForward StagewiseAdditive Modelingò).

ü Explains why boosting works well.

ü Improvements possible by altering the error function.
13

B. Leibe
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ÅExponential error function

ü where f m(x ) is a classifier defined as a linear combination of base 

classifiers hl(x ):

ÅGoal

ü Minimize E with respect to both the weighting coefficients ®l and the 

parameters of the base classifiers hl(x ).

f m (x) =
1

2

mX

l = 1

®l hl (x)

AdaBoost ïMinimizing Exponential Error

14
B. Leibe

E =

NX

n= 1

exp f ¡ tn f m (xn )g
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AdaBoost ïMinimizing Exponential Error

ÅSequential Minimization

ü Suppose that the base classifiers h1(x),é,hm-1(x ) and their 

coefficients ®1,é,®m-1 are fixed.

Ý Only minimize with respect to ®m and hm(x ).

15
B. Leibe

=

NX

n = 1

exp

½
¡ tn f m ¡ 1(xn ) ¡ 1

2
tn ®m hm (xn )

¾

f m (x) =
1

2

mX

l = 1

®l hl (x)E =

NX

n= 1

exp f ¡ tn f m (xn )g with

=

NX

n = 1

w(m )
n exp

½
¡ 1

2
tn ®m hm (xn )

¾
= const.
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AdaBoost ïMinimizing Exponential Error

ü Observation: 

ïCorrectly classified points:  tnhm(x n) = +1

ïMisclassified points: tnhm(x n) = -1

ü Rewrite the error function as

16
B. Leibe

E =

NX

n = 1

w(m )
n exp

½
¡ 1

2
tn ®m hm (xn )

¾

E = e¡ ®m =2
X

n2 Tm

w(m )
n + e®m =2

X

n2 F m

w(m )
n

Ý collect in Tm

Ý collect in Fm

=
³

e®m =2 ¡ e¡ ®m =2
´ NX

n = 1

w(m )
n I (hm (xn ) 6= tn ) + e¡ ®m =2

NX

n= 1

w(m )
n
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AdaBoost ïMinimizing Exponential Error

ü Observation: 

ïCorrectly classified points:  tnhm(x n) = +1

ïMisclassified points: tnhm(x n) = -1

ü Rewrite the error function as

17
B. Leibe

E =

NX

n = 1

w(m )
n exp

½
¡ 1

2
tn ®m hm (xn )

¾

E = e¡ ®m =2
X

n2 Tm

w(m )
n + e®m =2

X

n2 F m

w(m )
n

Ý collect in Tm

Ý collect in Fm

=
³

e®m =2 ¡ e¡ ®m =2
´ NX

n = 1

w(m )
n I (hm (xn ) 6= tn ) + e¡ ®m =2

NX

n= 1

w(m )
n
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AdaBoost ïMinimizing Exponential Error

18
B. Leibe

ÅMinimize with respect to hm(x ):

Ý This is equivalent to minimizing

(our weighted error function from step 2a) of the algorithm)

ÝWeôre on the right track. Letôs continueé

E =
³

e®m =2 ¡ e¡ ®m =2
´ NX

n = 1

w(m )
n I (hm (xn ) 6= tn ) + e¡ ®m =2

NX

n = 1

w(m )
n

Jm =

NX

n= 1

w(m )
n I (hm (x) 6= tn )

= const.= const.

@E

@hm (xn )

!
= 0



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
i
n
t
e
r
 

1
7

AdaBoost ïMinimizing Exponential Error

19
B. Leibe

ÅMinimize with respect to ®m:

Ý Update for the ® coefficients:

E =
³

e®m =2 ¡ e¡ ®m =2
´ NX

n = 1

w(m )
n I (hm (xn ) 6= tn ) + e¡ ®m =2

NX

n = 1

w(m )
n

µ
1

2
e®m =2 +

1

2
e¡ ®m =2

¶ NX

n= 1

w(m )
n I (hm (xn ) 6= tn )

!
=

1

2
e¡ ®m =2

NX

n= 1

w(m )
n

@E

@®m

!
= 0

P N

n= 1 w
(m )
n I (hm (xn ) 6= tn )
P N

n = 1 w
(m )
n

=
e¡ ®m =2

e®m =2 + e¡ ®m =2

²m =
1

e®m + 1

®m = ln

½
1 ¡ ²m

²m

¾

²m :=
weighted

error
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AdaBoost ïMinimizing Exponential Error

20
B. Leibe

ÅRemaining step: update the weights 

ü Recall that

ü Therefore

Ý Update for the weight coefficients.

E =

NX

n = 1

w(m )
n exp

½
¡ 1

2
tn ®m hm (xn )

¾

This becomes 

in the next iteration.

w(m + 1)
n

w(m + 1)
n = w(m )

n exp

½
¡ 1

2
tn ®m hm (xn )

¾

= w(m )
n exp f ®m I (hm (xn ) 6= tn )g

= :::
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1. Initialization: Set                 for n = 1,é,N.

2. For m= 1,é,M iterations

a) Train a new weak classifier hm(x ) using the current weighting 

coefficients W (m) by minimizing the weighted error function 

b) Estimate the weighted error of this classifier on X :

c) Calculate a weighting coefficient for hm(x ):

d) Update the weighting coefficients:

Jm =

NX

n= 1

w(m )
n I (hm (x) 6= tn )

AdaBoost ïFinal Algorithm

21
B. Leibe

w(1)
n =

1

N

²m =

P N

n= 1 w
(m )
n I (hm (x) 6= tn )

P N

n= 1 w
(m )
n

®m = ln

½
1 ¡ ²m

²m

¾

w(m+ 1)
n = w(m )

n exp f ®m I (hm (xn ) 6= tn )g
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AdaBoost ïAnalysis

ÅResult of this derivation

ü We now know that AdaBoost minimizes an exponential error 

function in a sequential fashion.

ü This allows us to analyze AdaBoostôsbehavior in more detail.

ü In particular, we can see how robust it is to outlier data points.

22
B. Leibe
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Topics of This Lecture

ÅAdaBoost
ü Algorithm

ü Analysis

ü Extensions

ÅAnalysis
ü Comparing Error Functions

ÅApplications
ü AdaBoost for face detection

ÅDecision Trees
ü CART

ü Impurity measures, Stopping criterion, Pruning

ü Extensions, Issues

ü Historical development: ID3, C4.5
23

B. Leibe
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Recap: Error Functions

ÅIdeal misclassification error function (black)

ü This is what we want to approximate, 

ü Unfortunately, it is not differentiable.

ü The gradient is zero for misclassified points.

ÝWe cannot minimize it by gradient descent. 24
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tn y(xn )
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Recap: Error Functions

ÅSquared error used in Least-Squares Classification

ü Very popular, leads to closed-form solutions.

ü However, sensitive to outliers due to squared penalty.

ü Penalizes ñtoo correctò data points

Ý Generally does not lead to good classifiers. 25
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes ñtoo correctò

data points!

Sensitive to outliers!

zn = tn y(xn )
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Recap: Error Functions

ÅñHinge erroròused in SVMs

ü Zero error for points outside the margin (zn > 1) Ý sparsity

ü Linear penalty for misclassified points (zn < 1) Ý robustness

ü Not differentiable around zn = 1 Ý Cannot be optimized directly.

26
Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse 

solutions!

Robust to outliers!

zn = tn y(xn )

B. Leibe
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Discussion: AdaBoost Error Function

ÅExponential error used in AdaBoost

ü Continuous approximation to ideal misclassification function.

ü Sequential minimization leads to simple AdaBoost scheme.

ü Properties?
27

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

zn = tn y(xn )
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Discussion: AdaBoost Error Function

ÅExponential error used in AdaBoost

ü No penalty for too correct data points, fast convergence.

ü Disadvantage: exponential penalty for large negative values!

Ý Less robust to outliers or misclassified data points!
28

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error
Sensitive to outliers!

zn = tn y(xn )
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Discussion: Other Possible Error Functions

ÅñCross-entropy errorò used in Logistic Regression

ü Similar to exponential error for z> 0.

ü Only grows linearly with large negative values of z.

Ý Make AdaBoost more robust by switching to this error function.

ÝñGentleBoostò
29

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

Cross-entropy error

E = ¡
X

f tn lnyn + (1 ¡ tn ) ln(1 ¡ yn )g

zn = tn y(xn )
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Summary: AdaBoost

ÅProperties

ü Simple combination of multiple classifiers.

ü Easy to implement.

ü Can be used with many different types of classifiers.

ïNone of them needs to be too good on its own.

ïIn fact, they only have to be slightly better than chance.

ü Commonly used in many areas.

ü Empirically good generalization capabilities.

ÅLimitations

ü Original AdaBoost sensitive to mislabeled training data points.

ïBecause of exponential error function.

ïImprovement by GentleBoost

ü Single-class classifier

ïMulticlass extensions available
30

B. Leibe
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Topics of This Lecture

ÅAdaBoost
ü Algorithm

ü Analysis

ü Extensions

ÅAnalysis
ü Comparing Error Functions

ÅApplications
ü AdaBoost for face detection

ÅDecision Trees
ü CART

ü Impurity measures, Stopping criterion, Pruning

ü Extensions, Issues

ü Historical development: ID3, C4.5
31

B. Leibe
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Example Application: Face Detection

ÅFrontal faces are a good example of a class where 

global appearance models + a sliding window detection 

approach fit well:

ü Regular 2D structure

ü Center of face almost shaped like a ñpatchò/window

ÅNow weôll take AdaBoost and see how the Viola-Jones 

face detector works

32
B. LeibeSlide credit: Kristen Grauman
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Feature extraction

33
B. Leibe

Feature output is difference 

between adjacent regions

[Viola & Jones, CVPR 2001]

Efficiently computable 

with integral image: any 

sum can be computed in 

constant time

Avoid scaling images Ą

scale features directly for 

same cost

ñRectangularò filters

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y)

Integral image

Slide credit: Kristen Grauman

Ὀ Ὅρ Ὅτ

Ὅς Ὅσ
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Large Library of Filters

Considering all 

possible filter 

parameters: 

position, scale, and 

type: 

180,000+ possible 

features associated 

with each 24 x 24 

window

Use AdaBoost both to select the informative features 

and to form the classifier

B. Leibe [Viola & Jones, CVPR 2001]Slide credit: Kristen Grauman
34
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AdaBoost for Feature+Classifier Selection

ÅWant to select the single rectangle feature and threshold that 

best separates positive (faces) and negative (non-faces) 

training examples, in terms of weighted error.

Outputs of a 

possible rectangle 

feature on faces 

and non-faces.

…

Resulting weak classifier:

For next round, reweight the 

examples according to errors, 

choose another filter/threshold 

combo.

B. Leibe [Viola & Jones, CVPR 2001]Slide credit: Kristen Grauman
35
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AdaBoost for Efficient Feature Selection

ÅImage features = weak classifiers

ÅFor each round of boosting:

ü Evaluate each rectangle filter on each example

ü Sort examples by filter values

ü Select best threshold for each filter (min error)

ïSorted list can be quickly scanned for the optimal threshold

ü Select best filter/threshold combination

ü Weight on this features is a simple function of error rate

ü Reweight examples

36
B. Leibe

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004.

(first version appeared at CVPR 2001) 

Slide credit: Kristen Grauman

http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf
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Viola-Jones Face Detector: Results

37
B. LeibeSlide credit: Kristen Grauman
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Viola-Jones Face Detector: Results

38
B. LeibeSlide credit: Kristen Grauman
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References and Further Reading

ÅMore information on Classifier Combination and Boosting 

can be found in Chapters 14.1-14.3 of Bishopôs book. 

ÅA more in-depth discussion of the statistical interpretation 

of AdaBoost is available in the following paper:

ü J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a 

Statistical View of Boosting, The Annals of Statistics, Vol. 38(2), 

pages 337-374, 2000.

B. Leibe
39

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf
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Topics of This Lecture

ÅAdaBoost
ü Algorithm

ü Analysis

ü Extensions

ÅAnalysis
ü Comparing Error Functions

ÅApplications
ü AdaBoost for face detection

ÅDecision Trees
ü CART

ü Impurity measures, Stopping criterion, Pruning

ü Extensions, Issues

ü Historical development: ID3, C4.5
40

B. Leibe
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Decision Trees

ÅVery old technique

ü Origin in the 60s, might seem outdated.

ÅButé
ü Can be used for problems with nominal data

ïE.g. attributes color 2 {red, green, blue} or weather 2 {sunny, rainy}.

ïDiscrete values, no notion of similarity or even ordering.

ü Interpretable results

ïLearned trees can be written as sets of if-then rules.

ü Methods developed for handling missing feature values.

ü Successfully applied to broad range of tasks

ïE.g. Medical diagnosis

ïE.g. Credit risk assessment of loan applicants

ü Some interesting novel developments building on top of themé

41
B. Leibe



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
i
n
t
e
r
 

1
7

Decision Trees

ÅExample:

ü ñClassify Saturday mornings according to whether theyôre  

suitable for playing tennis.ò

42
B. Leibe Image source: T. Mitchell, 1997
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Decision Trees

ÅElements

ü Each node specifies a test for some attribute.

ü Each branch corresponds to a possible value of the attribute.

43
B. Leibe Image source: T. Mitchell, 1997



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
i
n
t
e
r
 

1
7

Decision Trees

ÅAssumption

ü Links must be mutually distinct and exhaustive

ü I.e. one and only one link will be followed at each step.

ÅInterpretability

ü Information in a tree can then be 

rendered as logical expressions.

ü In our example:

44
B. Leibe

(Outlook = Sunny ^ Humidity = Normal )

_ (Outlook = Overcast )

_ (Outlook = Rain ^ Wind = Weak)

Image source: T. Mitchell, 1997
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Training Decision Trees

ÅFinding the optimal decision tree is NP-hardé

ÅCommon procedure: Greedy top-down growing

ü Start at the root node.

ü Progressively split the training data into smaller and smaller subsets.

ü In each step, pick the best attribute to split the data.

ü If the resulting subsets are pure (only one label) or if no further 

attribute can be found that splits them, terminate the tree.

ü Else, recursively apply the procedure to the subsets.

ÅCART framework

ü Classification And Regression Trees (Breiman et al. 1993)

ü Formalization of the different design choices.

45
B. Leibe
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CART Framework

ÅSix general questions

1. Binary or multi-valued problem?

ïI.e. how many splits should there be at each node?

2. Which property should be tested at a node?

ïI.e. how to select the query attribute?

3. When should a node be declared a leaf?

ïI.e. when to stop growing the tree?

4. How can a grown tree be simplified or pruned?

ïGoal: reduce overfitting.

5. How to deal with impure nodes?

ïI.e. when the data itself is ambiguous.

6. How should missing attributes be handled?

46
B. Leibe
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CART ï1. Number of Splits

ÅEach multi-valued tree can be converted into an equivalent 

binary tree:

ÝOnly consider binary trees hereé

47
B. Leibe Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001
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CART ï2. Picking a Good Splitting Feature 

ÅGoal

ü Want a tree that is as simple/small as possible (Occamôs razor).

ü But: Finding a minimal tree is an NP-hard optimization problem.

ÅGreedy top-down search

ü Efficient, but not guaranteed to find the smallest tree.

ü Seek a property T at each node sj that makes the data in the child 

nodes as pure as possible.

ü For formal reasons more convenient to define impurity i (sj ).

ü Several possible definitions explored.

48
B. Leibe
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CART ïImpurity Measures

ÅMisclassification impurity

49
B. Leibe

i (P)

P

ñFraction of the 

training patterns 

in category Ck that

end up in node sj.ò

Problem:

discontinuous derivative!

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

Ὥί ρ ÍÁØὴὅ ί
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CART ïImpurity Measures

ÅEntropy impurity

50
B. Leibe

i (P)

P

ñReduction in 

entropy = gain in

information.ò

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001
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CART ïImpurity Measures

ÅGini impurity (variance impurity)

51

i (P)

P

ñExpected error
rate at node sj if

the category label is 

selected randomly.ò

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001
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CART ïImpurity Measures

ÅWhich impurity measure should we choose?

ü Some problems with misclassification impurity.

ïDiscontinuous derivative.

Ý Problems when searching over continuous parameter space.

ïSometimes misclassification impurity does not decrease when Gini 

impurity would.

ü Both entropy impurity and Gini impurity perform well.

ïNo big difference in terms of classifier performance.

ïIn practice, stopping criterion and pruning method are often more 

important.

52
B. Leibe
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CART ï2. Picking a Good Splitting Feature 

ÅApplication

ü Select the query that decreases impurity the most

ÅMultiway generalization (gain ratio impurity):

ü Maximize

ü where the normalization factor ensures that large K are not 

inherently favored:

53
B. Leibe
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child node ίȟ
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ÅFor efficiency, splits are often based on a single feature

ü ñMonothetic decision treesò

ÅEvaluating candidate splits

ü Nominal attributes: exhaustive search over all possibilities.

ü Real-valued attributes: only need to consider changes in label.

ïOrder all data points based on attribute x i .

ïOnly need to test candidate splits where label(x i) ļabel(x i+1).

CART ïPicking a Good Splitting Feature

54
B. Leibe
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CART ï3. When to Stop Splitting

ÅProblem: Overfitting

ü Learning a tree that classifies the training data perfectly may not lead 

to the tree with the best generalization to unseen data.

ü Reasons

ïNoise or errors in the training data.

ïPoor decisions towards the leaves of the tree that are based on very 

little data.

ÅTypical behavior

55
B. LeibeSlide adapted from Raymond Mooney

hypothesis complexity

a
c
c
u

ra
c
y

on training data

on test data
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CART ïOverfitting Prevention (Pruning)

ÅTwo basic approaches for decision trees

ü Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make reliable 

decisions.

ü Postpruning: Grow the full tree, then remove subtrees that do not 

have sufficient evidence.

ÅLabel leaf resulting from pruning with the majority class of 

the remaining data, or a class probability distribution. 

56
B. Leibe

N

CN = argmax
k

p(Ck jN )

N

p(Ck jN )

Slide adapted from Raymond Mooney
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Decision Trees ïComputational Complexity 

ÅGiven

ü Data points { x 1,é,x N}

ü Dimensionality D

ÅComplexity

ü Storage:

ü Test runtime:

ü Training runtime:

ïMost expensive part.

ïCritical step: selecting the optimal splitting point.

ïNeed to check D dimensions, for each need to sort N data points.

66
B. Leibe

O(DN 2 logN )

O(logN )

O(N )

O(DN logN )
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Summary: Decision Trees

ÅProperties

ü Simple learning procedure, fast evaluation.

ü Can be applied to metric, nominal, or mixed data.

ü Often yield interpretable results.

67
B. Leibe
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Summary: Decision Trees

ÅLimitations

ü Often produce noisy (bushy) or weak (stunted) classifiers.

ü Do not generalize too well.

ü Training data fragmentation: 

ïAs tree progresses, splits are selected based on less and less data.

ü Overtraining and undertraining:

ïDeep trees: fit the training data well, will not generalize well to new test 

data.

ïShallow trees: not sufficiently refined.

ü Stability

ïTrees can be very sensitive to details of the training points.

ïIf a single data point is only slightly shifted, a radically different tree may 

come out!

Ý Result of discrete and greedy learning procedure. 

ü Expensive learning step

ïMostly due to costly selection of optimal split. 68
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References and Further Reading

ÅMore information on Decision Trees can be found in 

Chapters 8.2-8.4 of Duda & Hart. 

B. Leibe
69

R.O. Duda, P.E. Hart, D.G. Stork

Pattern Classification

2nd Ed., Wiley-Interscience, 2000


