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Machine Learning – Lecture 12

Neural Networks
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
2
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Recap: Decision Tree Training

• Goal

 Select the query (=split) that decreases impurity the most

• Impurity measures

 Entropy impurity (information gain): 

 Gini impurity:

3
B. Leibe

i(P )

P

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

Δ𝑖 𝑠𝑗 = 𝑖 𝑠𝑗 − 𝑃𝐿𝑖 𝑠𝑗,𝐿 − 1 − 𝑃𝐿 𝑖(𝑠𝑗,𝑅)
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𝑝 𝐶𝑘 𝑠𝑗 log2 𝑝 𝐶𝑘 𝑠𝑗
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Recap: Randomized Decision Trees

• Decision trees: main effort on finding good split

 Training runtime: 

 This is what takes most effort in practice.

 Especially cumbersome with many attributes (large D).

• Idea: randomize attribute selection

 No longer look for globally optimal split.

 Instead randomly use subset of K attributes on which to base the 

split.

 Choose best splitting attribute e.g. by maximizing the information 

gain (= reducing entropy):

4
B. Leibe

O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)
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Recap: Ensemble Combination

• Ensemble combination

 Tree leaves (l,´) store posterior probabilities of the target classes.

 Combine the output of several trees by averaging their posteriors 

(Bayesian model combination)

5
B. Leibe

pl;´(Cjx)

p(Cjx) =
1

L

LX

l=1

pl;´(Cjx)
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Recap: Random Forests (Breiman 2001)

• General ensemble method

 Idea: Create ensemble of many (50 - 1,000) trees.

• Injecting randomness

 Bootstrap sampling process 

– On average only 63% of training examples used for building the tree

– Remaining 37% out-of-bag samples used for validation.

 Random attribute selection

– Randomly choose subset of K attributes to select from at each node.

– Faster training procedure.

• Simple majority vote for tree combination

• Empirically very good results

 Often as good as SVMs (and sometimes better)!

 Often as good as Boosting (and sometimes better)!

6
B. Leibe
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Today’s Topic

7
B. Leibe

Deep Learning
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Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation 

8
B. Leibe
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

 And a cool learning algorithm: “Perceptron Learning”

 Hardware implementation “Mark I Perceptron”
for 20£20 pixel image analysis 

9
B. Leibe Image source: Wikipedia, clipartpanda.com

“The embryo of an electronic computer that 

[...] will be able to walk, talk, see, write, 

reproduce itself and be conscious of its 

existence.”
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

 They showed that (single-layer) Perceptrons cannot solve all 

problems.

 This was misunderstood by many that they were worthless.

10
B. Leibe Image source: colourbox.de, thinkstock

Neural Networks 

don’t work!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

 Some notable successes with multi-layer perceptrons.

 Backpropagation learning algorithm

11
B. Leibe Image sources: clipartpanda.com, cliparts.co

OMG! They work like 

the human brain!

Oh no! Killer robots will 

achieve world domination!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

 Some notable successes with multi-layer perceptrons.

 Backpropagation learning algorithm

 But they are hard to train, tend to overfit, and have 

unintuitive parameters.

 So, the excitement fades again…

12
B. Leibe Image source: clipartof.com, colourbox.de

sigh!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

 Notably Support Vector Machines

 Machine Learning becomes a discipline of its own.

13
B. Leibe

I can do science, me!

Image source: clipartof.com
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

 Notably Support Vector Machines

 Machine Learning becomes a discipline of its own.

 The general public and the press still love Neural Networks.

14
B. Leibe

So, you’re using Neural Networks?

I’m doing Machine Learning.

Actually...
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

2005+ Gradual progress

 Better understanding how to successfully train deep networks

 Availability of large datasets and powerful GPUs

 Still largely under the radar for many disciplines applying ML

15
B. Leibe

Are you using Neural Networks?

Come on. Get real!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

2005+ Gradual progress

2012   Breakthrough results

 ImageNet Large Scale Visual Recognition Challenge

 A ConvNet halves the error rate of dedicated vision approaches.

 Deep Learning is widely adopted.

16
B. Leibe Image source: clipartpanda.com, clipartof.com

It works!
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Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation 

17
B. Leibe
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• Standard Perceptron

• Input Layer

 Hand-designed features based on common sense

• Outputs

 Linear outputs Logistic outputs

• Learning = Determining the weights w

Perceptrons (Rosenblatt 1957)

18
B. Leibe

Input layer

Weights

Output layer
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• One output node per class

• Outputs

 Linear outputs Logistic outputs

 Can be used to do multidimensional linear regression or 

multiclass classification.

Extension: Multi-Class Networks

19
B. LeibeSlide adapted from Stefan Roth

Input layer

Weights

Output layer
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• Straightforward generalization

• Outputs

 Linear outputs Logistic outputs

Extension: Non-Linear Basis Functions

20
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)
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• Straightforward generalization

• Remarks

 Perceptrons are generalized linear discriminants!

 Everything we know about the latter can also be applied here.

 Note: feature functions Á(x) are kept fixed, not learned!

Extension: Non-Linear Basis Functions

21
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

Wkd’
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Perceptron Learning

• Very simple algorithm

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input vector 

to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input vector 

from the weight vector.

• This is guaranteed to converge to a correct solution 

if such a solution exists.

22
B. LeibeSlide adapted from Geoff Hinton
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Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input vector to 

the weight vector.

 If the output unit incorrectly outputs a one, subtract the input vector 

from the weight vector.

• Translation

23
B. LeibeSlide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)
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Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input vector to 

the weight vector.

 If the output unit incorrectly outputs a one, subtract the input vector 

from the weight vector.

• Translation

 This is the Delta rule a.k.a. LMS rule!

 Perceptron Learning corresponds to 1st-order (stochastic) Gradient 

Descent of a quadratic error function! 

24
B. LeibeSlide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)
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Loss Functions

• We can now also apply other loss functions

 L2 loss

 L1 loss:

 Cross-entropy loss

 Hinge loss

 Softmax loss

25
B. Leibe

 Logistic regression

 Least-squares regression

 Median regression

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification

 Multi-class probabilistic classification
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Regularization

• In addition, we can apply regularizers

 E.g., an L2 regularizer

 This is known as weight decay in Neural Networks. 

 We can also apply other regularizers, e.g. L1  sparsity

 Since Neural Networks often have many parameters, 

regularization becomes very important in practice.

 We will see more complex regularization techniques later on...

26
B. Leibe
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Limitations of Perceptrons

• What makes the task difficult?

 Perceptrons with fixed, hand-coded input features can model any 

separable function perfectly...

 ...given the right input features.

 For some tasks this requires an exponential number of input 

features.

– E.g., by enumerating all possible binary input vectors as separate 

feature units (similar to a look-up table).

– But this approach won’t generalize to unseen test cases!

 It is the feature design that solves the task!

 Once the hand-coded features have been determined, there are very 

strong limitations on what a perceptron can learn.

– Classic example: XOR function.

27
B. Leibe
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Wait...

• Didn’t we just say that...

 Perceptrons correspond to generalized linear discriminants

 And Perceptrons are very limited...

 Doesn’t this mean that what we have been doing so far in 

this lecture has the same problems???

• Yes, this is the case. 

 A linear classifier cannot solve certain problems

(e.g., XOR).

 However, with a non-linear classifier based on 

the right kind of features, the problem becomes solvable.

 So far, we have solved such problems by hand-designing good 

features Á and kernels Á>Á.

 Can we also learn such feature representations?

28
B. Leibe
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Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation 

29
B. Leibe
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Multi-Layer Perceptrons

• Adding more layers

• Output

30
B. Leibe

Hidden layer

Output layer

Input layer

Slide adapted from Stefan Roth

Mapping (learned!)
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Multi-Layer Perceptrons

• Activation functions g(k):

 For example: g(2)(a) = ¾(a), g(1)(a) = a

• The hidden layer can have an arbitrary number of nodes

 There can also be multiple hidden layers.

• Universal approximators

 A 2-layer network (1 hidden layer) can approximate any continuous 

function of a compact domain arbitrarily well!

(assuming sufficient hidden nodes)
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Learning with Hidden Units

• Networks without hidden units are very limited in what they 

can learn

 More layers of linear units do not help  still linear

 Fixed output non-linearities are not enough.

• We need multiple layers of adaptive non-linear hidden units. 

But how can we train such nets?

 Need an efficient way of adapting all weights, not just the last layer.

 Learning the weights to the hidden units = learning features

 This is difficult, because nobody tells us what the hidden units 

should do.

 Main challenge in deep learning.

32
B. LeibeSlide adapted from Geoff Hinton



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight          in the direction of the gradient            

33
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L2 loss 

L2 regularizer

(“weight decay”) 
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Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of 

the gradient

34
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today

next lecture



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation 
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Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

36
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Excursion: Chain Rule of Differentiation

• One-dimensional case: Scalar functions
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Excursion: Chain Rule of Differentiation

• Multi-dimensional case: Total derivative

 Need to sum over all paths that lead to the target variable x.
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Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

 With increasing depth, there will be exponentially many paths!

 Infeasible to compute this way.
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Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation 
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Obtaining the Gradients

• Approach 2: Numerical Differentiation

 Given the current state W(¿), we can evaluate E(W(¿)).

 Idea: Make small changes to W(¿) and accept those that improve 

E(W(¿)).

 Horribly inefficient! Need several forward passes for each weight. 

Each forward pass is one run over the entire dataset!
41
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Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation 
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Obtaining the Gradients

• Approach 3: Incremental Analytical Differentiation

 Idea: Compute the gradients layer by layer.

 Each layer below builds upon the results of the layer above.

 The gradient is propagated backwards through the layers.

 Backpropagation algorithm

43
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Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

44
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• Notation

 yj Output of layer j Connections: 

 zj Input of layer j

Backpropagation Algorithm
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E.g. with sigmoid output nonlinearity
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• Notation

 yj Output of layer j Connections: 

 zj Input of layer j

Backpropagation Algorithm

46
B. LeibeSlide adapted from Geoff Hinton



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

• Notation

 yj Output of layer j Connections: 

 zj Input of layer j

Backpropagation Algorithm
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• Efficient propagation scheme

 yi is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer j and multiply with  yi. 

Backpropagation Algorithm
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Summary: MLP Backpropagation

• Forward Pass

for  k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

49
B. Leibe

• Backward Pass

for  k = l, l-1, ...,1 do

endfor
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Analysis: Backpropagation

• Backpropagation is the key to make deep NNs tractable

 However...

• The Backprop algorithm given here is specific to MLPs

 It does not work with more complex architectures,

e.g. skip connections or recurrent networks!

 Whenever a new connection function induces a

different functional form of the chain rule, you 

have to derive a new Backprop algorithm for it.

 Tedious...

• Let’s analyze Backprop in more detail

 This will lead us to a more flexible algorithm formulation

 Next lecture…
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References and Further Reading

• More information on Neural Networks can be found in 

Chapters 6 and 7 of the Goodfellow & Bengio book

B. Leibe
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https://goodfeli.github.io/dlbook/
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Deep Learning

MIT Press, 2016
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