Machine Learning - Lecture 13

Neural Networks II

04.12.2017

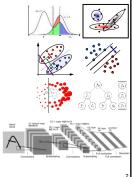
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - > Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - > Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - > Foundations
 - > Convolutional Neural Networks

 - Recurrent Neural Networks



RWITHAAC

last lecture

today

Topics of This Lecture

- Learning Multi-layer Networks
 - > Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues
- Gradient Descent
 - > Stochastic Gradient Descent & Minibatches
 - > Choosing Learning Rates
- Momentum
 - > RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Recap: Learning with Hidden Units

- · How can we train multi-layer networks efficiently?
 - Need an efficient way of adapting all weights, not just the last layer.
- Idea: Gradient Descent
 - > Set up an error function

$$E(\mathbf{W}) = \sum_{n} L(t_n, y(\mathbf{x}_n; \mathbf{W})) + \lambda \Omega(\mathbf{W})$$

with a loss $L(\cdot)$ and a regularizer $\Omega(\cdot)$.

E.g., $L(t, y(\mathbf{x}; \mathbf{W})) = \sum_{n} (y(\mathbf{x}_n; \mathbf{W}) - t_n)^2$

L₂ regularizer $\Omega(\mathbf{W}) = ||\mathbf{W}||_{E}^{2}$

("weight decay") \Rightarrow Update each weight $W_{ij}^{(k)}$ in the direction of the gradient $\frac{\partial E(\mathbf{W})}{\partial W_{ij}^{(k)}}$

Gradient Descent

- Two main steps
 - 1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

Recap: Backpropagation Algorithm

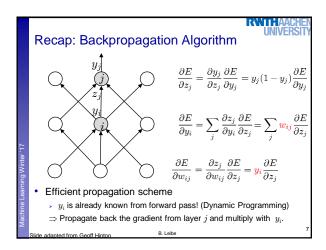
- · Core steps
 - 1. Convert the discrepancy between each output and its target value into an error derivate.
 - 2. Compute error derivatives in each hidden layer from error derivatives in the layer above.
 - 3. Use error derivatives w.r.t. activities to get error derivatives w.r.t. the incoming weights

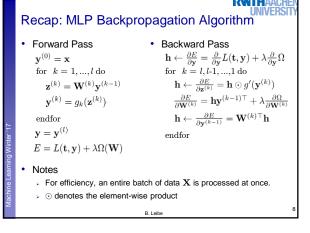
 $E = \frac{1}{2} \sum_{j \in output} (t_j - y_j)^2$

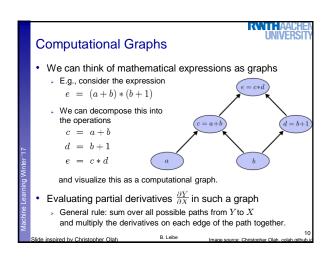
RWITHAACH

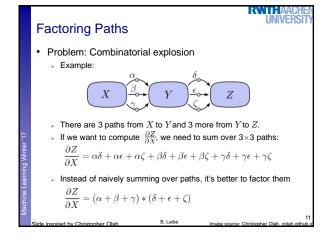
L₂ loss

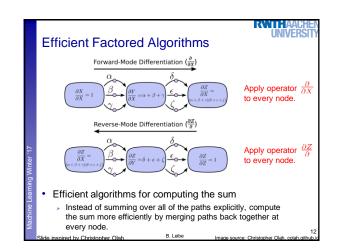
 $\frac{\partial E}{\partial y_j} = -(t_j - y_j)$

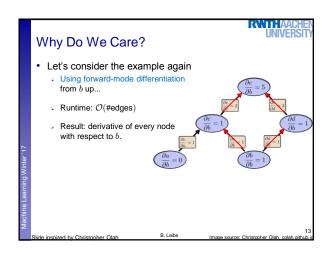


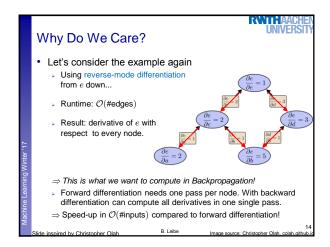




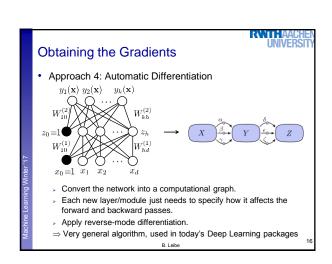








Topics of This Lecture Learning Multi-layer Networks > Recap: Backpropagation Computational graphs Automatic differentiation Practical issues **Gradient Descent** Stochastic Gradient Descent & Minibatches Choosing Learning Rates Momentum RMS Prop Other Optimizers Tricks of the Trade Shuffling Data Augmentation Normalization



Modular Implementation Solution in many current Deep Learning libraries Provide a limited form of automatic differentiation Restricted to "programs" composed of "modules" with a predefined set of operations. Each module is defined by two main functions Computing the outputs y of the module given its inputs x y = module.fprop(x) where x, y, and intermediate results are stored in the module. Computing the gradient ∂E/∂x of a scalar cost w.r.t. the inputs x given the gradient ∂E/∂y w.r.t. the outputs y ∂E/∂x = module.bprop(∂E/∂y) B. Leibe

RWIII AAU

Implementing Softmax Correctly

- Softmax output
 - De-facto standard for multi-class outputs

$$E(\mathbf{w}) \ = \ -\sum_{n=1}^{N} \sum_{k=1}^{K} \ \left\{ \mathbb{I} \left(t_n = k \right) \ln \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^{\top} \mathbf{x})} \right\}$$

- Practical issue
 - Exponentials get very big and can have vastly different magnitudes.
 - Trick 1: Do not compute first softmax, then log,
 - but instead directly evaluate log-exp in the denominator.
 - > Trick 2: Softmax has the property that for a fixed vector b $softmax(\mathbf{a} + \mathbf{b}) = softmax(\mathbf{a})$
 - \Rightarrow Subtract the largest weight vector \mathbf{w}_i from the others.

Topics of This Lecture

- Learning Multi-layer Networks
 - Recap: Backpropagation
 - Computational graphs
 - Automatic differentiation
 - Practical issues

· Gradient Descent

- Stochastic Gradient Descent & Minibatches
- Choosing Learning Rates
- Momentum
- RMS Prop
 - Other Optimizers
- Tricks of the Trade
 - Shuffling
 - Data Augmentation
 - Normalization

Gradient Descent

- Two main steps
 - 1. Computing the gradients for each weight

last lecture

2. Adjusting the weights in the direction of the gradient

today

RWITHAAI

Recall: Basic update equation

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

- Main questions
 - > On what data do we want to apply this?
 - > How should we choose the step size η (the learning rate)?
 - > In which direction should we update the weights?

Stochastic vs. Batch Learning

- Batch learning
 - Process the full dataset at once to compute the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

- Stochastic learning
 - Choose a single example from the training set. $w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$
 - Compute the gradient only based on this example
 - This estimate will generally be noisy, which has some advantages.

Stochastic vs. Batch Learning

Batch learning advantages

- > Conditions of convergence are well understood.
- > Many acceleration techniques (e.g., conjugate gradients) only operate in batch learning.
- Theoretical analysis of the weight dynamics and convergence rates

Stochastic learning advantages

- > Usually much faster than batch learning.
- Often results in better solutions.
- > Can be used for tracking changes.
- Middle ground: Minibatches

Minibatches

- - > Process only a small batch of training examples together
 - > Start with a small batch size & increase it as training proceeds.

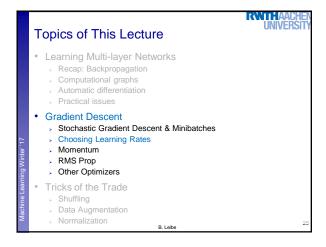
Advantages

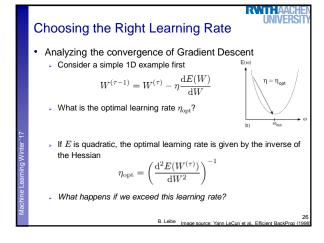
- Gradients will more stable than for stochastic gradient descent, but still faster to compute than with batch learning.
- Take advantage of redundancies in the training set.
- Matrix operations are more efficient than vector operations.

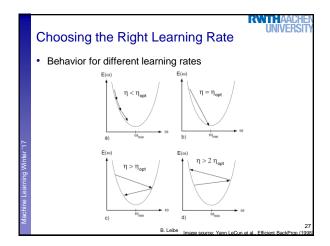
Caveat

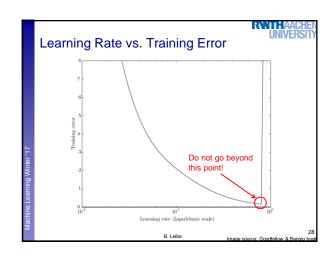
Error function should be normalized by the minibatch size. s.t. we can keep the same learning rate between minibatches

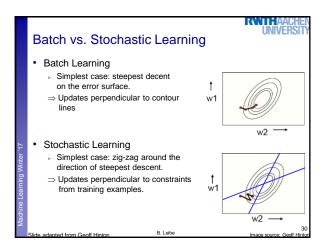
$$E(\mathbf{W}) = \frac{1}{N} \sum_{n} L(t_n, y(\mathbf{x}_n; \mathbf{W})) + \frac{\lambda}{N} \Omega(\mathbf{W})$$

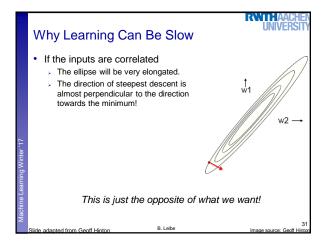


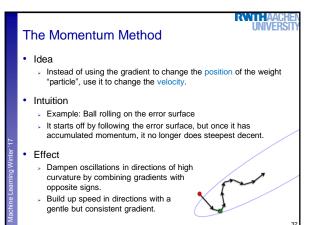












The Momentum Method: Implementation

- · Change in the update equations
 - Effect of the gradient: increment the previous velocity, subject to a decay by $\alpha < 1$.

$$\mathbf{v}(t) \ = \ \alpha \mathbf{v}(t-1) - \varepsilon \frac{\partial E}{\partial \mathbf{w}}(t)$$

> Set the weight change to the current velocity

$$\begin{split} \Delta \mathbf{w} &= \mathbf{v}(t) \\ &= \alpha \mathbf{v}(t-1) - \varepsilon \frac{\partial E}{\partial \mathbf{w}}(t) \\ &= \alpha \Delta \mathbf{w}(t-1) - \varepsilon \frac{\partial E}{\partial \mathbf{w}}(t) \end{split}$$

The Momentum Method: Behavior

- Behavior
 - If the error surface is a tilted plane, the ball reaches a terminal

$$\mathbf{v}(\infty) \ = \ \frac{1}{1-\alpha} \left(-\varepsilon \frac{\partial E}{\partial \mathbf{w}} \right)$$

- If the momentum α is close to 1, this is much faster than simple gradient descent.
- At the beginning of learning, there may be very large gradients.
 - Use a small momentum initially (e.g., $\alpha=0.5$).
 - Once the large gradients have disappeared and the weights are stuck in a ravine, the momentum can be smoothly raised to its final value (e.g., $\alpha=0.90$ or even $\alpha=0.99$).
- ⇒ This allows us to learn at a rate that would cause divergent oscillations without the momentum.

Separate, Adaptive Learning Rates

- Problem
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - > The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - ⇒ Gradients can get very small in the early layers of deep nets.

RWITHAAI

Separate, Adaptive Learning Rates

- Problem
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - \Rightarrow Gradients can get very small in the early layers of deep nets.
 - The fan-in of a unit determines the size of the "overshoot" effect when changing multiple weights simultaneously to correct the same error.
 - The fan-in often varies widely between layers
- Solution
 - Use a global learning rate, multiplied by a local gain per weight (determined empirically)

RANTHAAG

BAART AAOL	100
Better Adaptation: RMSProp	il.
Motivation The magnitude of the gradient can be very different for different weights and can change during learning. This makes it hard to choose a single global learning rate. For batch learning, we can deal with this by only using the sign of the gradient, but we need to generalize this for minibatches.	the
• Idea of RMSProp . Divide the gradient by a running average of its recent magnitude $MeanSq(w_{ij},t) = 0.9 MeanSq(w_{ij},t-1) + 0.1 \left(\frac{\partial E}{\partial w_{ij}}(t)\right)^2$. Divide the gradient by $\operatorname{sqrt}(MeanSq(w_{ij},t))$.	
Slide adapted from Geoff Hinton B. Leibe	37
	 Motivation The magnitude of the gradient can be very different for different weights and can change during learning. This makes it hard to choose a single global learning rate. For batch learning, we can deal with this by only using the sign of gradient, but we need to generalize this for minibatches. Idea of RMSProp Divide the gradient by a running average of its recent magnitude MeanSq(w_{ij},t) = 0.9MeanSq(w_{ij},t-1) + 0.1 (\frac{\partial E}{\partial w_{ij}}(t))^2 Divide the gradient by sqrt(MeanSq(w_{ij},t)).

