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Course Outline

¢ Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

¢ Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Random Forests

¢ Deep Learning
» Foundations
» Convolutional Neural Networks
» Recurrent Neural Networks
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Recap: Automatic Differentiation

* Approach for obtaining the gradients
mx) walx)  (x)
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» Convert the network into a computational graph.

» Each new layer/module just needs to specify how it affects the
forward and backward passes.

» Apply reverse-mode differentiation.
= Very general algorithm, used in today’s Deep Learning packages
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Topics of This Lecture
* Recap: Optimization
» Effect of optimizers
¢ Tricks of the Trade
» Shuffling
» Data Augmentation
> Normalization
= * Nonlinearities
§ * Initialization
=} « Advanced techniques
s . Batch Normalization
2 » Dropout
=
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Recap: Computational Graphs

Forward-Mode Differentiation (aix)

Apply operator L..,;-i(
to every node.

Reverse-Mode Differentiation ('%)

0z
Apply operator ££

to every node.

» Forward differentiation needs one pass per node. Reverse-mode
differentiation can compute all derivatives in one single pass.

= Speed-up in O(#inputs) compared to forward differentiation!
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Correction: Implementing Softmax Correctly

¢ Softmax output
» De-facto standard for multi-class outputs

N K T
Bw) = -> > {H(tn:k)lnzsxl”%}

=
n=1k=1 j=1 eXp(Wj x)

¢ Practical issue

» Exponentials get very big and can have vastly different magnitudes.
» Trick 1: Do not compute first softmax, then log,
but instead directly evaluate log-exp in the nominator
and log-sum-exp in the denominator.
» Trick 2: Softmax has the property that for a fixed vector b
softmax(a + b) = softmax(a)

= Subtract the largest weight vector w; from the others.
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Recap: Choosing the Right Learning Rate

 Convergence of Gradient Descent o

» Simple 1D example

. o dE(W
W W _y W)

dw
Whatis the optimal learning rate 7,,,,?

v

‘min

If E'is quadratic, the optimal learning rate is given by the inverse of

the Hessian
EEWO) !
nt)pl =\ — 7=

v

dw=2

v

Don’t go beyond
this point!

Advanced optimization techniques try to
approximate the Hessian by a simplified form.

v

If we exceed the optimal learning rate,
bad things happen!
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Recap: Advanced Optimization Techniques

* Momentum
» Instead of using the gradient to change the position of the weight

“particle”, use it to change the velocity.
» Effect: dampen oscillations in directions of high
curvature
» Nesterov-Momentum: Small variation in the implementation
* RMS-Prop
» Separate learning rate for each weight: Divide the gradient by a
running average of its recent magnitude.
¢ AdaGrad
* AdaDelta
* Adam

Some more recent techniques, work better
for some problems. Try them.
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Example: Behavior in a Long Valley

SGD
= Momentum
- NAG

— Adagrad
Adadelta
Rmsprop

Image source: Geoff Hintor
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Example: Behavior around a Saddle Point

— SGD

—— Momentum
- NAG

—— Adagrad
Adadelta
Rmsprop
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Visualization of Convergence Behavior Trick: Patience
% sgd ¢ Saddle points dominate in high-dimensional spaces!
1y momentum 10
nag e it e st
i adagrad - = b Graert
-1 adadelta »
rmsprop ¥
-2 ™ I ’ w,
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z;u’ = Learning often doesn’t get stuck, you just may have to wait...
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Reducing the Learning Rate

* Final improvement step after convergence is reached
» Reduce learning rate by a
factor of 10.
» Continue training for a few
epochs.
» Do this 1-3 times, then stop
training.

Reduced
learning rate

Training error

e Effect
» Turning down the learning rate will reduce
the random fluctuations in the error due to

different gradients on different minibatches.

Epoch

=4

¢ Be careful: Do not turn down the learning rate too soon!

» Further progress will be much slower/impossible after that.
13
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Summary

* Deep multi-layer networks are very powerful.

¢ But training them is hard!
» Complex, non-convex learning problem
~ Local optimization with stochastic gradient descent

* Main issue: getting good gradient updates for the lower
layers of the network
» Many seemingly small details matter!

» Weight initialization, normalization, data augmentation, choice of
nonlinearities, choice of learning rate, choice of optimizer,...

»In the following, we will take a look at the most important factors
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Topics of This Lecture Shuffling the Examples
¢ ldeas
» Networks learn fastest from the most unexpected sample.
o Tricks of the Trade = ltis ad_v_isable to choose a sample at each iteration that is most
. unfamiliar to the system.
» Shuffling ) .
. — E.g.asample from a different class than the previous one.
» Data Augmentation N
o — This means, do not present all samples of class A, then all of class B.
> Normalization
M~ » A large relative error indicates that an input has not been learned
E by the network yet, so it contains a lot of information.
g = It can make sense to present such inputs more frequently.
> — But: be careful, this can be disastrous when the data are outliers.
= * Practical advice
'{:E, » When working with stochastic gradient descent or minibatches,
< make use of shuffling.
B. Leibe T B. Leibe 16
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Data Augmentation Data Augmentation
e R T P =
» Augment original data with synthetic variations » Much larger training set , -
to reduce overfitting . Robustness against expected “ m “ m H !
: ; - variations
¢ Example augmentations for images =
- crmons % ™ + Durng s ol ologh fooh o
. b » When cropping was used =
» Zooming ‘1 ~ durl_ng training, need to H " ! m ﬂ. m
@ l,;_ T again apply crops to get -
| = MR
. Flipping é > B_engficial tp also apply = =
| i RN EY
§ » Applying several ColorPCA -
» Color PCA o variations can bring another
Z
=

M

B. Leibe lmage source. Lucas Bevel

Augmented training data
~1% improvement, but at a (from one original image)
significantly increased runtime.
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Practical Advice
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Normalization
¢ Motivation
» Consider the Gradient Descent update steps
W™D _ ™ _ ) OE(W)
ki k OWkj |y

~ From backpropagation, we know that
IE _ dz; OF _ JE

= ; =Yg
dw;; 0w 0z; 7 0z

» When all of the components of the input vector y; are positive, all of
the updates of weights that feed into a node will be of the same sign.

= Weights can only all increase or decrease together.

= Slow convergence
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Normalizing the Inputs Topics of This Lecture
* Convergence is fastest if
» The mean of each input variable Gancellation
over the training set is zero. K o
>
» The inputs are scaled such that > Yy
all have the same covariance. Expansion
» Input variables are uncorrelated 4 R
if possible. Equaliration
> Saldse [+ Nonlinearities
5
¢ Advisable normalization steps (for MLPs only, not for CNNs) £
» Normalize all inputs that an input unit sees to zero-mean, g
unit covariance. 8
» If possible, try to decorrelate them using PCA (also known as f:,
Karhunen-Loeve expansion). =
s
21 22
B.Leibe \oge sowce: Yann lecun et gl Efficient RackProp (190: B. Leibe
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Choosing the Right Sigmoid

tanh(a) = 20(2a) — 1

Largest
curvature at 1

¢ Normalization is also important for intermediate layers

» Symmetric sigmoids, such as tanh, often converge faster than the
standard logistic sigmoid.

» Recommended sigmoid:
f(x) = 1.7159 tanh (%J)
= When used with transformed inputs, the variance of the outputs will
be close to 1.
23
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Usage

¢ Output nodes
» Typically, a sigmoid or tanh function is used here.
— Sigmoid for nice probabilistic interpretation (range [0,1]).
— tanh for regression tasks

* Internal nodes
Historically, tanh was most often used.

tanh is better than sigmoid for internal nodes, since it is
already centered.

» Internally, tanh is often implemented as piecewise linear function
(similar to hard tanh and maxout).

» More recently: ReLU often used for classification tasks.

v
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Effect of Sigmoid Nonlinearities
Sigmoid

* Effects of sigmoid/tanh function ~ w f Lot

» Linear behavior around 0 B

» Saturation for large inputs

« If all parameters are too small LA A A e

» Variance of activations will drop in each layer

RWTHAACHET
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Another Note on Error Functions

E(z,,) Ideal misclassification error]
Squared error
Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

E » Sigmoids are approximately linear close to 0 E the{=1,1}
2 . Good for passing gradients through, but... 2 - — 5 — = = 2 = toy(xn)
% » Gradual loss of the nonlinearity % . ) )
E = No benefit of having multiple layers i=| * Squared error on sigmoid/tanh output function
3 3 . Avoids penalizing “too correct’ data points.
2 If activations become larger and larger 2 . But: zero gradient for confidently incorrect classifications!
§ » They will saturate and gradient will become zero § = Do not use L, loss with sigmoid outputs (instead: cross-entropy)!
= 25 = 26
lmage source. i0/2015/02/ i lmage source: Bishop, 200
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Extension: ReLU Extension: ReLU
* Another improvement for learning deep models * Another improvement for learning deep models
» Use Rectified Linear Units (ReLU) » Use Rectified Linear Units (ReLU)
gla) = max {0,a} gla) = max {0,a}
. Effect: gradient is propagated with . Effect: gradient is propagated with
a constant factor a constant factor
39(&),{1. a>0 e b e b 39(&),{1. a>0 e b e b
~ da 0, else ~ da 0, else
il « Advantages ol « Disadvantages / Limitations
% » Much easier to propagate gradients through deep networks. % » A certain fraction of units will remain “stuck at zero”.
E » We do not need to store the ReLU output separately E — If the initial weights are chosen such that the ReLU output s 0 for the
E — Reduction of the required memory by half compared to tanh! E entire tra{ning set, the unit will never pass through a gradient to change
) 5 those weights.
2 2
= = » ReLU has an offset bias, since its outputs will always be positive
E = ReLU has become the de-facto standard for deep networks. ;‘3 : : 'ts outputs will alway positiv
B. Leibe 27 B. Leibe 28
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Further Extensions Topics of This Lecture
¢ Rectified linear unit (ReLU)
9(a) = max{0,a}
¢ Leaky ReLU
9(a) = max{pa,a}
= » Avoids stuck-at-zero units =
2 . Weaker offset bias i+ Initialization
= =
i - ELU 2
E (@) = a, x<0 %
8 W =11, x20 k]
[} [
'{:E, » No offset bias anymore JLE:,
2 » BUT: need to store activations o 2
B. Leibe ) B. Leibe o




Initializing the Weights

¢ Motivation

» The starting values of the weights can have a significant effect
on the training process.

» Weights should be chosen randomly, but in a way that the sigmoid
is primarily activated in its linear region.

¢ Guideline (from [LeCun et al., 1998] book chapter)
» Assuming that
— The training set has been normalized
— The recommended sigmoid [ () = 1.7159 tanh ( z) is used
the initial weights should be randomly drawn from a distribution (e.g.,

uniform or Normal) with mean zero and variance
1

Nin

where n,, is the fan-in (#connections into the node).

o2 =

Machine Learning Winter ‘17
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Historical Sidenote

* Apparently, this guideline was either little known or
misunderstood for a long time
~ A popular heuristic (also the standard in Torch) was to use
1 1
W~U |- ,—
VNin \/nin]

» This looks almost like LeCun’s rule. However...

* When sampling weights from a uniform distribution [a,b]
» Keep in mind that the standard deviation is computed as
1
2 _ T (h_ 2
=3 (b-a)
» If we do that for the above formula, we obtain

2_1(_2 _11

2
o= E(m) BEr™
= Activations & gradients will be attenuated with each layer! (bad)

B. Leibe
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Glorot Initialization

¢ Breakthrough results

» In 2010, Xavier Glorot published an analysis of what went wrong in
the initialization and derived a more general method for automatic
initialization.

» This new initialization massively improved results and made direct
learning of deep networks possible overnight.

» Let’s look at his analysis in more detail...

Machine Learning Winter ‘17

Analysis

* Variance of neuron activations

» Suppose we have an input X with n components and a linear
neuron with random weights 1 that spits out a number Y.

» Whatis the variance of Y ?
Y =W, X; + WoXo+--+ W, X,

» Ifinputs and outputs have both mean 0, the variance is

¢ Variance of neuron activations

» if we want the variance of the input and output of a unit to be the
same, then n Var(W,) should be 1. This means

= Randomly sample the weights with this variance. That's it.

Var(wy) = L= L
n Tin
» If we do the same for the backpropagated gradient, we get
. 1
~ V H(W’l ) =
5 Trout,
8
=
i » As a compromise, Glorot & Bengio proposed to use
2
£ 2
5 Var(W) = —=—
° Tin + Mout
£
£
[=}
o
=

) 38
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S Var(W,; X,) = E[X]?Var(W;) + E[W,]?Var(X,) + Var(W,)Var(i;)
5]
= = Var(W;)Var(X;)
g » Ifthe X; and W are all i.i.d, then
8 Var(Y) = Var(W, X + Wo X + - + Wi X,,) = nVar(W;)Var(X;)
. - Lo L Q
X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep_ = = The variance of the output is the variance of the input, but scaled
Feedforward Neural Networks, AISTATS 2010. 8 by n Var(W,).
36 = ‘ 37
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Analysis (cont'd) Sidenote

* When sampling weights from a uniform distribution [a,b]
» Again keep in mind that the standard deviation is computed as
1
2 _ — 2
ot= 1 b—a)

» Glorot initialization with uniform distribution
V6 V6

Wl |- —m—— ———
V1in + Noue V1in + Nour
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jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

* Motivation
» Optimization works best if all inputs of a layer are normalized.

¢ Ildea
» Introduce intermediate layer that centers the activations of
the previous layer per minibatch.
» l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients
» Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

* Effect

» Much improved convergence (but parameter values are important!)
» Widely used in practice

Machine Learning Winter ‘17
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Extension to ReLU Topics of This Lecture
¢ Important for learning deep models
» Rectified Linear Units (ReLU)
gla) = max {0,a}
. Effect: gradient is propagated with
a constant factor
Bg(a)i{l. a>0 I
~ da 0, else .
E * We can also improve them with proper initialization E
% » However, the Glorot derivation was based on tanh units, %, .
£ linearity assumption around zero does not hold for ReLU. £ I Advanced technlques
3 » He et al. made the derivations, derived to use instead 3 ~ Batch Normalization
A 9 @ » Dropout
g Var(W) = n_m é
= 20 = a
B. Leibe B. Leibe
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Batch Normalization [loffe & Szegedy '14] Dropout [Srivastava, Hinton ’12]

) Standard Newral Net b

trer applying dropout.
* Idea
Randomly switch off units during training.

» Change network architecture for each data point, effectively training
many different variants of the network.

When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Greatly improved performance

v

v
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References and Further Reading

* More information on many practical tricks can be found in
Chapter 1 of the book

G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade
Springer, 1998, 2012

H Neural Networks:
[l Tricks of the Trade

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller
Efficient BackProp, Ch.1 of the above book., 1998.
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* Initialization

» X. Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks, AISTATS 2010.

» K.He, X.Y. Zhang, S.Q. Ren, J. Sun, Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,
ArXiV 1502.01852v1, 2015.
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References and Further Reading

¢ Batch Normalization

» S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, ArXiV
1502.03167, 2015.

¢ Dropout

» N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R.
Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks
from Overfitting, JMLR, Vol. 15:1929-1958, 2014.
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