Machine Learning — Lecture 14

ricks of the Trade

07.12.2017

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
> Foundations
» Convolutional Neural Networks
- Recurrent Neural Networks e I
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Topics of This Lecture

* Recap: Optimization
> Effect of optimizers

Tricks of the Trade
> Shuffling

> Data Augmentation
> Normalization

* Nonlinearities
* |nitialization

* Advanced technigues
> Batch Normalization
> Dropout

B. Leibe



Recap: Computational Graphs

Forward-Mode Differentiation (;—X)
>

Apply operator a%
to every node.

Apply operator 8—82

to every node.

> Forward differentiation needs one pass per node. Reverse-mode
differentiation can compute all derivatives in one single pass.

= Speed-up in O(#inputs) compared to forward differentiation!
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Image source: Christopher Olah, colah.github.io

Slide inspired by Christopher Olah B. Leibe



Recap: Automatic Differentiation

* Approach for obtaining the gradients
y1(x) y2(x)  yr(x)

> Convert the network into a computational graph.

> Each new layer/module just needs to specify how it affects the
forward and backward passes.

> Apply reverse-mode differentiation.
= Very general algorithm, used in today’s Deep Learning packages

B. Leibe
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RWNTH
Correction: Implementing Softmax Correctly

e Softmax output
> De-facto standard for multi-class outputs

E(w :—N 3 I(t,, =k)ln exp(W), X) }
) ZZ{( ) S exp(w] x)

* Practical issue
> EXxponentials get very big and can have vastly different magnitudes.

> Trick 1: Do not compute first softmax, then log,
but instead directly evaluate log-exp in the nominator
and log-sum-exp in the denominator.

> Trick 2: Softmax has the property that for a fixed vector b
softmax(a + b) = softmax(a)

= Subtract the largest weight vector w, from the others.
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RWNTH
Recap: Choosing the Right Learning Rate

E(o)

* Convergence of Gradient Descent .
- Simple 1D example "‘
w1 _ ) _ ndE(W)
dW
- What is the optimal learning rate 7,7 . o
b) O
» If E/is quadratic, the optimal learning rate is given by the inverse of
the Hessian )
ZEW™)\
Tlovt =\ T qw2
. Advanced optimization techniques try to ;:LDOH t go beyond

approximate the Hessian by a simplified form.

> If we exceed the optimal learning rate,
bad things happen!
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RWNTH
Recap: Advanced Optimization Techniques

* Momentum

- Instead of using the gradient to change the position of the weight
“particle”, use it to change the velocity. -

> Effect: dampen oscillations in directions of high
curvature

> Nesterov-Momentum: Small variation in the implementation

=8 * RMS-Prop

:i—’- > Separate learning rate for each weight: Divide the gradient by a
= running average of its recent magnitude.

(@)

k=

= ¢ AdaGrad )

()] .

= « AdaDelta , Some more recent techniques, work better
= for some problems. Try them.

s ¢ Adam )

=

8
Image source: Geoff Hinton
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CHEN
L UNIVERSITY
Example: Behavior in a Long Valley

—  SGD
——  Momentum
- NAG
- Adagrad
Adadelta
4 A — Rmsprop
ol
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Image source: Alec Radford, http://imgur.com/a/Hqgolp
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RWTHAACHEN
UNIVERSITY

Visualization of Convergence Behavior
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RWTHAACHEN
. . UNIVERSITY
Trick: Patience

e Saddle points dominate in high-dimensional spaces!

100 ' , . . 10°
— Training error (MSE)
90} e—e Norm of the gradients
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— Learning often doesn'’t get stuck, you just may have to wait...

12
Image source: Yoshua Bengio
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Reducing the Learning Rate

* Final improvement step after convergence is reached

. Reduce learning rate by a 1
factor of 10.

> Continue training for a few
epochs.

> Do this 1-3 times, then stop
training.

Reduced
learning rate

Training error

* Effect Epoch

> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

* Be careful: Do not turn down the learning rate too soon!
> Further progress will be much slower/impossible after that.
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Summary

* Deep multi-layer networks are very powerful.

e But training them is hard!
> Complex, non-convex learning problem
> Local optimization with stochastic gradient descent

* Main issue: getting good gradient updates for the lower
layers of the network
> Many seemingly small details matter!

> Weight initialization, normalization, data augmentation, choice of
nonlinearities, choice of learning rate, choice of optimizer,...

> In the following, we will take a look at the most important factors

B. Leibe
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RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

* Tricks of the Trade
> Shuffling
> Data Augmentation
> Normalization
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Shuffling the Examples

* |deas
> Networks learn fastest from the most unexpected sample.

= It is advisable to choose a sample at each iteration that is most
unfamiliar to the system.

— E.g. a sample from a different class than the previous one.

— This means, do not present all samples of class A, then all of class B.

> A large relative error indicates that an input has not been learned
by the network yet, so it contains a lot of information.

= It can make sense to present such inputs more frequently.
— But: be careful, this can be disastrous when the data are outliers.

* Practical advice

> When working with stochastic gradient descent or minibatches,
make use of shuffling.

B. Leibe
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RWTHAACHEN
. UNIVERSITY
Data Augmentation

* |dea

> Augment original data with synthetic variations
to reduce overfitting

* Example augmentations for images

oo unﬁunm
. Zooming = I E ™™
M &
 Golor o ™M

B. Leibe

> Flipping
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Image source: Lucas Beyer
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Data Augmentation

 Effect

> Much larger training set

> Robustness against expected
variations

W P
polloh loah o
S b el

* During testing
> When cropping was used
during training, need to

E again apply crops to get ., s s : _ e

| el VNN R

= . Beneficial to also apply e L o

| e, RN E Y

g -~ Applying several ColorPCA - e | .

© variations can bring another Augmented training data

S ~1% improvement, but at a (from one original image)

= significantly increased runtime. s
B. Leibe
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Practical Advice

glamadonarator.naet
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Normalization

* Motivation
> Consider the Gradient Descent update steps

T+1 T aE(W)
W+ =) g

> From backpropagation, we know that

aw@'j - ('waij 823' — Y 823

> When all of the components of the input vector y, are positive, all of
the updates of weights that feed into a node will be of the same sign.

= Weights can only all increase or decrease together.
= Slow convergence

20
B. Leibe



Normalizing the Inputs

* Convergence Is fastest if

> The mean of each input variable
over the training set is zero.

» The inputs are scaled such that P e
. KL-
all have the same covariance. Expansion

> Input variables are uncorrelated
If possible.

Mean

Covariance
Equalization

* Advisable normalization steps (for MLPs only, not for CNNSs)

> Normalize all inputs that an input unit sees to zero-mean,
unit covariance.

> If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).
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B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)




CHEN
. . UNIVERSITY
Topics of This Lecture

* Recap: Optimization
> Effect of optimizers

Tricks of the Trade
> Shuffling

> Data Augmentation
> Normalization

* Nonlinearities

* |nitialization

Advanced techniques
> Batch Normalization
> Dropout
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RWNTH
Choosing the Right Sigmoid

tanh(a) = 20(2a) — 1

15}

1

a5 q i Y 3
' Largest
curvature at 1

0.2

15t

* Normalization is also important for intermediate layers

> Symmetric sigmoids, such as tanh, often converge faster than the
standard logistic sigmoid.

> Recommended sigmoid:.

f(z) = 1.7159 tanh (s z)

= When used with transformed inputs, the variance of the outputs will
be close to 1.
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Usage

* Qutput nodes

> Typically, a sigmoid or tanh function is used here.
— Sigmoid for nice probabilistic interpretation (range [0,1]).
— tanh for regression tasks

* [nternal nodes
> Historically, tanh was most often used.

> tanh is better than sigmoid for internal nodes, since it is
already centered.

> Internally, tanh is often implemented as piecewise linear function
(similar to hard tanh and maxout).

> More recently: ReLU often used for classification tasks.

B. Leibe
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Effect of Sigmoid Nonlinearities

| I 1 I
RN : . ;

* Effects of sigmoid/tanh function P R R T e et
. Linear behavior around O .53_ ..... ..... ...... ..... _

(=]

. Saturation for large inputs [ |
 If all parameters are too small P T T SR

> Variance of activations will drop in each layer
> Sigmoids are approximately linear close to 0
> Good for passing gradients through, but...

> Gradual loss of the nonlinearity

= No benefit of having multiple layers

* If activations become larger and larger
> They will saturate and gradient will become zero
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Image source: http://deepdish.io/2015/02/24/network-initialization/




Another Note on Error Functions
= R

E(Zn) |ldeal misclassification error
Squared error

Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

tn - {—]., 1} H“xm | .,
) — 0 1 7 #n = tnY(Xn)

e Sqguared error on sigmoid/tanh output function
> Avoids penalizing “too correct” data points.
> But: zero gradient for confidently incorrect classifications!
= Do not use L, loss with sigmoid outputs (instead: cross-entropy)!
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Extension: RelLU

* Another improvement for learning deep models
> Use Rectified Linear Units (ReLU) |

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

s |

I, a>0
0, else

* Advantages

> Much easier to propagate gradients through deep networks.

> We do not need to store the ReLU output separately
— Reduction of the required memory by half compared to tanh!

— RelLU has become the de-facto standard for deep networks.

B. Leibe
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Extension: RelLU

* Another improvement for learning deep models
> Use Rectified Linear Units (ReLU) -
g(a) = max{0,a}

0.5 -

> Effect: gradient is propagated with
a constant factor

ag(a) B I, a>0 A
da 0, else

* Disadvantages / Limitations

> A certain fraction of units will remain “stuck at zero”.

— If the initial weights are chosen such that the ReLU output is O for the
entire training set, the unit will never pass through a gradient to change
those weights.

> ReLU has an offset bias, since its outputs will always be positive

B. Leibe
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Further Extensions

* Rectified linear unit (ReLU)
g(a) = max{0, a}

* Leaky RelLU
g(a) = max{fa,a}

> Avoids stuck-at-zero units
> Weaker offset bias

e ELU
x <0

a,
g(a)_{ea—l, x>0
> No offset bias anymore

> BUT: need to store activations
B. Leibe
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Topics of This Lecture

* Recap: Optimization
> Effect of optimizers

Tricks of the Trade
> Shuffling

> Data Augmentation
> Normalization

* Nonlinearities
* |nitialization

* Advanced technigues
> Batch Normalization
> Dropout
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Initializing the Weights

* Motivation

> The starting values of the weights can have a significant effect
on the training process.

> Weights should be chosen randomly, but in a way that the sigmoid
IS primarily activated in its linear region.

* Guideline (from [LeCun et al., 1998] book chapter)

> Assuming that

— The training set has been normalized
— The recommended sigmoid  f(z) = 1.7159 tanh (2z) is used

the initial weights should be randomly drawn from a distribution (e.g.,

uniform or Normal) with mean zero and variance
2 — 1
Ow Nin

where n,, is the fan-in (#connections into the node).

: 34
B. Leibe
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Historical Sidenote

* Apparently, this guideline was either little known or
misunderstood for a long time
> A popular heuristic (also the standard in Torch) was to use
1 1
ol
\/nin \/nin

> This looks almost like LeCun’s rule. However...

* When sampling weights from a uniform distribution [a,b]
> Keep in mind that the standard deviation is computed as

1
2 _ Y
o 12(b a)

> If we do that for the above formula, we obtain

2
2 1 2\ _11
o= 12 (\/nin) 3 Nin
= Activations & gradients will be attenuated with each layer! (bad)

B. Leibe
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Glorot Initialization

* Breakthrough results

> In 2010, Xavier Glorot published an analysis of what went wrong in
the initialization and derived a more general method for automatic
Initialization.

> This new initialization massively improved results and made direct
learning of deep networks possible overnight.

> Let's look at his analysis in more detail...

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep
Feedforward Neural Networks, AISTATS 2010.

B. Leibe
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jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
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Analysis

 Variance of neuron activations

> Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

> What is the variance of Y ?
Y = WiXy + WoXy + -+ WpX,
> If inputs and outputs have both mean 0, the variance is
Var(W; X;) = E[X;]*Var(W;) + E[W;]*Var(X;) + Var(W;)Var(i;)
— Var(W;)Var(X;)
~ Ifthe X, and W, are all i.i.d, then
Var(Y) = Var(W1 X; + WXy +--- + W, X,,) = nVar(W;)Var(X;)

= The variance of the output is the variance of the input, but scaled
by n Var(W,).

B. Leibe
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Analysis (cont'd)

 Variance of neuron activations

> If we want the variance of the input and output of a unit to be the
same, then n Var(W,) should be 1. This means

1 1
Var(lﬂ} _ — =

> If we do the same for the backpropagated gradient, we get
1

Mot

Var(W;) =

> As a compromise, Glorot & Bengio proposed to use
2

Var(W) =
E'-I{ ] Nin 7 Nout

— Randomly sample the weights with this variance. That's it.

B. Leibe

38



N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Sidenote

* When sampling weights from a uniform distribution [a,b]
> Again keep in mind that the standard deviation is computed as

1
2 _ Y
o —12(b a)

> Glorot initialization with uniform distribution

V6 V6

W~U|— ,
\/nin + Nout \/nin + Nout

B. Leibe

39



N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Extension to RelLU

* Important for learning deep models
> Rectified Linear Units (ReLU)

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

Og(a) _ {

I, a>0
0, else

oa

* We can also improve them with proper initialization

> However, the Glorot derivation was based on tanh units,

linearity assumption around zero does not hold for ReLU.
> He et al. made the derivations, derived to use instead
) . 2

Ttin

B. Leibe
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RWTHAACHEN
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Topics of This Lecture

* Advanced technigues
> Batch Normalization
> Dropout
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RWTH
Batch Normalization [loffe & Szegedy ’14]

* Motivation
> Optimization works best if all inputs of a layer are normalized.

* |dea

> Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

> l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

> Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

o Effect

> Much improved convergence (but parameter values are important!)
> Widely used in practice
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RWTH
Dropout [Srivastava, Hinton '12]

(a) Standard Neural Net (b) After applyving dropout.

* |dea
> Randomly switch off units during training.

> Change network architecture for each data point, effectively training
many different variants of the network.

> When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Greatly improved performance
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References and Further Reading

* More information on many practical tricks can be found in
Chapter 1 of the book

G. Montavon, G. B. Orr, K-R Mueller (Eds.) Naral Natuomie
Neu_ral Networks: Tricks of the Trade % Tricks of the Trade
Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller
Efficient BackProp, Ch.1 of the above book., 1998.

B. Leibe
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References and Further Reading

* Batch Normalization

> S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, ArXiV
1502.03167, 2015.

* Dropout

> N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.
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