

Machine Learning – Lecture 15

Convolutional Neural Networks

11.12.2017

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Recap: Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a ≻ factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop ≻ training.

Be careful: Do not turn down the learning rate too soon!

Further progress will be much slower/impossible after that. \geq

Effect

 \geq

Recap: Data Augmentation

- Effect
 - Much larger training set
 - Robustness against expected variations
- During testing
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Augmented training data (from one original image)

Recap: Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

- Advisable normalization steps (for MLPs only, not for CNNs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).

RNNHHAACH

VIVFF

Topics of This Lecture

- Recap: Tricks of the Trade
- **Nonlinearities**
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout \geq
- **Convolutional Neural Networks**
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

- Normalization is also important for intermediate layers
 - Symmetric sigmoids, such as tanh, often converge faster than the standard logistic sigmoid.
 - Recommended sigmoid:

$$f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$$

 \Rightarrow When used with normalized inputs, the variance of the outputs will be close to 1.

9

Effect of Sigmoid Nonlinearities

- Effects of sigmoid/tanh function
 - Linear behavior around 0
 - Saturation for large inputs

- If all parameters are too small
 - Variance of activations will drop in each layer
 - Sigmoids are approximately linear close to 0
 - Good for passing gradients through, but...
 - Gradual loss of the nonlinearity
 - \Rightarrow No benefit of having multiple layers
- If activations become larger and larger
 - They will saturate and gradient will become zero

- Squared error on sigmoid/tanh output function
 - Avoids penalizing "too correct" data points.
 - > But: zero gradient for confidently incorrect classifications!
 - \Rightarrow Do not use L₂ loss with sigmoid outputs (instead: cross-entropy)!

Usage

Output nodes

- Typically, a sigmoid or tanh function is used here.
 - Sigmoid for probabilistic classification (2-class case).
 - Softmax for multi-class classification
 - tanh for regression tasks

Internal nodes

- Historically, tanh was most often used.
- tanh is better than sigmoid for internal nodes, since it is already centered.
- > Internally, tanh is often implemented as piecewise linear function.
- > More recently: ReLU often used for classification tasks.

Extension: ReLU

- An improvement for learning deep models
 - > Use Rectified Linear Units (ReLU)

$$g(a) = \max\left\{0, a\right\}$$

 Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0\\ 0, & \text{else} \end{cases}$$

Advantages

- Much easier to propagate gradients through deep networks.
- We do not need to store the ReLU output separately
 - Reduction of the required memory by half compared to tanh!

\Rightarrow ReLU has become the de-facto standard for deep networks.

Extension: ReLU

- An improvement for learning deep models
 - > Use Rectified Linear Units (ReLU)

$$g(a) = \max\left\{0, a\right\}$$

 Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0\\ 0, & \text{else} \end{cases}$$

- Disadvantages / Limitations
 - > A certain fraction of units will remain "stuck at zero".
 - If the initial weights are chosen such that the ReLU output is 0 for the entire training set, the unit will never pass through a gradient to change those weights.
 - > ReLU has an offset bias, since its outputs will always be positive

Further Extensions

Rectified linear unit (ReLU)
 g(a) = max{0, a}

- Leaky ReLU $g(a) = \max\{\beta a, a\}$ $\beta \in [0.01, 0.3]$
 - > Avoids stuck-at-zero units
 - Weaker offset bias
 - ELU $g(a) = \begin{cases} a, & a \ge 0\\ e^a - 1, & a < 0 \end{cases}$
 - No offset bias anymore
 - > BUT: need to store activations

B. Leibe

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - > Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

RWTHAACHEN UNIVERSITY

Initializing the Weights

- Motivation
 - The starting values of the weights can have a significant effect on the training process.
 - Weights should be chosen randomly, but in a way that the sigmoid is primarily activated in its linear region.
- Guideline (from [LeCun et al., 1998] book chapter)
 - Assuming that
 - The training set has been normalized

– The recommended sigmoid $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$ is used the initial weights should be randomly drawn from a distribution (e.g., uniform or Normal) with mean zero and variance

$$\sigma_w^2 = \frac{1}{n_{in}}$$

where n_{in} is the fan-in (#connections into the node).

Historical Sidenote

- Apparently, this guideline was either little known or misunderstood for a long time
 - A popular heuristic (also the standard in Torch) was to use

$$W \sim U\left[-\frac{1}{\sqrt{n_{in}}}, \frac{1}{\sqrt{n_{in}}}\right]$$

- This looks almost like LeCun's rule. However...
- When sampling weights from a uniform distribution [a,b]
 - Keep in mind that the standard deviation is computed as

$$\sigma^2 = \frac{1}{12}(b-a)^2$$

If we do that for the above formula, we obtain

$$\sigma^{2} = \frac{1}{12} \left(\frac{2}{\sqrt{n_{in}}} \right)^{2} = \frac{1}{3} \frac{1}{n_{in}}$$

 \Rightarrow Activations & gradients will be attenuated with each layer! (bad)

Glorot Initialization

- Breakthrough results
 - In 2010, Xavier Glorot published an analysis of what went wrong in the initialization and derived a more general method for automatic initialization.
 - This new initialization massively improved results and made direct learning of deep networks possible overnight.
 - Let's look at his analysis in more detail...

X. Glorot, Y. Bengio, <u>Understanding the Difficulty of Training Deep</u> <u>Feedforward Neural Networks</u>, AISTATS 2010.

Analysis

- Variance of neuron activations
 - > Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y.
 - > What is the variance of Y?

$$Y = W_1 X_1 + W_2 X_2 + \dots + W_n X_n$$

- If inputs and outputs have both mean 0, the variance is $Var(W_{i}X_{i}) = E[X_{i}]^{2}Var(W_{i}) + E[W_{i}]^{2}Var(X_{i}) + Var(W_{i})Var(X_{i})$ $= Var(W_{i})Var(X_{i})$
- > If the X_i and W_i are all i.i.d, then $Var(Y) = Var(W_1X_1 + W_2X_2 + \dots + W_nX_n) = nVar(W_i)Var(X_i)$
- \Rightarrow The variance of the output is the variance of the input, but scaled by $n \ {\rm Var}(W_i).$

Analysis (cont'd)

- Variance of neuron activations
 - > if we want the variance of the input and output of a unit to be the same, then $n \operatorname{Var}(W_i)$ should be 1. This means

$$\operatorname{Var}(W_i) = rac{1}{n} = rac{1}{n_{ ext{in}}}$$

If we do the same for the backpropagated gradient, we get

$$\operatorname{Var}(W_i) = rac{1}{n_{ ext{out}}}$$

As a compromise, Glorot & Bengio proposed to use

$$\mathrm{Var}(W) = rac{2}{n_\mathrm{in}+n_\mathrm{out}}$$

 \Rightarrow Randomly sample the weights with this variance. That's it.

Sidenote

- When sampling weights from a uniform distribution [a,b]
 - Again keep in mind that the standard deviation is computed as

$$\sigma^2 = \frac{1}{12}(b-a)^2$$

Glorot initialization with uniform distribution

$$W \sim U\left[-\frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}, \frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}\right]$$

Or when only taking into account the fan-in

$$W \sim U\left[-\frac{\sqrt{3}}{\sqrt{n_{in}}}, \frac{\sqrt{3}}{\sqrt{n_{in}}}\right]$$

If this had been implemented correctly in Torch from the beginning, the Deep Learning revolution might have happened a few years earlier...

Extension to ReLU

- Important for learning deep models
 - Rectified Linear Units (ReLU)

$$g(a) = \max\left\{0, a\right\}$$

 Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0\\ 0, & \text{else} \end{cases}$$

- We can also improve them with proper initialization
 - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
 - > He et al. made the derivations, derived to use instead

$$\operatorname{Var}(W) = rac{2}{n_{\operatorname{in}}}$$

RNTHAACH UNIVERS

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - > Convolutional Layers
 - > Pooling Layers

UNIVERSI [loffe & Szegedy '14]

Motivation

Batch Normalization

- Optimization works best if all inputs of a layer are normalized.
- Idea
 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 - I.e., perform transformations on all activations and undo those transformations when backpropagating gradients
 - Complication: centering + normalization also needs to be done at test time, but minibatches are no longer available at that point.
 - Learn the normalization parameters to compensate for the expected bias of the previous layer (usually a simple moving average)
 - Effect
 - Much improved convergence (but parameter values are important!)
 - Widely used in practice

Dropout

RNTHAACHEN UNIVERSITY [Srivastava, Hinton '12]

Idea

- Randomly switch off units during training.
- Change network architecture for each data point, effectively training many different variants of the network.
- When applying the trained network, multiply activations with the probability that the unit was set to zero.
- \Rightarrow Greatly improved performance

Topics of This Lecture

- Recap: Tricks of the Trade
- Nonlinearities
- Initialization
- Advanced techniques
 - Batch Normalization
 - > Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

Neural Networks for Computer Vision

• How should we approach vision problems?

Face Y/N?

- Architectural considerations
 - Input is 2D
 - No pre-segmentation
 - Vision is hierarchical
 - Vision is difficult

- \Rightarrow 2D layers of units
- \Rightarrow Need robustness to misalignments
- \Rightarrow Hierarchical multi-layered structure
- \Rightarrow Network should be deep

Why Hierarchical Multi-Layered Models?

Motivation 1: Visual scenes are hierarchically organized

Why Hierarchical Multi-Layered Models?

• Motivation 2: *Biological vision* is hierarchical, too

cortex V4: different textures V1: simple and complex cells

Inferotemporal

Photoreceptors, retina

RWTHAACHEN UNIVERSITY

Inspiration: Neuron Cells

Hubel/Wiesel Architecture

- D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)
 - Visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Why Hierarchical Multi-Layered Models?

Motivation 3: Shallow architectures are inefficient at representing complex functions

An MLP with 1 hidden layer can implement *any* function (universal approximator)

However, if the function is deep, a very large hidden layer may be required.

Slide adapted from Richard Turner

What's Wrong With Standard Neural Networks?

- Complexity analysis
 - How many parameters does this network have?

 $|\theta| = 3D^2 + D$

- > For a small 32×32 image $|\theta| = 3\cdot 32^4 + 32^2 \approx 3\cdot 10^6$
- Consequences
 - Hard to train
 - Need to initialize carefully
 - Convolutional nets reduce the number of parameters!

Convolutional Neural Networks (CNN, ConvNet)

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to</u> <u>document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Convolutional Networks: Intuition

- Fully connected network
 - E.g. 1000×1000 image
 1M hidden units
 - \Rightarrow 1T parameters!

- Ideas to improve this
 - Spatial correlation is local

Convolutional Networks: Intuition

- Locally connected net
 - E.g. 1000×1000 image 1M hidden units 10×10 receptive fields
 - \Rightarrow 100M parameters!

- Ideas to improve this
 - Spatial correlation is local
 - Want translation invariance

Convolutional Networks: Intuition

Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Convolutional Networks: Intuition

Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Learn *multiple* filters

- E.g. 1000×1000 image 100 filters 10×10 filter size
- \Rightarrow 10k parameters
- Result: Response map
 - > size: 1000×1000×100
 - Only memory, not params!

B. Leibe

Important Conceptual Shift

Example image: $32 \times 32 \times 3$ volume

Before: Full connectivity $32 \times 32 \times 3$ weights

Now: Local connectivity One neuron connects to, e.g., $5 \times 5 \times 3$ region. \Rightarrow Only $5 \times 5 \times 3$ shared weights.

- Vachine Learning Winter '17 • Not
 - Note: Connectivity is
 - Local in space (5×5 inside 32×32)
 - But full in depth (all 3 depth channels)

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - > Form a single $[1 \times 1 \times depth]$ depth column in output volume.

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2?

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2?

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2? \Rightarrow 3×3 output

0	0	0	0	0		
0						
0						
0						
0						

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2? \Rightarrow 3×3 output

- Replicate this column of hidden neurons across space, with some stride.
- In practice, common to zero-pad the border.
 - Preserves the size of the input spatially.

Activation Maps of Convolutional Filters

Activations:

孯**轗抣꽕聮縔瑿靅**嫾魼倠祑袑藚毊鵽笍孯逬鼝淗旝琑薞豒笍轚艃枩鑁訮

one filter = one depth slice (or activation map)

 5×5 filters

Each activation map is a depth slice through the output volume.

Activation maps

Effect of Multiple Convolution Layers

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Convolutional Networks: Intuition

- Let's assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

Convolutional Networks: Intuition

- Let's assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

Solution:

By pooling (e.g., max or avg) filter responses at different spatial locations, we gain robustness to the exact spatial location of features.

Max Pooling

Single depth slice

Х

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

- Effect:
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations

V

Max Pooling

Single depth slice

Х

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

٧

max pool with 2x2 filters and stride 2

Note

Pooling happens independently across each slice, preserving the number of slices.

CNNs: Implication for Back-Propagation

- Convolutional layers
 - Filter weights are shared between locations
 - \Rightarrow Gradients are added for each filter location.

References and Further Reading

 More information on many practical tricks can be found in Chapter 1 of the book

> G. Montavon, G. B. Orr, K-R Mueller (Eds.) Neural Networks: Tricks of the Trade Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller Efficient BackProp, Ch.1 of the above book., 1998.

References

- ReLu
 - X. Glorot, A. Bordes, Y. Bengio, <u>Deep sparse rectifier neural</u> <u>networks</u>, AISTATS 2011.
- Initialization
 - X. Glorot, Y. Bengio, <u>Understanding the difficulty of training deep</u> <u>feedforward neural networks</u>, AISTATS 2010.
 - K. He, X.Y. Zhang, S.Q. Ren, J. Sun, <u>Delving Deep into Rectifiers:</u> <u>Surpassing Human-Level Performance on ImageNet Classification</u>, ArXiV 1502.01852v1, 2015.
 - A.M. Saxe, J.L. McClelland, S. Ganguli, <u>Exact solutions to the</u> <u>nonlinear dynamics of learning in deep linear neural networks</u>, ArXiV 1312.6120v3, 2014.

References and Further Reading

- Batch Normalization
 - S. loffe, C. Szegedy, <u>Batch Normalization: Accelerating Deep</u> <u>Network Training by Reducing Internal Covariate Shift</u>, ArXiV 1502.03167, 2015.
- Dropout
 - N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, <u>Dropout: A Simple Way to Prevent Neural Networks</u> <u>from Overfitting</u>, JMLR, Vol. 15:1929-1958, 2014.