Machine Learning — Lecture 15

Convolutional Neural Networks

11.12.2017

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de

N~
S
—
(O]
e
S
(@)
£
(e
| S
(4]
(O]
—
(O]
£
N
(®)
©
=

leibe@vision.rwth-aachen.de

Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
> Foundations
> Convolutional Neural Networks
> Recurrent Neural Networks | Moty Conmiatrs Stsaming

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

B. Leibe

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Topics of This Lecture

* Recap: Tricks of the Trade
* Nonlinearities
* Initialization

* Advanced technigues
> Batch Normalization
> Dropout

* Convolutional Neural Networks
> Neural Networks for Computer Vision
> Convolutional Layers
> Pooling Layers

B. Leibe

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Recap: Reducing the Learning Rate

* Final improvement step after convergence is reached
A

> Reduce learning rate by a
factor of 10.

> Continue training for a few
epochs.

> Do this 1-3 times, then stop
training.

 Effect

Training error

Reduced
learning rate

> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

* Be careful: Do not turn down the learning rate too soon!
> Further progress will be much slower/impossible after that.

Slide adapted from Geoff Hinton

B. Leibe

HL
. Ul Jt le SITY
Recap: Data Augmentation

 Effect

> Much larger training set

> Robustness against expected
variations

W P
polloh loah o
S b el

* During testing
> When cropping was used
during training, need to

E again apply crops to get ., s s : _ e

| el PN

= . Beneficial to also apply e L o

| e, RN E Y

g - Applying several ColorPCA - e | .

© variations can bring another Augmented training data

S ~1% improvement, but at a (from one original image)

= significantly increased runtime. .
B. Leibe

Image source: Lucas Beyer

Recap: Normalizing the Inputs

* Convergence is fastest if

> The mean of each input variable
over the training set is zero.

» The inputs are scaled such that P e
. KL-
all have the same covariance. Expansion

> Input variables are uncorrelated
If possible.

Mean
Cancellation

Covariance
Equalization

* Advisable normalization steps (for MLPs only, not for CNNSs)

> Normalize all inputs that an input unit sees to zero-mean,
unit covariance.

> If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

_ 6
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

N
S
—
(O]
e
S
(@)
£
[
| S
(4]
()]
—
()]
£
C
O
©
=

Topics of This Lecture

* Recap: Tricks of the Trade
* Nonlinearities
* [nitialization

* Advanced techniques
> Batch Normalization
> Dropout

* Convolutional Neural Networks
> Neural Networks for Computer Vision
> Convolutional Layers
> Pooling Layers

B. Leibe

CHEN
UNIVERSITY

RWNTH
Choosing the Right Sigmoid

tanh(a) = 20(2a) — 1

15}

1

a5 q i Y 3
' Largest
curvature at 1

0.2

15t

* Normalization is also important for intermediate layers

> Symmetric sigmoids, such as tanh, often converge faster than
the standard logistic sigmoid.

> Recommended sigmoid:.

f(z) = 1.7159 tanh (s z)

= When used with normalized inputs, the variance of the outputs
will be close to 1.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

. 8
B.Lebe | mage source: Yann LeCun et al., Efficient BackProp (1998)

Effect of Sigmoid Nonlinearities

| I 1 I
RN : . ;

* Effects of sigmoid/tanh function P R R T e et
. Linear behavior around O .53_ _

(=]

. Saturation for large inputs [|
 If all parameters are too small P T T SR

> Variance of activations will drop in each layer
> Sigmoids are approximately linear close to 0
> Good for passing gradients through, but...

> Gradual loss of the nonlinearity

= No benefit of having multiple layers

* |If activations become larger and larger
> They will saturate and gradient will become zero

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

9
Image source: http://deepdish.io/2015/02/24/network-initialization/

Another Note on Error Functions
= R

E(Zn) |ldeal misclassification error
Squared error

Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

tn - {—]., 1} H“xm | .,
) — 0 1 7 #n = tnY(Xn)

e Sqguared error on sigmoid/tanh output function
> Avoids penalizing “too correct” data points.
> But: zero gradient for confidently incorrect classifications!
= Do not use L, loss with sigmoid outputs (instead: cross-entropy)!

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

10
Image source: Bishop, 2006

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Usage

* Qutput nodes

> Typically, a sigmoid or tanh function is used here.
— Sigmoid for probabilistic classification (2-class case).
— Softmax for multi-class classification
— tanh for regression tasks

* [nternal nodes
> Historically, tanh was most often used.

> tanh is better than sigmoid for internal nodes, since it is
already centered.

> Internally, tanh is often implemented as piecewise linear function.

> More recently: ReLU often used for classification tasks.

B. Leibe

11

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Extension: RelLU

* An improvement for learning deep models
> Use Rectified Linear Units (ReLU)

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

s |

I, a>0
0, else

* Advantages

> Much easier to propagate gradients through deep networks.

> We do not need to store the ReLU output separately
— Reduction of the required memory by half compared to tanh!

— RelLU has become the de-facto standard for deep networks.

B. Leibe

12

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Extension: RelLU

* An improvement for learning deep models
> Use Rectified Linear Units (ReLU)
g(a) = max{0,a}

0.5 -

> Effect: gradient is propagated with
a constant factor

ag(a) B I, a>0 A
da 0, else

* Disadvantages / Limitations

> A certain fraction of units will remain “stuck at zero”.

— If the initial weights are chosen such that the ReLU output is O for the
entire training set, the unit will never pass through a gradient to change
those weights.

> ReLU has an offset bias, since its outputs will always be positive

B. Leibe

13

Further Extensions

1.5 -

m . . \)

1 1 1 1 1
1.0- -
0.5- -
0.0 - -
[' ' | | r
1.0 =0.5 0.0 0.5 1.0 1.5 2.0

' ' ' ' '

3 =2 -1 0 1 2

* Rectified linear unit (ReLU)
g(a) = max{0, a}

e Leaky RelLU .
g(a) = max{fa,a} B €1[0.01,0.3]
> Avoids stuck-at-zero units

> Weaker offset bias :

=2

* ELU i
() - a; a 2 O 1-

gla) =1 ea _ 1, a<0
- No offset bias anymore _

> BUT: need to store activations

B. Leibe 5 2 1 0 1 2 3

3

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

N
S
—
(O]
e
S
(@)
£
[
| S
(4]
()]
—
()]
£
C
O
©
=

Topics of This Lecture

* Recap: Tricks of the Trade
* Nonlinearities
* |nitialization

* Advanced techniques
> Batch Normalization
> Dropout

* Convolutional Neural Networks
> Neural Networks for Computer Vision
> Convolutional Layers
> Pooling Layers

B. Leibe

CHEN
UNIVERSITY

18

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Initializing the Weights

* Motivation

> The starting values of the weights can have a significant effect
on the training process.

> Weights should be chosen randomly, but in a way that the sigmoid
IS primarily activated in its linear region.

* Guideline (from [LeCun et al., 1998] book chapter)

> Assuming that

— The training set has been normalized
— The recommended sigmoid f(z) = 1.7159 tanh (2z)is used

the initial weights should be randomly drawn from a distribution

(e.g., uniform or Normal) with mean zero and variance

2 1
O-W_nin

where n,, is the fan-in (#connections into the node).

B. Leibe

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Historical Sidenote

* Apparently, this guideline was either little known or
misunderstood for a long time
> A popular heuristic (also the standard in Torch) was to use
1 1
ol
\/nin \/nin

> This looks almost like LeCun’s rule. However...

* When sampling weights from a uniform distribution [a,b]
> Keep in mind that the standard deviation is computed as

1
2 _ Y
o 12(b a)

> If we do that for the above formula, we obtain

2
2 1 2 \" _11
o= 12 (\/nin) 3 Nin
= Activations & gradients will be attenuated with each layer! (bad)

B. Leibe

20

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Glorot Initialization

* Breakthrough results

> In 2010, Xavier Glorot published an analysis of what went wrong in
the initialization and derived a more general method for automatic
Initialization.

> This new initialization massively improved results and made direct
learning of deep networks possible overnight.

> Let's look at his analysis in more detail...

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep
Feedforward Neural Networks, AISTATS 2010.

B. Leibe

21

jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Analysis

 Variance of neuron activations

> Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

> What is the variance of Y ?
Y = WiXy + WoXy 4 -+ W X,
> If inputs and outputs have both mean 0, the variance is
Var(W;X;) = E[X;]*Var(W;) + E[W;]*Var(X;) + Var(W))Var(X;)
= Var(W;)Var(X;)
~ Ifthe X, and W, are all i.i.d, then
Var(Y) = Var(W X, + W, X, + --- + W, X,,) = nVar(W;)Var(X;)

= The variance of the output is the variance of the input, but scaled
by n Var(W,).

B. Leibe

22

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Analysis (cont'd)

 Variance of neuron activations

> If we want the variance of the input and output of a unit to be the
same, then n Var(W,) should be 1. This means

1 1
Var(ﬁﬂ-} _ — =

> If we do the same for the backpropagated gradient, we get
1

Mot

Var(W;) =

> As a compromise, Glorot & Bengio proposed to use
2

Var(W) =
E'-I{] Nin 7 Nout

— Randomly sample the weights with this variance. That's it.

B. Leibe

23

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Sidenote

* When sampling weights from a uniform distribution [a,b]

Y

Again keep in mind that the standard deviation is computed as
1
2 _ _ 2
o° = (b—a)

Glorot initialization with uniform distribution

V6 V6
W~U|— ,
\/nin + Nout \/nin + Nout

Or when only taking into account the fan-in

YERRYE]
\/nin’\/nin

Ww~U

If this had been implemented correctly in Torch from the beginning,
the Deep Learning revolution might have happened a few years
earlier...

B. Leibe

Extension to RelLU

* Important for learning deep models
> Rectified Linear Units (ReLU)

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

Og(a) _ {

I, a>0
0, else

oa

* We can also improve them with proper initialization

> However, the Glorot derivation was based on tanh units,
linearity assumption around zero does not hold for ReLU.

> He et al. made the derivations, derived to use instead

Var(W) = ——

Ttin

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

25

B. Leibe

RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

* Advanced technigues
> Batch Normalization
> Dropout

N
S
—
(O]
e
S
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

B. Leibe

RWTH
Batch Normalization [loffe & Szegedy ’14]

* Motivation
> Optimization works best if all inputs of a layer are normalized.

* |dea

> Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

> l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

> Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

 Effect

> Much improved convergence (but parameter values are important!)
> Widely used in practice

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

27

B. Leibe

RWTH
Dropout [Srivastava, Hinton '12]

(a) Standard Neural Net (b) After applyving dropout.

* |dea
> Randomly switch off units during training.

> Change network architecture for each data point, effectively training
many different variants of the network.

> When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Greatly improved performance

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

28

B. Leibe

RWTHAACHEN
UNIVERSITY

Topics of This Lecture

* Convolutional Neural Networks
> Neural Networks for Computer Vision
> Convolutional Layers
> Pooling Layers

N
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

. 29
B. Leibe

> Inputis 2D

> No pre-segmentation
> Vision is hierarchical
> Vision is difficult

N
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

RWTHAACHEN
UNIVERSITY

Neural Networks for Computer Vision

* How should we approach vision problems?

> Face Y/N?

* Architectural considerations

= 2D layers of units

= Need robustness to misalignments
= Hierarchical multi-layered structure
= Network should be deep

_ 30
B. Leibe

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Why Hierarchical Multi-Layered Models?

* Motivation 1: Visual scenes are hierarchically organized
Y1 Y2 Yk

Ob/j\ect Fa}\ce
Objec/t\ parts Eyes, r/l\ose,
Primitive features Oriented edges
Input Tmage Face Tmage

31

Slide adapted from Richard Turner B. Leibe

|H U:?:;;:_“"—.
Why Hierarchical Multi-Layered Models?

* Motivation 2: Biological vision is hierarchical, too

Object Face Inferotemporal
A A cortex
Object parts Eyes, nose, ... V4: different
M A textures
Primitive features Oriented edges V1:simple and
T T complex cells
' - Photoreceptors,
Input image Face image _
retina

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

32

Slide adapted from Richard Turner B. Leibe

RWTHAACHEN
UNIVERSITY

Inspiration: Neuron Cells

Axonal arborization

\ Axon from another cell

Synapse

Dendrite

\/

Synapses

N
=
—
[}
et
=
)]
£
C
| -
©
Q
— Cell body or Soma
)
=
i
O
©
=

33

Slide credit: Svetlana Lazebnik, Rob Fergus B. Leibe

Hubel/Wiesel Architecture

* D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)

> Visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

Hubel & Weisel featural hierarchy
topographical mapping .
hy[:ner—t:nmple:{ @ high level
cells
complex cells Cz) mid level
simple cells
= ow level

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Slide credit: Svetlana Lazebnik, Rob Fergus B. Leibe

RWTH
Why Hierarchical Multi-Layered Models?

* Motivation 3: Shallow architectures are inefficient at
representing complex functions

=

B

£

=

£

=

®

9 An MLP with 1 hidden layer However, if the function is deep,
2 can implement any function a very large hidden layer may
;cg (universal approximator) be required.

35

Slide adapted from Richard Turner B. Leibe

RWTH
What's Wrong With Standard Neural Networks?

* Complexity analysis

> How many parameters does D
this network have?
0] =3D* + D :
D
> For asmall 32x32 image
0] = 3-32* +32% ~ 3. 10°
D2
* Consequences
. Hard to train D?

> Need to initialize carefully

> Convolutional nets reduce the
number of parameters!

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Slide adapted from Richard Turner B. Leibe

RWTHAACHEN
UNIVERSITY

Convolutional Neural Networks (CNN, ConvNet)

C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5

6@28x28
32x32 S2: f. maps C5:layer pg. layer OUTPUT
120 ' 10

Gt |T_ r"r 84
T

I | Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

* Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
> Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

N
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

37

Slide credit: Svetlana Lazebnik B. Leibe

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

Convolutional Networks: Intuition

* Fully connected network

> E.g. 1000%x1000 image
1M hidden units

— 1T parameters!

* |deas to improve this
> Spatial correlation is local

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

38

Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe

CHEN
. . UNIVERSITY
Convolutional Networks: Intuition

* Locally connected net

> E.g. 1000%x1000 image

1M hidden units
10x10 receptive fields

= 100M parameters!

* |deas to improve this
> Spatial correlation is local
> Want translation invariance

N
S
—
(O]
e
S
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

39
Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe

RWTHAACHEN
. . UNIVERSITY
Convolutional Networks: Intuition

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels

N
S
—
(O]
e
S
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

40
Image source: Yann LeCun

B. Leibe

Slide adapted from Marc’Aurelio Ranzato

RWTHAACHEN
. . UNIVERSITY
Convolutional Networks: Intuition

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels

Learn multiple filters

> E.g. 1000%x1000 image

100 filters
10x 10 filter size

= 10k parameters

* Result: Response map
» size: 1000x1000x 100

» Only memory, not params!

N
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

41
Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe

CHEN
. UNIVERSITY
Important Conceptual Shift

 Before

output layer
Input
layer hidden layer

B. Leibe

Slide credit: FeiFei Li, Andrej Karpathy

* Now:

N
S
—
(O]
e
S
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

42

Convolution Layers

Example
Hidden neuron Image: 32x32x3 volume

In next layer Before: Full connectivity

>O 32x 32 x 3 weights

Now: Local connectivity

One neuron connects to, e.g.,
5x5x3 region.

32 = Only 5x5x3 shared weights.

32

3

* Note: Connectivity is
> Localinspace (5x5inside 32x32)
> But full in depth (all 3 depth channels)

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

43

Slide adapted from FeiFei Li, Andrej Karpathy B. Leibe

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Convolution Layers

32

depth dimension
-

00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

32

3

* All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

Slide adapted from FeiFei Li, Andrej Karpathy B. Leibe

44

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Convolution Layers

32

= 00O O(

32

3

Naming convention:

HEIGHT

/ WIDTH
—

DEPTH

* All Neural Net activations arranged in 3 dimensions
> Multiple neurons all looking at the same input region,

stacked in depth

> Form a single [1x1xdepth] depth column in output volume.

Slide credit: FeiFei Li, Andrej Karpathy

B. Leibe

45

RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

47

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

48

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

49

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

50

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

51

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

52

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

53

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5x5 output

What about stride 2?
— 3x3 output

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

54

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

Convolution Layers

00000

0 Example:

0 7x7 input

0 assume 3 x3 connectivity
0 stride 1

— 5x5 output

What about stride 2?
— 3x3 output

* Replicate this column of hidden neurons across space,
with some stride.

* In practice, common to zero-pad the border.
> Preserves the size of the input spatially.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe

CHEN
L. . _ UNIVERSITY
Activation Maps of Convolutional Filters

Activations:

AR NEEEONEIIA AN NS EO AETI SR AR RS
one filter = one depth slice (or activation map) 5x%5 filters

ﬁlll.l
HHIIIH
BN L
.H Each activation map is a depth
slice through the output volume.

Activation maps

N
S
—
(O]
e
S
(@)
£
[
| S
(4]
()
—
(O]
£
C
(@)
©
=

56

Slide adapted from FeiFei Li, Andrej Karpathy B- Leibe

CHEN
. . UNIVERSITY
Effect of Multiple Convolution Layers

Feature Feature Feature Classifier

Low-Level| |Mid-Level _|High-Level Trainable
— —

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]

N
S
—
(O]
e
S
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

57

Slide credit: Yann LeCun B. Leibe

RWTHAACHEN
UNIVERSITY

Convolutional Networks: Intuition

* Let's assume the filter is an
eye detector

> How can we make the
detection robust to the exact
location of the eye?

N
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

58
Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Convolutional Networks: Intuition

* Let's assume the filter is an
eye detector

> How can we make the
detection robust to the exact
location of the eye?

* Solution:

> By pooling (e.g., max or avg)

filter responses at different
spatial locations, we gain
robustness to the exact spatial
location of features.

59
Image source: Yann LeCun

B. Leibe

Slide adapted from Marc’Aurelio Ranzato

Max Pooling
Single depth slice
x‘ 10124
max pool with 2x2 filters
516 | 7|8 and stride 2 6 | 8
31210 3| 4
112 3 | 4
y
* Effect:

> Make the representation smaller without losing too much information
> Achieve robustness to translations

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

60

Slide adapted from FeiFei Li, Andrej Karpathy B. Leibe

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

.

Max Pooling
Single depth slice
x‘ 10124
max pool with 2x2 filters
516 |78 and stride 2
31210
112 3 | 4
y
* Note

> Pooling happens independently across each slice, preserving the

number of slices.

Slide adapted from FeiFei Li, Andrej Karpathy

B. Leibe

61

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

CNNSs: Implication for Back-Propagation

* Convolutional layers
> Filter weights are shared between locations
= Gradients are added for each filter location.

B. Leibe

62

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

References and Further Reading

* More information on many practical tricks can be found in
Chapter 1 of the book

G. Montavon, G. B. Orr, K-R Mueller (Eds.) Naral Natuomie
Neu_ral Networks: Tricks of the Trade % Tricks of the Trade
Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller
Efficient BackProp, Ch.1 of the above book., 1998.

B. Leibe

63

http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf

References

* RelLu

> X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural
networks, AISTATS 2011.

* |nitialization

> X. Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks, AISTATS 2010.

> K. He, X.Y. Zhang, S.Q. Ren, J. Sun, Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,
ArXiVv 1502.01852v1, 2015.

> A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks, ArXiV
1312.6120v3, 2014.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

64

B. Leibe

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1312.6120

References and Further Reading

* Batch Normalization

> S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, ArXiV
1502.03167, 2015.

* Dropout

> N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.
Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks
from Overfitting, IMLR, Vol. 15:1929-1958, 2014.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

65

B. Leibe

http://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

