Machine Learning — Lecture 16

Convolutional Neural Networks Il

18.12.2017
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http://www.vision.rwth-aachen.de
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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
- Foundations
> Convolutional Neural Networks
- Recurrent Neural Networks e I
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Topics of This Lecture

* Recap: CNNs

* CNN Architectures
> LeNet
> AlexNet
> VGGNet
> GooglLeNet
> ResNets

* Visualizing CNNs
> Visualizing CNN features
> Visualizing responses
> Visualizing learned structures

* Applications

B. Leibe
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_ UNIVERSITY
Recap: Convolutional Neural Networks
C1: feature maps ik maps16@10x1804‘f maps 16@5x5
I3I\|2:<>:l3"2T S@Bx25 S2: f. maps -

CS:l1ayer fg:layer OUTPUT

S |T_ r"r
T

I | Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

* Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
> Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe


http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

RWTHAACHEN
. UNIVERSITY
Recap: Intuition of CNNs

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels

Learn multiple filters

> E.g. 1000%x1000 image

100 filters
10x 10 filter size

= only 10k parameters

* Result: Response map
» size: 1000x1000x 100

» Only memory, not params!
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe
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Important Conceptual Shift

* Before

output layer
Input
layer hidden layer

B. Leibe

Slide credit: FeiFei Li, Andrej Karpathy

* Now:

N
S
—
(O]
e
S
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=




Convolution Layers

Example
Hidden neuron Image: 32x32x3 volume

In next layer Before: Full connectivity

>O 32x 32 x 3 weights

Now: Local connectivity

One neuron connects to, e.g.,
5x5x3 region.

32 = Only 5x5x3 shared weights.

32

3

* Note: Connectivity is
> Localinspace (5x5inside 32x32)
> But full in depth (all 3 depth channels)
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Slide adapted from FeiFei Li, Andrej Karpathy  B- Leibe
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Convolution Layers

32

depth dimension
-

00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

32

3

* All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

Slide adapted from FeiFei Li, Andrej Karpathy  B- Leibe
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Convolution Layers

32

= 00O O(

32

3

Naming convention:

HEIGHT

/ WIDTH
—

DEPTH

* All Neural Net activations arranged in 3 dimensions
> Multiple neurons all looking at the same input region,

stacked in depth

> Form a single [1x1xdepth] depth column in output volume.

Slide credit: FeiFei Li, Andrej Karpathy

B. Leibe
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Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



RWTHAACHEN

Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe
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Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.

N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

16

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe
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Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5% 5 output

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5% 5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5% 5 output

What about stride 2?

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x3 connectivity
stride 1

— 5% 5 output

What about stride 2?
— 3x3 output

* Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

00000

0 Example:

0 7x7 input

0 assume 3 x3 connectivity
0 stride 1

— 5% 5 output

What about stride 2?
— 3x3 output

* Replicate this column of hidden neurons across space,
with some stride.

* In practice, common to zero-pad the border.
> Preserves the size of the input spatially.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe
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Activation Maps of Convolutional Filters

Activations:

AR NEEEONEIIA AN NS EO AETI SR AR RS
one filter = one depth slice (or activation map) 5x%5 filters

ﬁlll.l
HHIIIH
BN L
.H Each activation map is a depth
slice through the output volume.

Activation maps
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Slide adapted from FeiFei Li, Andrej Karpathy  B- Leibe
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Effect of Multiple Convolution Layers

Feature Feature Feature Classifier

Low-Level| |Mid-Level _|High-Level Trainable
— —

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Slide credit: Yann LeCun B. Leibe



RWTHAACHEN
UNIVERSITY

Convolutional Networks: Intuition

* Let's assume the filter is an
eye detector

> How can we make the
detection robust to the exact
location of the eye?
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe
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Convolutional Networks: Intuition

* Let's assume the filter is an
eye detector

> How can we make the
detection robust to the exact
location of the eye?

* Solution:

> By pooling (e.g., max or avg)

filter responses at different
spatial locations, we gain
robustness to the exact spatial
location of features.

26
Image source: Yann LeCun

B. Leibe

Slide adapted from Marc’Aurelio Ranzato



Max Pooling
Single depth slice
x‘ 10124
max pool with 2x2 filters
516 | 7|8 and stride 2 6 | 8
31210 3| 4
112 3 | 4
y
* Effect:

> Make the representation smaller without losing too much information
> Achieve robustness to translations
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Slide adapted from FeiFei Li, Andrej Karpathy  B- Leibe
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Max Pooling
Single depth slice
x‘ 10124
max pool with 2x2 filters
516 |78 and stride 2
31210
112 3 | 4
y
* Note

> Pooling happens independently across each slice, preserving the

number of slices.

Slide adapted from FeiFei Li, Andrej Karpathy

B. Leibe

28
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CNNSs: Implication for Back-Propagation

* Convolutional layers
> Filter weights are shared between locations
= Gradients are added for each filter location.

B. Leibe
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Topics of This Lecture

* CNN Architectures
> LeNet
> AlexNet
> VGGNet
> GooglLeNet
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. UNIVERSITY
CNN Architectures: LeNet (1998)
— C1: feature maps C3:f. maps 16@1 OX1SO4: .

CS:l1ayer fg:layer OUTPUT

S |T_ r"r
T

I | Fullconrlnection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e Early convolutional architecture
> 2 Convolutional layers, 2 pooling layers
> Fully-connected NN layers for classification
> Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe


http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

ImageNet Challenge 2012

- magene IMAGENET
> ~14M labeled internet images | .

| .
> 20k classes ‘ g 2
> Human labels via Amazon & i P

Mechanical Turk

* Challenge (ILSVRC)

> 1.2 million training images
> 1000 classes

. Goal: Predict ground-truth [Deng et al., CVPR’09]
class within top-5 responses

> Currently one of the top benchmarks in Computer Vision

-
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3 43

* Similar framework as LeNet, but
> Bigger model (7 hidden layers, 650k units, 60M parameters)
> More data (10° images instead of 103)
> GPU implementation
Better regularization and up-to-date tricks for training (Dropout)

Y

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. 33

Image source: A. Krizhevsky, |. Sutskever and G.E. Hinton, NIPS 2012
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http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

RWNTH
ILSVRC 2012 Results
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SuperVision Amsterdam

* AlexNet almost halved the error rate

> 16.4% error (top-5) vs. 26.2% for the next best approach
= A revolution in Computer Vision

> Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13

34
B. Leibe
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UNIVERSI

CNN Architectures: VGGNet (2014/15)

Input : Image input
AlexNet ‘ Conv | : Convolutional layer
S Max-pooling layer
5 0 ) ) . 2
Z (lg | |8 5 g 5 n = § Pool ax-pooling lay
= < < = = o
P EC : Fully-connected layer
5 H b b H b b
max 5
< e e W = % Softmax  : Softmax layer
AN o B2 O o X
VGGNet
&
5 0 0O o) 0O 0O o) 0O 0O © 0 (%) - 0O 0O )
S o o ||o o o |l o o o o |9 o o |9 2 | B8 alla|l3|g
= EIE  BIE | E [ I2(E (EE (2 E E I IEIE I E B 3
>
= | | — — — —
Q L QO QO o) o] QO
<< << < < < < <
@ 0] D (0] @ [} D
- = - - - = -
= ¢ N w IS ()] <D ~

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale

Image Recognition, ICLR 2015

B. Leibe

36

Image source: Hirokatsu Kataoka


http://arxiv.org/pdf/1409.1556
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Main ideas
> Deeper network

> Stacked convolutional
layers with smaller
filters (+ nonlinearity)

> Detalled evaluation
of all components

Results

> Improved ILSVRC top-5
error rate to 6.7%.

RWNTH
CNN Architectures: VGGNet (2014/15)

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB imagp)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 [ conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256 f§ conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
convl-256 | conv3-256 || conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
conv3-512 | conv3-512 | conv3-512 conv3-512 conv3-512 || conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool [\ P NN
FC-4096 viallity uscu
FC-4096
FC-1000
soft-max
37
B. Leibe

Image source: Simonyan & Zisserman



RWNTH
Comparison: AlexNet vs. VGGNet

* Receptive fields in the first layer

> AlexNet: 11x11, stride 4

> Zeiller & Fergus: 7x7, stride 2

> VGGNet: 3x3, stridel
* Why that?

> If you stack a 3x3 on top of another 3x3 layer, you effectively get
a 5x5 receptive field.

> With three 3x 3 layers, the receptive field is already 7 x7.
> But much fewer parameters: 3-3%2 = 27 instead of 72 = 49,

> In addition, non-linearities in-between 3x 3 layers for additional
discriminativity.
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s

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

o

3x3 max pooling

Filter
concatenation

CNN Architectures: GoogLeNet (2014/2015)

ﬂ\

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

[}

[

1x1 convolutions

+

Qﬂions 3x3 max pooling
P a—

Previous layer

Previous layer

(a) Inception module, naive version (b) Inception module with dimension reductions

* Main ideas
> "Inception” module as modular component
> Learns filters at several scales within each module

C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,
arXiv:1409.4842, 2014, CVPR*15, 2015.
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B. Leibe


http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf

CHEN
: L. UNIVERSITY
GooglLeNet Visualization

la ik
1., 0 e Bt
T e T S SR EN T BE EE
Eﬁﬁgggagﬁﬁgﬁﬂﬁgﬁﬁgﬁ TRT E ,iﬂ
1 BE i ; \
E ﬂiﬂ Convolution

Inception copies Poolmg
module |
Other

Auxiliary classification
outputs for training the
lower layers (deprecated)
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Results on ILSVRC

Method top-1 val. error (%) | top-5 val. error (%) | top-35 test error (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8

VGG (1 net, multi-crop & dense eval.) 24 .4 7.1 7.0

VGG (ILSVRC submission, 7 nets, dense eval.) ‘ 24.7 7.5 ‘ 7.3 |
GoogleNet (Szegedy et al., 2014) (1 net) - 7.9

GooglLeNet (Szegedy et al., 2014) (7 nets) - 6.7

MSRA (He et al., 2014) (11 nets) - - 8.1

MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al.. 2014) (multiple nets) - - 11.7
Clarifar (Russakovsky et al.. 2014) (1 net) - - 12.5

Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8

Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al.. 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al.. 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -

* VGGNet and GooglLeNet perform at similar level

> Comparison: human performance ~5% [Karpathy]

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

B. Leibe

41

Image source: Simonyan & Zisserman
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Newer Developments: Residual Networks
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AlexNet, 8 layers | ¥ | VGG, 19 layers | | GoogleNet, 22 layers seme
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Newer Developments: Residual Networks

AlexNet, 8 layers % VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

* Core component
> Skip connections

N
0 . X
jg. bypassing each layer
= ~ Better propagation of weight layer
o) .
£ gradients to the deeper F(x) l relu
S layers -
9 ; : weight layer
> > We'll analyze this
c . .
= mechanism in more
: H(x)=F(x)+x
‘E% detall later... (x) ()

43
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ImageNet Performance

28.2

[ 152 layers }

\ 16.4

\ 11 7
} 22 layers | ‘ 19 Ia*,rers

357 I"‘-'-I ‘ 8Iaver5 H 8 layers

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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R\N'|I1-I L J
Understanding the ILSVRC Challenge

. :orpc?bglienri!the scope of the I M ‘.b G E " E :

> 1000 categories
> 1.2M training images
> 50k validation images

* This means...

> Speaking out the list of category
names at 1 word/s...

...takes 15mins.

> Watching a slideshow of the validation images at 2s/image...
...takes a full day (24h+).

> Watching a slideshow of the training images at 2s/image...
...takes a full month.
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A4TL s salaTidalic, Rli lillTe, Sllaelddlpl, Aldldablifos, SAldde i FL Al td, Sl Rl Sl Lkl SR LL 2 aRdl e
American alligator, American black bear, American chameleon, American coot,
American egret, American lobster, American Staffordshire terrier, amphibian,
analog clock, anemone fish, Angora, ant, apiary, Appenzeller, apron, Arablan
camel, Arctic fox, armadillo, artichoke, ashcan, assault rifle, Australian terrier,
axolot]l, baboon, backpack, badger, bagel, bakery, balance beam, bald eagle, bal-
loon, ballplayver, ballpoint, banansa, Band Aid, banded gecko, banjo, bannister,
barbell, barber chair, barbershop, barn, barn spider, barometer, barracouta, bar-
rel, barrow, baseball, basenji, basketball, basset, bassinet, bassoon, bath towel,
bathing cap, bathtub, beach wagon, beacon, beagle, beaker, bearskin, beaver,
Bedlington terrier, bee, bee eater, beer bottle, beer glass, bell cote, bell pepper,
Bernese mountain dog, bib, bicycle-built-for-two, bighorn, bikini, binder, binoc-
ulars, birdhouse, bison, bittern, black and gold garden spider, black grouse, black
stork, black swan, black widow, black-and-tan coonhound, black-footed ferret,
Blenheim =spaniel, bloodhound, bluetick, boa constrictor, boathouse, bobsled,
bolete, bolo tie, bonnet, book jacket, bookcase, bookshop, Border collie, Border
terrier, borzol, Boston bull, bottlecap, Bouvier des Flandres, bow, bow tie, box
turtle, boxer, Brabancon griffon, brain coral, brambling, brass, brassiere, break-
water, breastplate, briard, Brittany spaniel, broccoli, broom, brown bear, bub-
ble, bucket, buckeve, buckle, bulbul, bull mastiff, bullet train, bulletproof vest,
bullfrog, burrito, bustard, butcher shop, butternut sguash, cab, cabbage butter-
fly, cairn, caldron, can opener, candle, cannon, canoe, capuchin, car mirror, car
wheel, carbonara, Cardigan, cardigan, cardoon, carocusel, carpenter's kit, car-
ton, cash machine, cassette, cassette player, castle, catamaran, cauliflower, CD
plaver, cello, cellular telephone, centipede, chain, chain mail, chain saw, chain-
link fence, chambered nautilus, cheeseburger, cheetah, Chesapeake Bay retriever,
chest, chickadee, chiffonier, Chihuahua, chime, chimpanzee, china cabinet, chi-
ton, chocolate sauce, chow, Christmas stocking, church, cicada, cinema, cleaver,
cliff, cliff dwelling, cloak, clog, clumber, cock, cocker spaniel, cockroach, cocktail
shaker, coffee mug, coffeepot, coho, coil, collie, colobus, combination lock, comie
book, common iguana, common newt, computer kevboard, conch, confectionery,
consomme, container ship, convertible, coral fungus, coral reef, corkscrew, corn,
cornet, coucal, cougar, cowboy boot, cowboy hat, covote, cradle, crane, crane,
crash helmet, crate, crayfish, crib, cricket, Crock Pot, croguet ball, crossword
puzzle, crutch, cucumber, cuirass, cup, curly-coated retriever, custard apple,
dailsy, dalmatian, dam, damselfly, Dandie Dinmont, desk, desktop computer,
dhole, dial telephone, diamondback, diaper, digital clock, digital watch, dingo,
dining table, dishrag, dishwasher, dizsk brake, Doberman, dock, dogsled, dome,
doormat, dough, dowitcher, dragonfly, drake, drilling platform, drum, drumstick,
dugong, dumbbell, dung beetle, Dungeness crab, Dutch oven, ear, earthstar,
echidna, eel, eft, eggnog, Egyptian cat, electric fan, electric guitar, electric lo-
comotive, electric ray, English foxhound, English setter, English springer, enter-
tainment center, EntleBucher, envelope, Ezskimo dog, espresso, espresso maker,
European fire salamander., European gallinule, face powder, feather boa, fid-
dler crab, fig, file, fire engine, fire screen, fireboat, flagpole, flamingo, flat-
coated retriever, flatworm, flute, fly, folding chair, football helmet, forklift, foun-
tain, fountain pen, four-poster, fox squirrel, freight car, French bulldog, French
horn, French loaf, frilled lizard, frying pan, fur coat, gar, garbage truck, gar-
den spider, garter snake, gas pump, gasmask, gazelle, German shepherd, Ger-
man short-haired pointer, gevser, giant panda, giant schnauzer, gibbon, Gila
monster, go-kart, goblet, golden retriever, goldfinch, goldfish, golf ball, golfcart,
gondola, gong, goose, Gordon setter, gorilla, gown, grand planco, Granny Smith,
grasshopper, Great Dane, great grey owl, Great Pyrenees, great white shark,
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More Finegrained Classes
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Image source: O. Russakovsky et al.
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Auwi.n\eme

Quirks and Limitations of the Data Set
)
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* Generated from WordNet ontology
> Some animal categories are overrepresented
> E.g., 120 subcategories of dog breeds

= 6.7% top-5 error looks all the more impressive

N
S
—
(O]
e
S
(@)
£
C
| S
(4]
(O]
—
(O]
£
C
(®)
©
=

48

Image source: A. Karpathy
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Topics of This Lecture

* Visualizing CNNs
> Visualizing CNN features
> Visualizing responses
> Visualizing learned structures
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Visualizing CNNs
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Layer Above
Reconstruction

Switches
. Max Pooling
Max Unpooling O—‘w

Pooled Maps

Unpooled Maps Rectified Feature Maps
Rectified Linear Rectified Linear
Function Function
Rectified Unpooled Maps Feature Maps
Convolutional Convolutional

Filtering {FT} Filtering {F}
& DeconvNet ConvNet
E Reconstruction Layer Below Pooled Maps
—
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e |
£
; Layer Above I
8) Reconstruction I - : Pooled Maps
- é "\. .
8 Unpooling ‘Q Pooling
| ‘ Max Locations
()] ““ “Switches”
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© Unpooled Rectified
= ‘ Maps Feature Maps

' 50

Image source: M. Zeiler, R. Fergus
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Visualizing CNNs

: reconstruction of image patches top 9 image patches that cause
from that unit maximal activation in layer 2 unit
(indicates aspect of patches
which unit is sensitive to)

M. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Neural Networks,
ECCV 2014. 51

Slide credit: Richard Turner B. Leibe Image source: M. Zeiler, R. Fergus
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https://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

52

Image source: M. Zeiler, R. Fergus
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Visualizing CNNs
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What Does the Network React To?

* QOcclusion Experiment

> Mask part of the image with an
occluding square.

> Monitor the output
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What Does the Network React To?

Input image

True Label: Pomeranian =

p(True class) Most probable class

B Pomeranian
O Tennis ball
O Keeshond
B Pskinese
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Slide credit: Svetlana Lazebnik, Rob Fergus Image source: M. Zeiler, R. Fergus
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What Does the Network React To?

Input image

Total activa- Other activa-
tion In most tions from the
active 5t same feature

layer feature
map

map.
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Slide credit: Svetlana Lazebnik, Rob Fergus Image source: M. Zeiler, R. Fergus
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What Does the Network React To?

Input image

p(True class)

P s

Fo g

[LOS

Slide credit: Svetlana Lazebnik, Rob Fergus

®True Labé'l—:Ear Wheel

Most probable class

57
Image source: M. Zeiler, R. Fergus
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What Does the Network React To?

Input image

Other activa-

tions from the
same feature

map.

Total activa-
tion in most
active 5"
layer feature
map
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Slide credit: Svetlana Lazebnik, Rob Fergus Image source: M. Zeiler, R. Fergus
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What Does the Network React To?

Input image

n Hound
"’ :VA.-‘

Most probable class

B Afghan hound
B Gordon setier
W lrish s=tter

O Morarboard
O Fur coat

O Academic gown
O Australian terrier

True Label: Afgha

p(True class)

M Ice lolly
Bl Vizsla
B Meck brace
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Slide credit: Svetlana Lazebnik, Rob Fergus Image source: M. Zeiler, R. Fergus
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What Does the Network React To?

Input image

True Label: Afghan Hound
W

Other activa-

tions from the
same feature

map.

Total activa-
tion in most
active 5t -
layer feature
map
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Slide credit: Svetlana Lazebnik, Rob Fergus Image source: M. Zeiler, R. Fergus
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Inceptionism: Dreaming ConvNets

optimize
with prior

* |dea
> Start with a random noise image.

> Enhance the input image such as to enforce a particular response
(e.g., banana).

> Combine with prior constraint that image should have similar
statistics as natural images.

— Network hallucinates characteristics of the learned class.
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http://googleresearch.blogspot.de/2015/06/inceptionism-going-deeper-into-neural.html



Inceptionism: Dreaming ConvNets

* Results
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http://googleresearch.blogspot.de/2015/07/deepdream-code-example-for-visualizing.html



RWTH
Inceptionism: Dreaming ConvNets

https://www.youtube.com/watch?v=IREsx-xWQOQ0g
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Topics of This Lecture

Recap: CNNs

CNN Architectures
LeNet
AlexNet
VGGNet
GooglLeNet

Visualizing CNNs
Visualizing CNN features
Visualizing responses
Visualizing learned structures

* Applications
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The Learned Features are Generic

75

o)1
a

|9}
=
T

Accuracy %

— Bo etal

35_ ................ ................ ......... *Our Model_

——Sohnetal |

10 20 30 40
Training Images per—class

* Experiment: feature transfer
> Train network on ImageNet

50

60

state of the art
level (pre-CNN)

> Chop off last layer and train classification layer on CalTech256
— State of the art accuracy already with only 6 training images

B. Leibe

65

Image source: M. Zeiler, R. Fergus



N~
S
—
(O]
e
=
(@)
£
C
| S
(4]
(O]
—
(O]
£
e
(®)
©
=

Other Tasks: Detection

R-CNN: Regions with CNN features

AR TR e AR |
A - - :
5 S =3

warped region

aeroplane? no.

person? yes.

“ A '.—; ¥
B HE R, ==
il | & - -
\
+ L% .
o
-
T
& =
NG 5 f'-. == 2
N\ | v
¢ o5 :
R 7\ \
ifr/ i\ J \% ]
| [N e

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

tvmonitor? no.

* Results on PASCAL VOC Detection benchmark
> Pre-CNN state of the art: 35.1% mAP  [Uijlings et al., 2013]
33.4% mAP  DPM
> R-CNN: 53.7% mAP

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation, CVPR 2014 66



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

RWNTH
Most Recent Version: Faster R-CNN

* One network, four losses FERSR— S
> Remove dependence on loss regression loss
external region proposal
o y 4
Classification Bounding-box _
loss regression loss Rol pooling
R 1 p I
» Instead, infer region proposals iy
A ay/

proposals from same
CNN Region Proposal Network

> Feature sharing
> Joint training

= Object detection in
a single pass becomes
possible.

= MAP improved to >70%

feature map
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Slide credit: Ross Girshick



Faster R-CNN (based on ResNets)

N
person : 0.998 {1 'Y
. | | | \ ' pers
.Epersonc;(_)p [el son : 094 >

)

ag o A

Sperson 0 946

' : ]
dining table 0 879 cake;aﬂ(df%g:t\S

7person : '5.9 35

L —
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K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
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CVPR 2016. : 68

B. Leibe



http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

RWTH
Faster R-CNN (based on ResNets)

. person:0.910 w person : 0.998

d A\
person 0.998 = umbrella: 0.910

handbag : 0.667 MK e
LM M l'iﬁafa'ta'wpﬁlg_z
chair : 0.757).972 chair : 0.639 "
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K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
CVPR 2016. 69

B. Leibe



http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Umfled
Real-Time Object Detection, CVPR 2016.



https://pjreddie.com/media/files/papers/yolo_1.pdf

Semantic Image Segmentation

forward /inference

hackward/learning

===

% g™ 50 80

* Perform pixel-wise prediction task

> Usually done using Fully Convolutional Networks (FCNS)
— All operations formulated as convolutions
— Advantage: can process arbitrarily sized images
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71
Image source: Long, Shelhamer, Darrell




Semantic Image Segmentation

* Encoder-Decoder Architecture
> Problem: FCN output has low resolution
> Solution: perform upsampling to get back to desired resolution
> Use skip connections to preserve higher-resolution information
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Image source: Newell et al.
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Semantic Segmentation

[Pohlen, Hermans, Mathias, Leibe, CVPR 2017]

* More recent results
> Based on an extension of ResNets

Machine Learning Winter ‘17




Other Tasks: Face Verification

| T
=z [
S|\ ple
< | Q|
= =
o =l
n | O
& 1
o | i
w |
o | |
& " C1: M2: C3: L4: LS: L6: F7: F8:
Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d

Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

(]

©

[1}] E H H H H :

2 095 N R N P

@ Human cropped (97.5%)

8 094 DeepFace-ensemble (97.35%)
3 0.03 DeepFace-single (97.00%)

i ——TL Joint Baysian (96.33%)

.. —— High-dimensional LBP (95.17%)
Tom-vs-Pete + Attribute (93.30%)
— combined Joint Baysian (92.42%)

090 ‘ L I L I L [l " 1 " 1 N 1 L 1 L 1 " 1 N ]
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

false positive rate

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-
Level Performance in Face Verification, CVPR 2014
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Slide credit: Svetlana Lazebnik


https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
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Commercial Recognition Services

e E.g., clarifai

ol B |

Try it out with your own media

Upload an image or video file under 100mb or give us a direct link to a file on the web.

(Pazte a url here... ) m
( USE THE URL ) CHOOSE A FILE INSTEAD

*By using the demo you agree to our terms of service

* Be careful when taking test images from Google Search
> Chances are they may have been seen in the training set...
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Image source: clarifai.com

B. Leibe



Commercial Recognition Services

ight bridge

suspension bridge

coffee croissant beverage winter snow cold mamma

morning breakfast food dog arctic

clarifai
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Image source: clarifai.com

B. Leibe



References and Further Reading

* LeNet

> Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proceedings of the IEEE
86(11): 2278-2324, 1998.

* AlexNet

> A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification
with Deep Convolutional Neural Networks, NIPS 2012.

* VGGNet

> K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for
Large-Scale Image Recognition, ICLR 2015

* GoogLeNet

> C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,
arXiv:1409.4842, 2014.
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http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/pdf/1409.1556
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/43022.pdf
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References and Further Reading

* ResNet

> K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016.
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

References

* RelLu

> X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural
networks, AISTATS 2011.

* Initialization

> X. Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks, AISTATS 2010.

> K. He, X.Y. Zhang, S.Q. Ren, J. Sun, Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,
ArXiVv 1502.01852v1, 2015.

> A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks, ArXiV
1312.6120v3, 2014.
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http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1312.6120

References and Further Reading

* Batch Normalization

> S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, ArXiV
1502.03167, 2015.

* Dropout

> N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.
Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks
from Overfitting, IMLR, Vol. 15:1929-1958, 2014.
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http://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

