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Topics of This Lecture Recap: Convolutional Neural Networks
* Recap: CNN Architectures g Ca:t. maps 16@10x10
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+ Residual Networks il "rr Ol el
» Detailed analysis I-
» ResNets as ensembles of shallow networks |—
|
* Applications of CNNs = [ mnmkﬁmmiwismmms
» Object detection
v » Semantic segmentation is| * Neural network with specialized connectivity structure
2 » Face identification 2 . Stack multiple stages of feature extractors
?g' E, » Higher stages compute more global, more invariant features
E g » Classification layer at the end
it S
% § Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
é é document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
B. Leibe N de credit Svetlana | azebnik B. Lelte °
I M Y 1
Recap: AlexNet (2012) Recap: VGGNet (2014/15)
‘ * Main ideas F e
. Deeper network [P | M | 1

» Stacked convolutional [ wwiE T il ;
layers with smaller S —
filters (+ nonlinearity) T T T ean T | e

» Detailed evaluation
of all components

N 3-256 | com
3256 | cond-2

pooling

* Similar framework as LeNet, but
» Bigger model (7 hidden layers, 650k units, 60M parameters)
» More data (10° images instead of 103)
» GPU implementation
» Better regularization and up-to-date tricks for training (Dropout)
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* Results o513

» Improved ILSVRC top-5 | S
error rate to 6.7%. A1 | comdf13 | comd 12

com3-512 | com3-312 | com3-512
convi-512

maxpoo] N
T8 Mainty used—
FC096
FC-1000

~
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

A. Krizhevsky, . Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012.

Jmage source: A Kizhevsky | Siiskever and G E Linion NIPS 201

~
g
=
=)
=
£
o
o
3
Py
=
=
S
)
=

6

B. Leibe



http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Recap: GoogLeNet (2014)
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* |deas:
» Learn features at multiple scales
» Modular structure gl 1
fy8a
1l HEH
selaed iy
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= Convolution
3 Inception . Pooling
£ module copres
E) = Other
E —
3 - Auxiliary classification
° = outputs for training the
';—E lower layers (deprecated)
= b Inception module with dimension reductions 8
B. Leibe I egedy et al
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Topics of This Lecture
* Residual Networks
» Detailed analysis
» ResNets as ensembles of shallow networks
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Recan: Residual Networks

AlexNet, 8 layers * VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) {ILSVRC 2014) (ILSVRC 2015)

¢ Core component
» Skip connections
bypassing each layer
» Better propagation of
gradients to the deeper F(x)
layers

weight layer
weight layer

Hx)=F(x)+x @
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Recap: Visualizing CNNs

Low-Level| |Mid-Level| [High-Level Trainable
L L -
Feature Feature Feature Classifier
N
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.g Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
E
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Recap: Residual Networks
AlexNet, 8 layers + VGG, 19 layers ¥ GoogleNet, 22 |ayers  memrees
(ILSVRC 2012} - (ILSVRC 2014) v (ILSVRC 2014) .
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Spectrum of Depth
5 layers: easy
>10 layers: initialization, Batch Normalization
>30 layers: skip connections
>100 layers: identityskip connections
r& >1000 layers: ?
shallower deeper
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Spectrum of Depth Initialization
5 layers: easy 22-layer RelU net: 30-layer RelU net:
good init converges faster good initis able to converge

>10 layers: initialization, Batch Normalization
30 layers: skip connections
>100 layers: identity skip connections
r r» >1000 layers: ?

shallower deeper

= =
g 8
= * Deeper models are more powerful £
2 . But training them is harder. =)+ Importance of proper initialization (Recall Lecture 14)
c . . " <
5 » Main problem: getting the gradients back to the early layers s » Glorot initialization for tanh nonlinearities
E » The deeper the network, the more effort is required for this. é . He initialization for ReLU nonlinearities
E § = For deep networks, this really makes a difference!
= ‘ 15 = ; 16
ide adapted from Kaiming He B. Leibe de credit: Kaiming He B. Leibe
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Batch Normalization Going Deeper
08 best of w/ BN w/o BN * Checklist
. £ > Initialization ok
i PEE ki - » Batch normalization ok
3 . Are we now set?
° = = = Incaption — Is learning better networks now as simple as stacking more layers?
==+ BN-Baseline
++ BN-x5
~ BN-x30 ~
= o BN-xS-Sigmoid =
= 4  Steps to match Inception 5
z - - : - —— iter, £
s 10M 15M 20M 25M 30M s
[} o
£ £
= - =
if| * Effect of batch normalization g
2 » Greatly improved speed of convergence 2
S S
© ©
= 17 = 18
B. Leibe Jage souce: lofte ed de credit Kaiming He B. Lelte
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Simply Stacking Layers? Simply Stacking Layers?
CIFAR-10 CIFAR-10 ImageNet-1000
train error (%) test error (%) . 56-layer ;
"k : . Pt
VA -layer 32-layer
I 56-layer 20-layer
|
\"\_\w 1
A% 20-layer o
20-layer e
~ 0 - - . ~
; : D ey ‘ ' ' T (ledy ‘ ;
§ § * General observation
=l Experiment going deeper E » Overly deep networks have higher training error
§ . Plain nets: stacking 3x3 convolution layers § » A general phenomenon, observed in many training sets
E = 56-layer net has higher training error than 20-layer net Tg‘
= =
8 8
= 19 = 20
ide credit Kaiming He B. Leibe de credit Kaiming He B. Leibe
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Why Is That???

* A deeper model should not have
higher training error!

» Richer solution space should allow it
to find better solutions

* Solution by construction

» Copy the original layers from a learned
shallower model

Set the extra layers as identity

Such a network should achieve at least
the same low training error.

v

v

* Reason: Optimization difficulties

» Solvers cannot find the solution when
going deeper...

ide credit: Kaiming He. B. Leibe
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Deep Residual Learning

* Residual net

weight layer
weight layer

H(x)=F(x)+x &

F(x) identity

» H(x) is any desired mapping

5 > wei i

» Hope the 2 weight layers fit F(x)
LetH(x) = F(x) +x

ide credit- Kaiming He B. Leibe
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Network Design

* Simple, VGG-style design
» (Almost) all 3x3 convolutions
» Spatial size /2 = #filters - 2
(same complexity per layer)
» Batch normalization
= Simple design, just deep.

plain net

B. Leibe
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Deep Residual Learning
* Plain net

weight layer

any two
ked layers

weight layer

H(x)

» H(x) is any desired mapping
» Hope the 2 weight layers fit H(x)

; 22
de credit: Kaiming He B. Leibe
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Deep Residual Learning
e F(x) is aresidual mapping w.r.t. identity
x
F(x) identity
weight layer X
H(x) = F(x) +x S
relu
» If identity were optimal, it is easy to set weights as 0
» If optimal mapping is closer to identity, it is easier to find small
fluctuations
» Further advantage: direct path for the gradient to flow to the
previous stages B
4
de credit Kaiming He B. Leibe
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ImageNet Performance

28.2

25.8
152 layers

220ayers |[ 19 \aycm I
3.57 l I 8 layers 8 mym shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'1Z  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
26

de credit Kaiming He B. Leibe
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PASCAL VOC Object Detection Performance

101 layers
A
K
86
Engines of K
o e 66 Ky
visual recognition 58 g
.
34 A‘J
- 16 layers
‘ L
<hallow “. ... l
HOG, DPM AlexNet VGG ResNet
{RCNN) (RCNN) (Faster RCNN)*

PASCAL VOC 2007 Object Detection mAP (%)

’ 27
ide credit: Kaiming He. B. Leibe

RWTH LGN
What Is The Secret Behind ResNets?

* Empirically, they perform very well, but why is that?

* He’s original explanation [He, 2016]

» ResNets allow gradients to pass through the skip connections in
unchanged form.

» This makes it possible to effectively train deeper networks.
= Secret of success: depth is good
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* More recent explanation [Veit, 2016]
» ResNets actually do not use deep network paths.
» Instead, they effectively implement an ensemble of shallow
network paths.
= Secret of success: ensembles are good
A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like Ensembles
of Relatively Shallow Networks, NIPS 2016 29
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Effect of Deleting Layers at Test Time

Top-1 error when dropping any single block s Error when deleting layers
from 200-laysr residusl nstwark on Imagehs H

o1} T.-
I
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17 3 45 67 8 91011121314151617161920
Nurnbsr of layers deleted

F-- -

e
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top 1 emor
emor

0 o
dropped layer index

¢ Experiments on ImageNet classification
» When deleting a layer in VGG-Net, it breaks down completely.
» In ResNets, deleting a single layer has almost no effect
(except for the pooling layers)
» Deleting an increasing number of layers increases the error smoothly

= Paths in a ResNet do not strongly depend on each other.
31

ietal 201

Machine Learning Winter ‘17

Machine Learning Winter 17

RWTH CHET
Topics of This Lecture
* Residual Networks
» Detailed analysis
» ResNets as ensembles of shallow networks
B. Leibe 2
RWTH CHET

Idea of the Analysis

Effect of deleting layer f,

o

Ordinary feedforward network

Buikding block

Residual network Unraveled view
* Unraveling ResNets
» ResNets can be viewed as a collection of shorter paths through
different subsets of the layers.

» Deleting a layer corresponds to removing only some of those paths
30
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Which Paths Are Important?

agiers  distribution of path length total gradient magnitude per path length

05

number of paths
total gradient magnitude

[ 0 20 . a0 0

path length path length

* How much does each of the paths contribute?
» Distribution of path lengths follows a Binomial distribution
» Sample individual paths and measure their gradient magnitude
= Effectively, only shallow paths with 5-17 modules are used!

= This corresponds to only 0.45% of the available paths here. 32

eilelal 201



http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
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Summary

Buiding biock

* The effective paths in ResNets
are relatively shallow
» Effectively only 5-17 active modules

* This explains the resilience to deletion
~ Deleting any single layer only affects a
subset of paths (and the shorter ones
less than the longer ones).

* New interpretation of ResNets
» ResNets work by creating an ensemble
of relatively shallow paths
» Making ResNets deeper increases the
size of this ensemble
» Excluding longer paths from training
does not negatively affect the results.

tolal gradient magnitude

path lengtn

33

Image squrce: Vet et al 201
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The Learned Features are Generic

state of the art
level (pre-CNN)

=== Qur Mode|

0 —— Sohn stal
0 10 20 30 40 50 80
Training Images per—class.
¢ Experiment: feature transfer
» Train AlexNet-like network on ImageNet
» Chop off last layer and train classification layer on CalTech256
= State of the art accuracy already with only 6 training images!
B. Leibe lmage source- M. iler B Eerau:
RWTH/ACHEN
Transfer Learning with CNNs
—m%J 1 Train on —m% 3 |f you have medium
cometd ImageNet conetd sized dataset,
conv-64 conv-64 . .
maxpool maxpool “finetune” {nstead: use
e e the old weights as
conv-128 conv-128 initialization, train the
maxpool mmrpool full network or only
£ore255 Som-235 some of the higher
conv-256 conv-256
— — layers.
conv-512 conv-512
conv-512 cony-512 . . .
maxpool maxpool Retrain bigger portion
conv-512 conv-512 of the network
<onv-512 conv-512
maxpaol maxpool
FC-2096 FC-a096
Fc.a0se Fcaoss
FC-1000 FC-1000
softmax softmax
37
de credit- Andrei Karpath, B. Leibe
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RWTH CHET
Topics of This Lecture
* Applications of CNNs
» Object detection
» Semantic segmentation
» Face identification
. 34
B. Leibe
RWTH CHET
Transfer Learning with CNNs
~m% 1 Train on —m%e ] 2 If small dataset: fix all
conv-64 conv-64 .
=y ImageNet =y vyelghts (treat CNN as
maxpaol ‘maxpool fixed feature extrac-
e e tor), retrain only the
conv.128 conv-128 classifier
maxpool maxpool
conv-256 conv-256
conv-256 conv-256
maxpool maxpool
conv-512 conv-512
cony-512 conv-512
maxpool maxpaol l.e., swap the Softmax
conv-512 conv-512 layer at the end
conv-512
maxpool
FC-a096
Fcaoss
FC-1000
softmax
36
de credit Andrei Karpath, B. Lelte
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Other Tasks: Detection

R-CNN: Regions with CNN features

warped regi

PR
CNNIN, :
2. Extract ;egion
proposals (~2k)

3. Compute
CNN features

image

* Results on PASCAL VOC Detection benchmark
» Pre-CNN state of the art: 35.1% mAP  [Uijlings et al., 2013]
33.4% mAP  DPM

» R-CNN: 53.7% mAP

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation, CVPR 2014

4 acroplane? no.
H B> person? yes.
tvmonitor? no.

4. Classify
regions

40



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

RWTH O
More Recent Version: Faster R-CNN

* One network, four losses

» Remove dependence on
external region proposal

algorithm.
. Rol poaling
. Instead, infer region proposals ;

proposals from same

CNN. Region Proposal Metwork

» Feature sharing
» Joint training
= Object detection in

a single pass becomes
possible.

Machine Learning Winter ‘17
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ide credit. Ross Girshick
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Faster R-CNN (based on ResNets)

person : 0.998

umbrella : 0.910 v
handbag - 0.667%8

chair { 0.7571.972 cl
e

-

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition

Machine Learning Winter ‘17

CVPR 2016. o Leibe

Object Detection Performance
ao% PASCALVOC
— 70%
=
s
E 6% Before deep convnets
5 | A
G 50% r - \ RN |
S | \ 1 J
£ a0% A A Y
2 A Using deep convnets
£ 30% A
E
< A
E E 20% a
o
z E 10%
;m 0%
E 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
§ year
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de credit- Ross Girshick. B. Leibe

Faster R-CNN (based on ResNets)

! person : 0.998;

Machine Learning Winter ‘17

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
CVPR 2016. 42

B. Leibe

YOLO

Machine Learning Winter ‘17

J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified,
Real-Time Object Detection, CVPR 2016. 44

Semantic Image Segmentation

forward /inference

backward, learning

Sl

e i
[CO =

78" A 0
o

* Perform pixel-wise prediction task
» Usually done using Fully Convolutional Networks (FCNs)
— All operations formulated as convolutions
— Advantage: can process arbitrarily sized images
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://pjreddie.com/media/files/papers/yolo_1.pdf

CNNs vs. FCNs

“tabby cat”

%ﬁfﬁﬁh e o
e w8 bl
K

\

convolutionalization
* FCN

* CNN

tabby cat heatmap

* Intuition

» Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class

Machine Learning Winter ‘17

Image source: Long, Shelhamer, Darrel

Semantic Segmentation

* Current state-of-the-art
» Based on an extension of ResNets

Machine Learning Winter ‘17

[Pohlen Hermans Mathias, Leibe CVPR 2017

Learning Similarity Functions

* Siamese Network

» Present the two stimuli to two
identical copies of a network
(with shared parameters)

» Train them to output similar
values if the inputs are
(semantically) similar.

Patches

* Used for many matching tasks
» Face identification
» Stereo estimation
» Optical flow

Siamese network

ID(x1) = D(xa)|l2

(x1,x3,8)
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* Encoder-Decoder Architecture
» Problem: FCN output has low resolution
» Solution: perform upsampling to get back to desired resolution
» Use skip connections to preserve higher-resolution information

Machine Learning Winter ‘17

Image source: Newell et al

Other Tasks: Face Identification

REPRESENTATION |

L

Human cropped (7 8%)

DeepFace-ensamle (37 35%)

—— DeepFacesingle (47 00%)

—— 7L Joint Baysian (95 33%)

—— High-dimensional LBP (95.17%)

——— Tom.vs-Pete + Atiibute (83.30%;
combined Joins Baysian (52 42%)

D 06 010 015 020 028 030 038 G40 045 G5
fatsa positiva rate

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-
Level Performance in Face Verification, CVPR 2014

de credit- Svetlana | azebnik
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Extension: Triplet Loss Networks
* Learning a discriminative embedding

» Present the network with triplets of examples
Negative Anchor Positive

» Apply triplet loss to learn an embedding f(-) that groups the positive

= Used with great success in Google’s FaceNet face identification

= example closer to the anchor than the negative one.
s 2 2
- 17(25) = £z < 11F(25) = @)z
=

= Negative N

= Anch LEARNING —.
§ — Negative
2 Positive Anchor Positive

=

8

=
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https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
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References and Further Reading References: Computer Vision Tasks

* ResNets

» K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image
Recognition, CVPR 2016.

* Object Detection
» R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature
Hierarchies for Accurate Object Detection and Semantic
Segmentation, CVPR 2014.
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks, NIPS 2015.
» J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once:
Unified Real-Time Object Detection, CVPR 2016.
» W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C-Y. Fu, A.C.
Berg, SSD: Single Shot Multi Box Detector, ECCV 2016.

» A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like
Ensembles of Relatively Shallow Networks, NIPS 2016.
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References: Computer Vision Tasks

* Semantic Segmentation
» J.Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for
Semantic Segmentation, CVPR 2015.

» H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing
Network, arXiv 1612.01105, 2016.
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http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
https://research.google.com/pubs/DumitruErhan.html
https://research.google.com/pubs/ChristianSzegedy.html

