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Convolutional Neural Networks III

08.01.2018

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

B. Leibe
3
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Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

4
B. Leibe
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Recap: Convolutional Neural Networks

• Neural network with specialized connectivity structure

 Stack multiple stages of feature extractors

 Higher stages compute more global, more invariant features

 Classification layer at the end

5
B. Leibe

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to

document recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Slide credit: Svetlana Lazebnik

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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Recap: AlexNet (2012)

• Similar framework as LeNet, but

 Bigger model (7 hidden layers, 650k units, 60M parameters)

 More data (106 images instead of 103)

 GPU implementation

 Better regularization and up-to-date tricks for training (Dropout)

6
Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Recap: VGGNet (2014/15) 

• Main ideas 

 Deeper network

 Stacked convolutional

layers with smaller

filters (+ nonlinearity)

 Detailed evaluation

of all components

• Results

 Improved ILSVRC top-5

error rate to 6.7%.

7
B. Leibe

Image source: Simonyan & Zisserman

Mainly used
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Recap: GoogLeNet (2014)

• Ideas: 

 Learn features at multiple scales

 Modular structure

8
B. Leibe

Inception

module
+ copies

Auxiliary classification 

outputs for training the 

lower layers (deprecated)

Image source: Szegedy et al.
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Recap: Visualizing CNNs

10
B. LeibeSlide credit: Yann LeCun



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

11
B. Leibe
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Recap: Residual Networks

12
B. LeibeSlide credit: Kaiming He
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Recap: Residual Networks

• Core component

 Skip connections 

bypassing each layer

 Better propagation of 

gradients to the deeper

layers

13
B. Leibe
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Spectrum of Depth

14
B. LeibeSlide credit: Kaiming He
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Spectrum of Depth

• Deeper models are more powerful

 But training them is harder.

 Main problem: getting the gradients back to the early layers

 The deeper the network, the more effort is required for this.

15
B. LeibeSlide adapted from Kaiming He
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Initialization

• Importance of proper initialization (Recall Lecture 14)

 Glorot initialization for tanh nonlinearities

 He initialization for ReLU nonlinearities

 For deep networks, this really makes a difference!

16
B. LeibeSlide credit: Kaiming He
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Batch Normalization

• Effect of batch normalization

 Greatly improved speed of convergence

17
B. Leibe

Image source: Ioffe & Szegedy
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Going Deeper

• Checklist

 Initialization ok

 Batch normalization ok

 Are we now set?

– Is learning better networks now as simple as stacking more layers?

18
B. LeibeSlide credit: Kaiming He



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Simply Stacking Layers?

• Experiment going deeper

 Plain nets: stacking 33 convolution layers

 56-layer net has higher training error than 20-layer net

19
B. LeibeSlide credit: Kaiming He
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Simply Stacking Layers?

• General observation

 Overly deep networks have higher training error

 A general phenomenon, observed in many training sets

20
B. LeibeSlide credit: Kaiming He
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Why Is That???

• A deeper model should not have

higher training error!

 Richer solution space should allow it

to find better solutions

• Solution by construction

 Copy the original layers from a learned 

shallower model

 Set the extra layers as identity

 Such a network should achieve at least 

the same low training error.

• Reason: Optimization difficulties

 Solvers cannot find the solution when

going deeper…

21
B. LeibeSlide credit: Kaiming He



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

Deep Residual Learning

• Plain net

 𝐻(𝑥) is any desired mapping

 Hope the 2 weight layers fit 𝐻(𝑥)

22
B. LeibeSlide credit: Kaiming He
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Deep Residual Learning

• Residual net

 𝐻(𝑥) is any desired mapping

 Hope the 2 weight layers fit 𝐻(𝑥)

 Hope the 2 weight layers fit 𝐹(𝑥)
Let 𝐻 𝑥 = 𝐹 𝑥 + 𝑥

23
B. LeibeSlide credit: Kaiming He
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Deep Residual Learning

• 𝐹 𝑥 is a residual mapping w.r.t. identity

 If identity were optimal, it is easy to set weights as 0

 If optimal mapping is closer to identity, it is easier to find small 

fluctuations

 Further advantage: direct path for the gradient to flow to the 

previous stages
24

B. LeibeSlide credit: Kaiming He
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Network Design

• Simple, VGG-style design

 (Almost) all 33 convolutions

 Spatial size /2  #filters  2

(same complexity per layer)

 Batch normalization

 Simple design, just deep. 

25
B. Leibe
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ImageNet Performance

26
B. LeibeSlide credit: Kaiming He
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PASCAL VOC Object Detection Performance

27
B. LeibeSlide credit: Kaiming He
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Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

28
B. Leibe
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What Is The Secret Behind ResNets?

• Empirically, they perform very well, but why is that?

• He’s original explanation [He, 2016]

 ResNets allow gradients to pass through the skip connections in

unchanged form.

 This makes it possible to effectively train deeper networks.

 Secret of success: depth is good

• More recent explanation [Veit, 2016]

 ResNets actually do not use deep network paths.

 Instead, they effectively implement an ensemble of shallow 

network paths.

 Secret of success: ensembles are good

29

A, Veit, M. Wilber, S. Belongie, Residual Networks Behave Like Ensembles 

of Relatively Shallow Networks, NIPS 2016

http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
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Idea of the Analysis

• Unraveling ResNets

 ResNets can be viewed as a collection of shorter paths through

different subsets of the layers.

 Deleting a layer corresponds to removing only some of those paths

30

Ordinary feedforward network

Residual network Unraveled view

Effect of deleting layer 𝑓2

Image source: Veit et al., 2016
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Effect of Deleting Layers at Test Time

• Experiments on ImageNet classification

 When deleting a layer in VGG-Net, it breaks down completely.

 In ResNets, deleting a single layer has almost no effect 

(except for the pooling layers)

 Deleting an increasing number of layers increases the error smoothly

 Paths in a ResNet do not strongly depend on each other.
31

Image source: Veit et al., 2016
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Which Paths Are Important?

• How much does each of the paths contribute?

 Distribution of path lengths follows a Binomial distribution

 Sample individual paths and measure their gradient magnitude 

 Effectively, only shallow paths with 5-17 modules are used!

 This corresponds to only 0.45% of the available paths here. 32
Image source: Veit et al., 2016
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Summary

• The effective paths in ResNets

are relatively shallow

 Effectively only 5-17 active modules

• This explains the resilience to deletion

 Deleting any single layer only affects a 

subset of paths (and the shorter ones

less than the longer ones).

• New interpretation of ResNets

 ResNets work by creating an ensemble 

of relatively shallow paths

 Making ResNets deeper increases the

size of this ensemble

 Excluding longer paths from training 

does not negatively affect the results.
33

Image source: Veit et al., 2016
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Topics of This Lecture

• Recap: CNN Architectures

• Residual Networks
 Detailed analysis

 ResNets as ensembles of shallow networks

• Applications of CNNs
 Object detection

 Semantic segmentation

 Face identification

34
B. Leibe
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The Learned Features are Generic

• Experiment: feature transfer

 Train AlexNet-like network on ImageNet

 Chop off last layer and train classification layer on CalTech256

 State of the art accuracy already with only 6 training images!
35

B. Leibe
Image source: M. Zeiler, R. Fergus

state of the art

level (pre-CNN)
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Transfer Learning with CNNs

36
B. LeibeSlide credit: Andrej Karpathy

1. Train on

ImageNet

2. If small dataset: fix all 

weights (treat CNN as 

fixed feature extrac-

tor), retrain only the 

classifier

I.e., swap the Softmax

layer at the end
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Transfer Learning with CNNs

37
B. LeibeSlide credit: Andrej Karpathy

1. Train on

ImageNet

3. If you have medium 

sized dataset, 

“finetune” instead: use 

the old weights as

initialization, train the 

full network or only 

some of the higher 

layers.

Retrain bigger portion

of the network
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Other Tasks: Detection

• Results on PASCAL VOC Detection benchmark

 Pre-CNN state of the art: 35.1% mAP [Uijlings et al., 2013]

33.4% mAP DPM

 R-CNN: 53.7% mAP

40

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for 

Accurate Object Detection and Semantic Segmentation, CVPR 2014

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf
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More Recent Version: Faster R-CNN

• One network, four losses

 Remove dependence on

external region proposal

algorithm.

 Instead, infer region

proposals from same

CNN.

 Feature sharing

 Joint training

 Object detection in

a single pass becomes

possible.

41
Slide credit: Ross Girshick
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Faster R-CNN (based on ResNets)

42
B. Leibe

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 

CVPR 2016.

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
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Faster R-CNN (based on ResNets)

43
B. Leibe

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 

CVPR 2016.

http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
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YOLO

44
J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, 

Real-Time Object Detection, CVPR 2016.

https://pjreddie.com/media/files/papers/yolo_1.pdf
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Object Detection Performance

45
B. LeibeSlide credit: Ross Girshick
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Semantic Image Segmentation

• Perform pixel-wise prediction task

 Usually done using Fully Convolutional Networks (FCNs)

– All operations formulated as convolutions

– Advantage: can process arbitrarily sized images
46

Image source: Long, Shelhamer, Darrell



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

CNNs vs. FCNs

• CNN

• FCN

• Intuition

 Think of FCNs as performing a sliding-window classification,

producing a heatmap of output scores for each class

47
Image source: Long, Shelhamer, Darrell
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Semantic Image Segmentation

• Encoder-Decoder Architecture

 Problem: FCN output has low resolution

 Solution: perform upsampling to get back to desired resolution

 Use skip connections to preserve higher-resolution information

48
Image source: Newell et al.
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Semantic Segmentation

• Current state-of-the-art

 Based on an extension of ResNets

[Pohlen, Hermans, Mathias, Leibe, CVPR 2017]
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Other Tasks: Face Identification

50

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-

Level Performance in Face Verification, CVPR 2014

Slide credit: Svetlana Lazebnik

https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
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Learning Similarity Functions

• Siamese Network

 Present the two stimuli to two

identical copies of a network

(with shared parameters)

 Train them to output similar 

values if the inputs are 

(semantically) similar.

• Used for many matching tasks

 Face identification

 Stereo estimation

 Optical flow

 …

51
B. Leibe
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Extension: Triplet Loss Networks

• Learning a discriminative embedding 

 Present the network with triplets of examples

 Apply triplet loss to learn an embedding 𝑓(∙) that groups the positive 

example closer to the anchor than the negative one.

 Used with great success in Google’s FaceNet face identification

52
B. Leibe

Anchor PositiveNegative
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P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

References: Computer Vision Tasks

• Object Detection

 R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich Feature 

Hierarchies for Accurate Object Detection and Semantic 

Segmentation, CVPR 2014.

 S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks, NIPS 2015.

 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: 

Unified Real-Time Object Detection, CVPR 2016.

 W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C-Y. Fu, A.C. 

Berg, SSD: Single Shot Multi Box Detector, ECCV 2016.

55
B. Leibe

https://research.google.com/pubs/DumitruErhan.html
https://research.google.com/pubs/ChristianSzegedy.html


P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

7

References: Computer Vision Tasks

• Semantic Segmentation

 J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for 

Semantic Segmentation, CVPR 2015.

 H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing 

Network, arXiv 1612.01105, 2016.

56
B. Leibe


