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Recap: Neural Probabilistic Language Model Recap: word2vec -
“softmax” units (one per possible next word) | * Goal 2
skip-layer T » Make it possible to learn high-quality .
connections word embeddings from huge data sets s
units that leafn to predict the output word from features of thejinput words | (billions of words in training set). 3 e
%
learned distributed learned distributed * Approach 1) cBOW
encoding of word +-2 encoding of word t-1 . Define two alternative learning tasks "
table lock-up table look-up for learning the embedding: " A
= index of word at t-2 index of word at t-1 = — “Continuous Bag of Words” (CBOW) 4 |w
2 2 — “Skip-gram”
=  Core idea s » Designed to require fewer parameters. " -
E » Learn a shared distributed encoding (word embedding) for the words E Ski W Lo
3 in the vocabulary. 3 prgram '
£ g PR
fs Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language é
= Model, In JMLR, Vol. 3, pp. 1137-1155, 2003. s = .
de adapted from Geoff Higion B. Leibe Jage souice: Geolt Hink B. Lelte lgge souce: Mikgloy eral 201
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Recap: word2vec CBOW Model Recap: word2vec Skip-Gram Model
. Input layer . . A .
* Continuous BOW Model eyt * Continuous Skip-Gram Model S| O taver
» Remove the non-linearity » Similar structure to CBOW
from the hidden layer W, » Instead of predicting the current
» Share the projection layer word, predict words JWo M
for all words (their vectors Output layer within a certain range of P laver

Hidden layer/ p—

are averaged) the current word.

Give less weight to the more
distant words
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= Bag-of-Words model
(order of the words does not
matter anymore)
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http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Problems with 100k-1M outputs

* Weight matrix gets huge! \putTayer

» Example: CBOW model

» One-hot encoding for inputs

= Input-hidden connections are
just vector lookups.

\ Hidden layer o0 iPUL 1€

» This is not the case for the
hidden-output connections!

» State h is not one-hot, and
vocabulary size is 1M.

= W’y has 300x1M entries

* Softmax gets expensive!

» Need to compute normaliza-
tion over 100k-1M outputs

" Cx1dim
7
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Topics of This Lecture

* Recurrent Neural Networks (RNNs)
» Motivation
» Intuition

¢ Learning with RNNs
» Formalization
» Comparison of Feedforward and Recurrent networks
» Backpropagation through Time (BPTT)

* Problems with RNN Training
» Vanishing Gradients
» Exploding Gradients
» Gradient Clipping
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TRWTH/ACHEN
Application: Part-of-Speech Tagging

Legend: Gethelp

Noun - Verb |Adjective Adverb _ Preposition Article Interjection

Andrew- Maria thnught-jubs were secure after the rancorous argument with the

customer, . alas ! Bad news Is fast approaching - . especially after - viciously
insulted the customer on social media .

B. Leibe

Solution: Hierarchical Softmax

n(w,.1)

n(w,.2)

(w,.3)

* Idea

» Organize words in binary search tree, words are at leaves
Factorize probability of word w, as a product of node probabilities
along the path.
Learn a linear decision function y = v,,, ;-h at each node to decide
whether to proceed with left or right child node.
= Decision based on output vector of hidden units directly.

v

v
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Recurrent Neural Networks

one to one one to many many to one many to many

nogee @ Q08 Q0g
N 000 W] CHHHH O]
0 0 000 D00 OOO

* Up to now
» Simple neural network structure: 1-to-1 mapping of inputs to outputs

many to many

* This lecture: Recurrent Neural Networks
» Generalize this to arbitrary mappings

Machine Learning Winter 17

10

Image source: Andrel Karpalh

B. Leibe

TOWTHACHET]
Application: Predicting the Next Word

Go g|E catsaton the ) n

NTERT (¢ | cal sal on Ihs mat

| cat sal on 1he mat poem
cat sal on Ihe mat story
cat sal on Ihe mat research

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, Recurrent Neural Network
Based Language Model, Interspeech 2010.
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http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

Application: Machine Translation

French words English words
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_E 1. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks,
51| NIPS 2014.
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RNNSs: Intuition

* Vanilla 2-layer classification net
10,001D class scores
< (Softmax over lOk_
words and a special
<END> token)
¥4 = Wy, hy

Hidden layer
<— (e.g., 500D vectors)
hy = max {0, W, x4}

Word embedding
X4t <— (300D vector for
e each word)

Machine Learning Winter ‘17
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RNNSs: Intuition

¢ Turning this into an RNN (done!)
10,001D class scores
< (Softmax over lOk_
words and a special
<END> token)
ya= Wy, hy

Hidden layer
<— (e.g., 500D vectors)
hy = max {0, W_;,x,

+ W, hy |

Word embedding
X4 |<«— (300D vector for
"mat
each word)
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Image souce: Andrel Kamaih
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RNNSs: Intuition

* Example: Language modeling
» Suppose we had the training sequence “cat sat on mat”

» We want to train a language model

p(next word | previous words)

» First assume we only have a finite, 1-word history.
» l.e., we want those probabilities to be high:
— p(cat | <S>)
— p(sat | cat)
—-p
—-p
—-p

<S>and <E >are

on | sat) start and end tokens.

mat | on)
<E> | mat)

Machine Learning Winter ‘17
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RNNSs: Intuition

* Turning this into an RNN (wait for it...)

10,001D class scores
(Softmax over 10k
words and a special
<END> token)

¥4 = Wy, hy

Hidden layer
<— (e.g., 500D vectors)
hy = max {0, W, x4}

Word embedding
x“; <— (300D vector for
e each word)

Machine Learning Winter 17
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RNNSs: Intuition

* Training this on a
Iot of sentences yo
would give us a —F
language model.

e le.,awayto

. ho
= predict
5 p(next word | S
é previous words)
2
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©
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papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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RNNSs: Intuition

* Training this on a
lot of sentences yo
would give us a —
language model.
* le.,away to ho
predict sample!
p(next word | —
previous words)
x0 x1
<START> "caf'
; 19
ide credit: Andrej Karpathy Eei-Feilj B. Leibe
RNNSs: Intuition '
* Training this on a
lot of sentences y0 y1
would give us a
language model.
. I.e.,(_alway to o sample!
predict
p(next word |
previous words)
x0 x1 X2
enas “cat” “sat”
21
ide credit- Andrei Karpathy Fei-Feilj B. Leibe
RNNSs: Intuition '
Training this on a
lot of sentences 0 v y2
would giveusa  —— 5~ sample
language model.
. I.e.,gwayto 0 | h1 = h2
predict
p(next word | - L L
previous words)
x0 x1 x2 x3
o “cat” “sat” “on”
ide credit- Andrei Karpathy Fei-Feilj B. Leibe -
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RNNSs: Intuition
* Training this on a 1 ]
Iot of sentences y0 y1
would give us a —3— 5
language model.
* le, away to ho = h1
predict
p(next word | o S
previous words)
x0 x1
AT “cat”
ide credit: Andrej Karpathy Eei-Feili B. Leibe 20
RNNSs: Intuition
* Training this on a 1 ] T ]
lot of sentences y0 y1 y2
would give us a I [ S— L |
language model.
. I.e.,gwayto ho = n1 =l 12
predict
p(next word | 1 1 L1
previous words)
X0 x1 x2
s “cat” “sat”
22
de credit- Andrei Karpathy Fei-Feilj B. Leibe
RNNSs: Intuition
* Training this on a 1
ot of sentences y0 y1 y2 y3
would give us a 70 ' T
language model.
: "e"‘."“"’ay to ho —={ h1 | h2 = h3
predict
p(next word | L J 1 L1 L
previous wor‘ds)
X0 x1 X2 x3
s “cat” “sat” “on”
24
de credit- Andrei Karpathy Fei-Feili B. Leibe
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RNNSs: Intuition

* Training this on a sample]
lot of sentences y0 v y2 y3

would give us a — —
language model.

¢ le.,,awayto
predict

p(next word | — I
previous words)

ity “cat” ssat” “on

“mat”

Machine Learning Winter ‘17
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Topics of This Lecture

¢ Learning with RNNs
» Formalization
» Comparison of Feedforward and Recurrent networks
» Backpropagation through Time (BPTT)

Machine Learning Winter ‘17
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RNNSs: Introduction

* RNNSs are very powerful, — — —
because they combine two
properties: [ N Sy

» Distributed hidden state that T T T t
allows them to store a lot of
information about the past

efficiently. =3 e o

Non-linear dynamics that allows i i T t

them to update their hidden

state in complicated ways.

v

¢ With enough neurons and time, RNNs can compute
anything that can be computed by your computer.
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RWTH CHET
RNNSs: Intuition
samples <END>? Done!
* Training this on a 0 1 > 3 4
lot of sentences Y y Y y ¥
would give us a 3 i
language model.
* le,awayto ho (—{ h1 [—+{ h2 |—{ h3 |— h4
- predict
g p(next word | —_— L
g previous words)
2
€
8
5 x0 x1 X2 x3 x4
£ s ‘cat” ‘sat” “on” ‘mat”
2
de credit: Andrej Karpathy Eei-Feil B. Leibe -
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RNNs: Introduction

* RNNSs are regular NNs whose == i
hidden units have additional
forward connections over time. L L ] L]

» You can unroll them to create A i i L
a network that extends over
time. ™ [

» When you do this, keep in mind T T T T
that the weights for the hidden e ol B S

units are shared between
temporal layers.

Machine Learning Winter ‘17
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TWTH G
Feedforward Nets vs. Recurrent Nets

* Imagine a feedforward network

» Assume there is a time delay
of 1 in using each connec- time 2, .
tion.

= This is very similar to how
an RNN works.

» Only change: the layers time ¢,
share their weights.

= The recurrent net is just a feedforward net that keeps
reusing the same weights.

~
g
=
=)
=
£
8
3
Py
=
=
S
)
=

30

B. Leibe




RWTH/THE
Backpropagation with Weight Constraints

* |tis easy to modify the backprop algorithm to incorporate
linear weight constraints

» Toconstrain ; = wu,, We start with the same initialization
and then make sure that the gradients are the same:

Vi, = Vs
» We compute the gradients as usual and then use
JE - [
Swy dws
for both w; and ws,.

Machine Learning Winter ‘17
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Recap: Backpropagation Algorithm

0B _oyoE | 0F
9z, 0z oy U My

z; OE OE
o = 2o 2 a

o
£ 8E 0z 9E _ OE
2 dw;, w0z, oz,
E
Bl - Efficient propagation scheme
2 » y; is already known from forward pass! (Dynamic Programming)
E = Propagate back the gradient from layer j and multiply with ;.
de adapted from Geoff Higion B. Leibe »
RWTH/ACHEN

Backpropagation Through Time (BPTT)

yul‘.,_ y“‘lt-_ y'l}:‘

Ly Iy iy

~
T X Xi—| X
8

£ .

= - Backpropagated gradient

£ e aht . OE, _ OFE, dh,

E - rorweignt wi: Jw;; ~ 8h, Bw;;

2

£

8

=
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TRWTH/JCHEN
Backpropagation Through Time (BPTT)

* Formalization

> Inputs Xy
» Outputs A\
» Hidden units h,
» Initial state h,

v
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= W, (o00e| [ecee] [(eeee]
= - Wy,
§ - Whh
g » Configuration  hy = o (Wopx, + Wyhy ) +0)
£ §1 = softmax (W), h,)
= . 32
B. Leibe lmage source: Richard Sacher
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Backpropagation Through Time (BPTT)
ywlt ymlt_ yflﬁl
hy h hi_ h,
Win ‘H Win UWM
I Wi Wi Wi
i X Xi—1 X
: _
2 * Error function
§ » Computed over all time steps: E= Z E,
é 1=t=d"
= 34
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Backpropagation Through Time (BPTT)
y"*'lt._ y’lﬁ.
dhy
fhy
i Xi—1 X
= . Backpropagated gradient
g ot weicht . L _ OB Ohe OB, Ohy by,
| orvedhtwy Gy, T b, Gy, | b, Oby_, duy,
= 36
B. Leibe




RWTH/THE
Backpropagation Through Time (BPTT)

YIi‘l":'— le}:r‘

édhy_y
b

TRWTH/JCHEN
Backpropagation Through Time (BPTT)

hy
dhy
e

Jh,y
thy
<L

Xi—| Xi
* Backpropagated gradient

OB, 0B, 0h, 0B, dh, dh,_,
Ow;;  Ohy Owy; | Ohy dhey Dy,

| OBy (9EOMO
» In general: = _—
g By Ohy Oy, Oy

* Analyzing the terms

» For weight w;;:

. JE, OE,; 8hy 7 hy
» For weight w;;: = T
1<k<t

dw; B Dby Ohy, Qi

Machine Learning Winter ‘17

» This is the “immediate” partial derivative (with h,_, as constant)
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Backpropagation Through Time (BPTT)

TRWTH/JCHEN
Backpropagation Through Time (BPTT)

y'l}_ y“‘lﬁ-_ y'l};i * Summary
» Backpropagation equations
Ohy_ Oh,
< v Fh E= 3 E
e U 1=¢2T
OE; (BEL Ay B_h,k)

W | | Qwy; 15h Ohy Ohy. dwyy
~ =
T X K| X = h dh; T
5 ‘ £ o= L g5 = I Wikdiag(o'(hi )
=1 * Analyzing the terms 5 Lt A S L e s 8
o =d - -
£ . o OE, Z (SE,_ ah, 6"’.’1;,.) £
& » For weight w, ;. A= an AL A S
3 ant wy Qwij o= \ Ohy Oy wyy 8 » Remaining issue: how to set the initial state h,?
© == @ . .
:!:EJ . font on, oh, % = Learn this together with all the other parameters.
8 » Propagation term: = T s
= pag Ohy, et oh; 2 =

40

B. Leibe

Topics of This Lecture Problems with RNN Training

* Training RNNs is very hard
» As we backpropagate through the layers, the magnitude of the
gradient may grow or shrink exponentially
= Exploding or vanishing gradient problem!

» Inan RNN trained on long sequences (e.g., 100 time steps) the
gradients can easily explode or vanish.
» Even with good initial weights, it is very hard to detect that the

X . current target output depends on an input from many time-steps ago.
¢ Problems with RNN Training

» Vanishing Gradients
» Exploding Gradients
» Gradient Clipping
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Exploding / Vanishing Gradient Problem Why Is This Bad?

* Consider the propagation equations:
9E, <8E, dh, B—hk)
1<k<t

* Vanishing gradients in language modeling
» Words from time steps far away are not taken into consideration

= A Aar A when training to predict the next word.
D dh, Ohy, Gy gop
dh. dh .
B_L = 8_1 = H W, diag (' (h; 1)) * Example:
s 1>ivh by (>ink - Jane walked into the room. John walked in too. It was late in the
day. Jane said hi to “
T\ I
= (whh) =
E » if t goes to infinity and | =t — k. g = The RNN will have a hard time learning such long-range
H = dependencies.
2 = We are effectively taking the weight matrix to a high power. 2
£ . . £
g » The result will depend on the eigenvalues of W,;,. g
2 — Largest eigenvalue > 1 = Gradients may explode. @
5 — Largest eigenvalue < 1 = Gradients will vanish. 5
© P ©
= — This is very bad... 4 = 2
B. Leibe de adapied from Richard Sacher B. Leibe
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Gradient Clipping Gradient Clipping Intuition
* Trick to handle exploding gradients
» If the gradient is larger than a threshold, clip it to that threshold.
Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode
- O
B 55
- if ||g|| = threshold then - B So
= g ¢ threshold g = W54 o "z'svan_fc'“ml;n
) . llll o —
§ end if é
= = * Example
2 . i ; 2
E ~ This makes a big difference in RNNs E . Error surface of a single RNN neuron
3 s . High curvature walls
[} (]
£ £ » Solid lines: standard gradient descent trajectories
o [*]
< 2 ~ Dashed lines: gradients rescaled to fixed size
45 46
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References and Further Reading

* RNNs
» R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training
recurrent neural networks, JMLR, Vol. 28, 2013.

» A. Karpathy, The Unreasonable Effectiveness of Recurrent Neural
Networks, blog post, May 2015.
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http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

