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Course Outline

* Fundamentals
> Bayes Decision Theory
> Probability Density Estimation

* Classification Approaches
> Linear Discriminants
> Support Vector Machines
> Ensemble Methods & Boosting
> Random Forests

* Deep Learning
» Foundations
» Convolutional Neural Networks
. Recurrent Neural Networks ||t | cassane

Current Research Directions
B. Leibe
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Recap: Long Short-Term Memory
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* LSTMs

> Inspired by the design of memory cells
> Each module has 4 layers, interacting in a special way.
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Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMSs

* Forget gate layer

- Look at h, ; and x, and output a
number between 0 and 1 for each ;i
dimension in the cell state C, ;.

0: completely delete this,
1: completely keep this.

Lt

=0 (Wy-lhi1, 4] + b
* Update gate layer fo=0 Wyl 2] 7)

added to the state.

N

% » Decide what information to store

1= In the cell state.

= |

2 > Sigmoid network (input gate layer) [(5%
c - -
= decides which values are updated. he_s

(<))

o - tanh layer creates a vector of new T

k= -

- candidate values  that could be i = o (Wi-[he1, a4 + by)
=

ét — tanh(WC- [ht—la ZCt] + bcl)

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMSs

* Qutput gate layer

> Output is a filtered version of our
gate state.

> First, apply sigmoid layer to decide
what parts of the cell state to
output.

> Then, pass the cell state through a
tanh (to push the values to be
between -1 and 1) and multiply it

with the output of the sigmoid gate.
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or =0 (Wo [hi—1,7] + bo)
hi = o * tanh (Cy)

5

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RWTH
Recap: Gated Recurrent Units (GRU)

e Simpler model than LSTM “I
- . hi_1 a2 —~ ,\\
> Combines the forget and input >
gates into a single update gate z,. Zi_éjh
> Similar definition for a reset gate r,, ¢ 5 j‘“
but with different weights. : P

i |

> In both cases, merge the cell state

and hidden state.
2t =0 (Wz : [ht—laxt])

* Empirical results re =0 (Wy - [hy—1, 2¢])

> Both LSTM and GRU can learn much g, — tanh (W - [ry * he_1, 2¢])
longer-term dependencies than _
regular RNNs he = (1—2z)xhi—1 + 2z % hy

> GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.
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Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Currently Hot Research Directions

* Generative Models
> Networks for image generation
> Generative Adversarial Networks (GAN)

* Towards General Models of Computation
> Memory Networks
> Neural Turing Machines

* Deep Reinforcement Learning
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Generative Networks

128
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reshape Deconv 2 x
N Deconv 3
M Deconv 4 |
5 Image
£ : :
= * Using a network to generate images
(@)
= > Sampling from noise distribution
§ > Sequence of upsampling layers to generate an output image
o
'(EZ > How can we train such a model to produce the desired output?
= 8

Image from https://blog.openai.com/generative-models/
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Generative Adversarial Networks (GAN)

* Conceptual view

Realworld ——~ Sample
images Riasl

@
$507

Discriminator .

O Fake

Generator |——+ Sample

Latent random variable

* Main idea
> Simultaneously train an image generator and a discriminator.
> Interpreted as a two-player game
> Very tricky to train... 9
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Currently Hot Research Directions

* Towards General Models of Computation
> Memory Networks
> Neural Turing Machines
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Memory Networks

e Soft, differentiable memory
> Stores <key, value> pairs
> Input is matched to the stored

keys
> Output is the average over all Values Vi
values that correspond to the

matched keys Coefficients Ci

Softmax

* Key ldea (eys Ki
> Make all steps differentiable.

= Then all parameters (including
Dot Products
access keys, stored values, etc.)
can be learned with end-to-end
supervised learning.

Input (Address) X
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End-to-End Memory Networks
* A closer look at the memory mechanism

r

|

PLIYOS

Weighted Sum A u Ko
r N
Values ¢; ™= £ Output
Py >
Softmax A L% Se|eCt|0n
= k ) A p; = softmax(u’'m;)
c Embeddinga =1
; InnerProduct
o Input query u
% Embedding B
§ = Rely on sparsity of softmax to Question
2 select a unique output value. !
L
(@]
| s Sukhbaatar, A. Szlam, J. Weston, R. Fergus, End-to-End Memory Networks.

In NIPS 2015. Image from [Sukhbaatar et al., 2015]


http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf

Memory Networks o} i

* Problem with this design . 7” F WT
»  Softmax used for the selection involves "] ”
a normalization over all stored keys. T

> Memory cells that are not accessed get d
almost zero gradient. Output

> When a backpropagation step causes the 0 = ). DiCi
accessed memory cell to change, this

massively affects the gradient flow. Selection
p; = softmax(u’m;)

= Together, this results in bad gradient propagation during learning.
= Very finicky behavior...
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Improved Design

* Gated memory (e.g., Recurrent Entity Network)

un

key 1l
9
— fﬁi
update
h * Gating
memory slot mechanism
Lg,-_%lgsrh Lol
\ L o i
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M. Henaff, J. Weston, A. Szlam, A. Border, Y. LeCun, Tracking the World State 14

with Recurrent Entity Networks. arXiv 1612.03969, 2016.



https://arxiv.org/abs/1612.03969

Neural Turing Machines

External Input External Output
T TR ER ST T \ """"""" / """""""""""""""" : Previous
' : State
5 L g
: Controller g Wi
: ; M,
e i E =
: Controller
Read Heads Write Heads g Outputs —— =
H —_ — ontent
: e Addressing  —» T Wf
B W nterpolation i
T l : | Bt | z Es Convolutional [W¢
de . | shift > '
Memory | 3?; ' > . Sharpening | yw,
== it

* Goal: Enable general computation with Neural Nets
> Again key is to make all operations differentiable.
> Memory + Access operators + Controller
> Learn entire algorithms from examples.

A. Graves, G. Wayne, |. Danihelka, Neural Turing Machines. arXiv 1410.5401, 2014.
15
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https://arxiv.org/abs/1410.5401
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Currently Hot Research Directions

* Deep Reinforcement Learning
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Deep Reinforcement Learning

* Example application: Learning to play Atari games

Convolution
v

Input:
pixels
+game
scores

Convolution
v

/71T

AN
ooo

dooobh  dddo

&

fddoobh  ddd

Al
l?

Fully connected
v

Fully connected
R &

No input
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N+O
v+0O
+O

k+O

1 viN]>
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Output:
control
commands

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,

pp. 529-533, 2015

B. Leibe
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

>

ConvNet

* L2 Regression Loss

|dea Behind the Model

4 | action values Q(s,a) * Interpretation
> Assume finite number of actions

Each number here is a real-valued
guantity that represents the
Q function in Reinforcement Learning

received

* Collect experience dataset:
> Set of tuples {(s,a,s’,r), ... }
> (State, Action taken, New state, Reward

target value predicted value

Li(0;) =Bs.ar.¢)~uD) (

r+ymax Q(s"a’: 0;)
i

O(s.a: 0;

)
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Slide credit: Andrej Karpaty

B. Leibe

Current reward + estimate of future reward, discounted by y

18



Results: Space Invaders
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Results: Breakout
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Comparison with Human Performance
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Learned Representation
* t-SNE embedding of DQN last hidden layer (Space Inv.)
B. Leibe
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References and Further Reading

* Generative Adversarial Networks (GANS)

> 1.J. Goodfellow,J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks,
arXiv:1406.2661, 2014.

> M. Arjovsky, S. Chintala, L. Boutou, Wasserstein GAN,
arXiv:1701.07875, 2017.

> L. Mescheder, P. Gehler, A. Geiger, The Numerics of GANS,
arXiv:1705.10461, 2017.
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References and Further Reading

* Memory Networks

> S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, End-to-End Memory
Networks. In NIPS 2015.

> M. Henaff, J. Weston, A. Szlam, A. Border, Y. LeCun, Tracking the
World State with Recurrent Entity Networks. arXiv 1612.03969,
2016.

* Neural Turing Machines

> A. Graves, G. Wayne, |. Danihelka, Neural Turing Machines. arXiv
1410.5401, 2014.
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References and Further Reading

* DON paper

> Www.nature.com/articles/nature14236

* AlphaGo paper

> Www.nature.com/articles/nature16961

ALL SYSTEMS GO

o | |
i | P | EES
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