Computer Vision 2 WS 2018/19

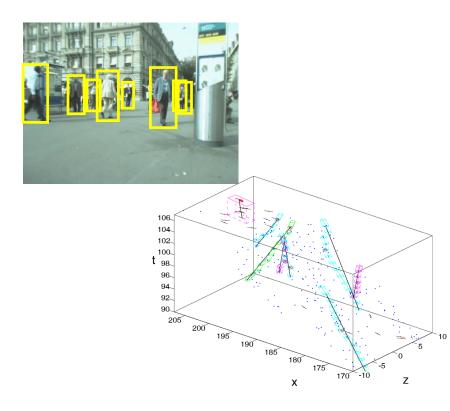
Part 6 – Tracking by Detection 31.10.2018

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

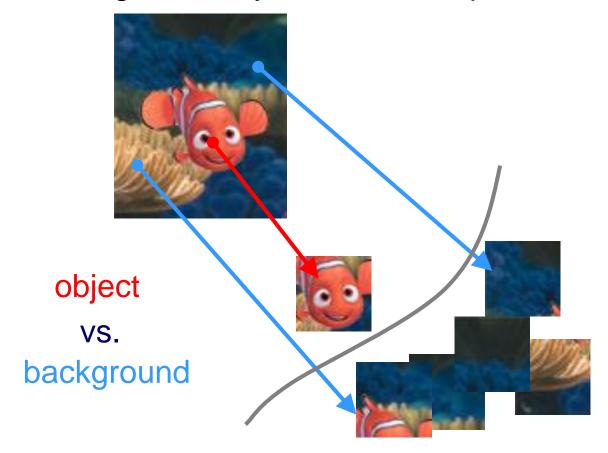
Course Outline

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



Recap: Tracking as Online Classification

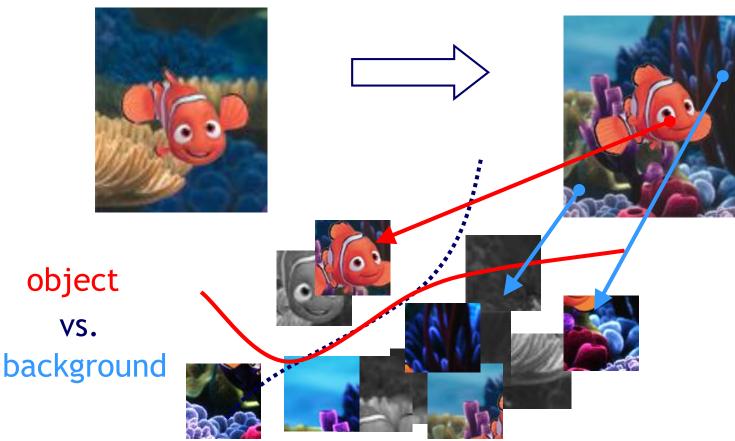
Tracking as binary classification problem



Slide credit: Helmut Grabner

Recap: Tracking as Online Classification

Tracking as binary classification problem



- Handle object and background changes by online updating

Recap: AdaBoost - "Adaptive Boosting"

Main idea

[Freund & Schapire, 1996]

- Iteratively select an ensemble of classifiers
- Reweight misclassified training examples after each iteration to focus training on difficult cases.

Components

- $-h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
- $-H(\mathbf{x})$: "strong" or final classifier

AdaBoost:

– Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers: /M

weighted weak classifiers:
$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

Recap: AdaBoost - Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N.
- 2. For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

$$I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\}$$

From Offline to Online Boosting

Main issue

- Computing the weight distribution for the samples.
- We do not know a priori the difficulty of a sample!
 (Could already have seen the same sample before...)

Idea of Online Boosting

- Estimate the importance of a sample by propagating it through a set of weak classifiers.
- This can be thought of as modeling the information gain w.r.t. the first n classifiers and code it by the importance weight λ for the n+1 classifier.
- Proven [Oza]: Given the same training set, Online Boosting converges to the same weak classifiers as Offline Boosting in the limit of $N \to \infty$ iterations.

N. Oza and S. Russell. <u>Online Bagging and Boosting</u>. Artificial Intelligence and Statistics, 2001.

Recap: From Offline to Online Boosting

off-line

Given:

- set of labeled training samples

$$\mathcal{X} = \{\langle \mathbf{x}_1, y_1 \rangle, ..., \langle \mathbf{x}_L, y_L \rangle \mid y_i \pm 1\}$$

- weight distribution over them $D_0 = 1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

on-line

Given:

- ONE labeled training sample $\langle \mathbf{x},y
 angle \mid y \pm 1$
- strong classifier to update
- initial importance $\lambda=1$ for n = 1 to N
 - update the weak classifier using samples and importance

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(h_n^{weak}, \langle x, y \rangle, \lambda)$$

- update error estimation $\widehat{e_n}$
- update weight $lpha_n=f(\widehat{e}_n)$
- update importance weight λ

next

$$h^{strong}(\mathbf{x}) = \text{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 6 – Tracking by Detection

Recap: Online Boosting for Feature Selection

- Introducing "Selector"
 - Selects one feature from its local feature pool

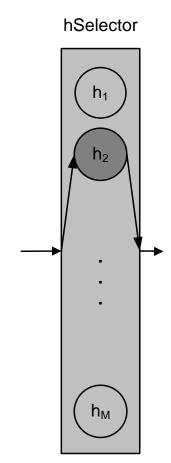
$$\mathcal{H}^{weak} = \{h_1^{weak}, ..., h_M^{weak}\}$$

$$\mathcal{F} = \{f_1, ..., f_M\}$$

$$h^{sel}(\mathbf{x}) = h_m^{weak}(\mathbf{x})$$

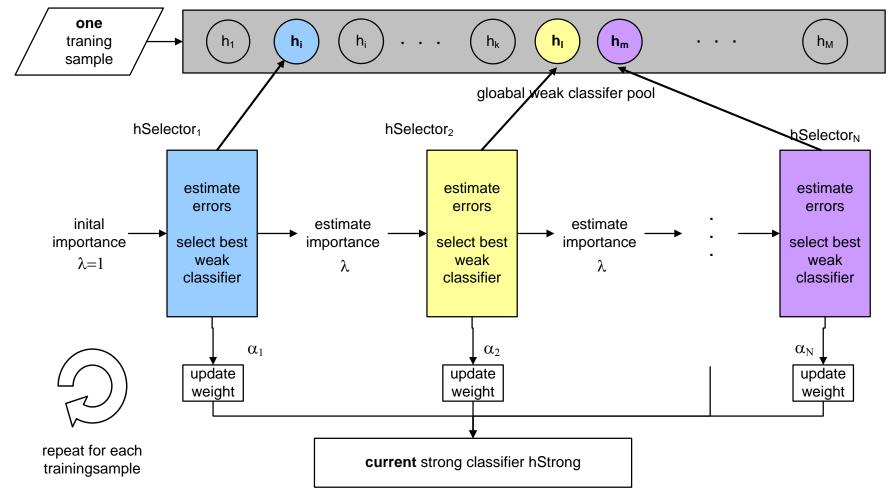
$$m = \arg\min_i e_i$$

On-line boosting is performed on the Selectors and not on the weak classifiers directly.



H. Grabner and H. Bischof. On-line boosting and vision. CVPR, 2006.

Recap: Direct Feature Selection



Recap: Tracking by Online Classification

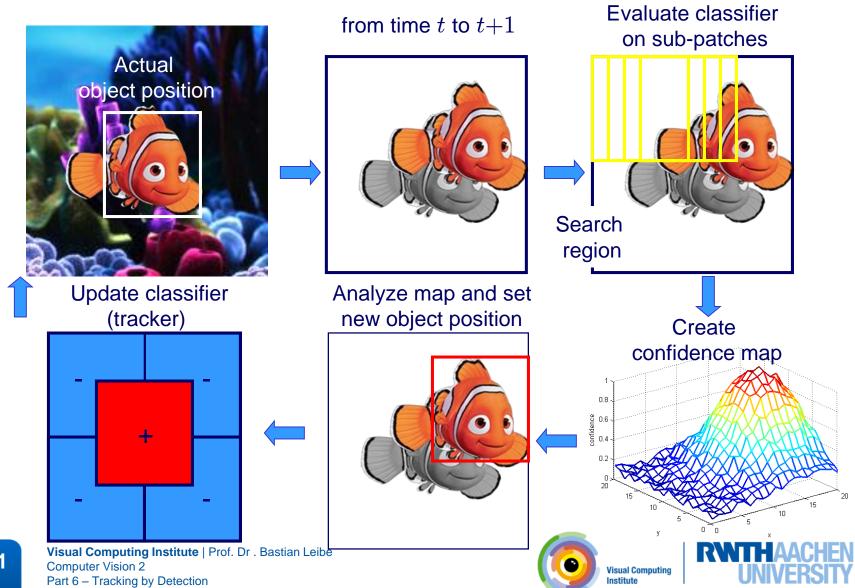


Image source: Disney/Pixar

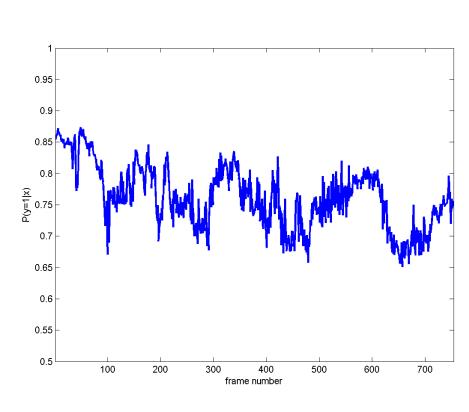
11

Slide credit: Helmut Grabner

Recap: Drifting Due to Self-Learning Policy

Tracked Patches

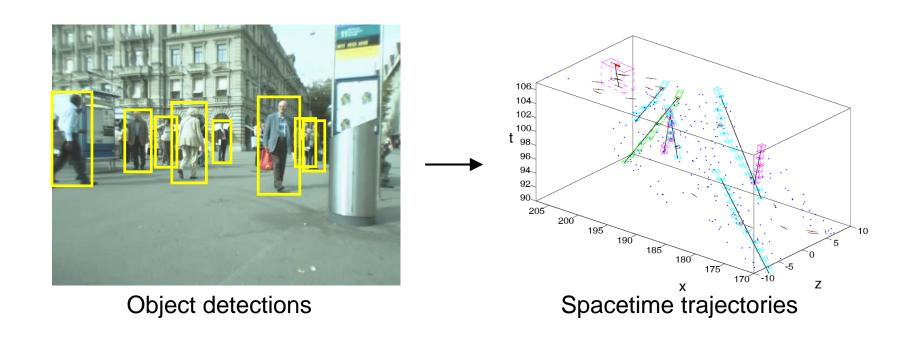
Confidence



⇒ Not only does it drift, it also remains confident about it!

Slide credit: Helmut Grabner

Today: Tracking by Detection

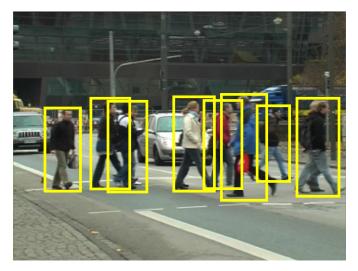


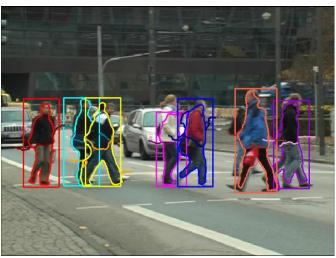
Can we use generic object detection to track people?

Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- CNN-based Detectors
 - Recap: CNNs
 - R-CNN, Faster R-CNN
 - YOLO, SSD

Detection-Based Tracking

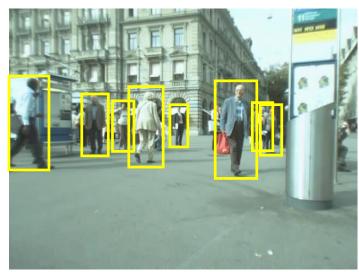




Main ideas

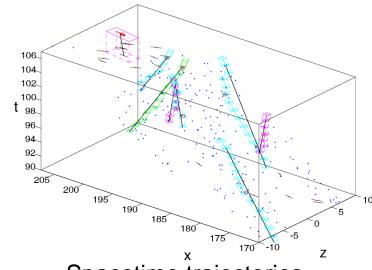
- Apply a generic object detector to find objects of a certain class
- Based on the detections, extract object appearance models
 - Even possible to derive figure-ground segmentations from detection results
- Link detections into trajectories

Tracking-by-Detection in 3D



Object detections

3D Camera path estimation



Spacetime trajectories

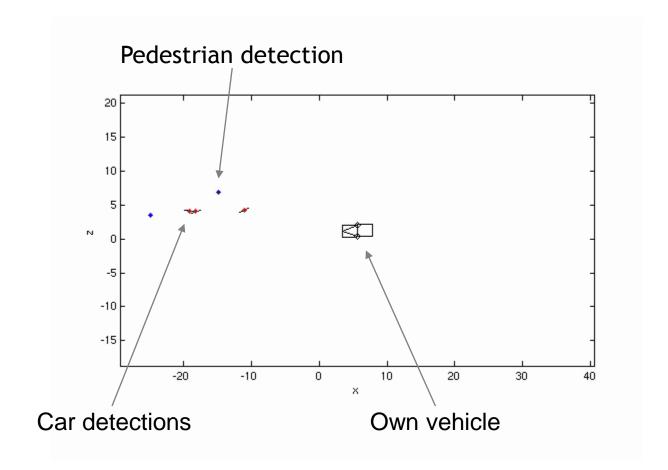
Simple f/g model: E.g., elliptical region in detection box

Main Issue: Data Association

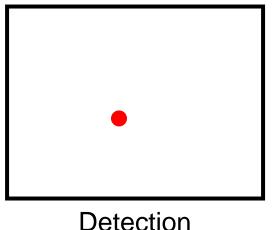
(We'll come to that later...)

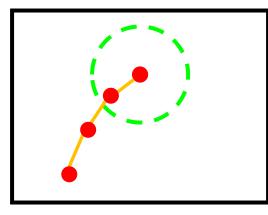
[Leibe, Cornelis, Schindler, Van Gool, PAMI'08]

Spacetime Trajectory Analysis



Elements of Tracking





etection Data association

Prediction

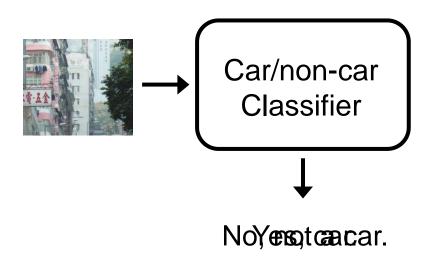
- Detection
 - Where are candidate objects?

Today's topic

- Data association
 - Which detection corresponds to which object?
- Prediction
 - Where will the tracked object be in the next time step?

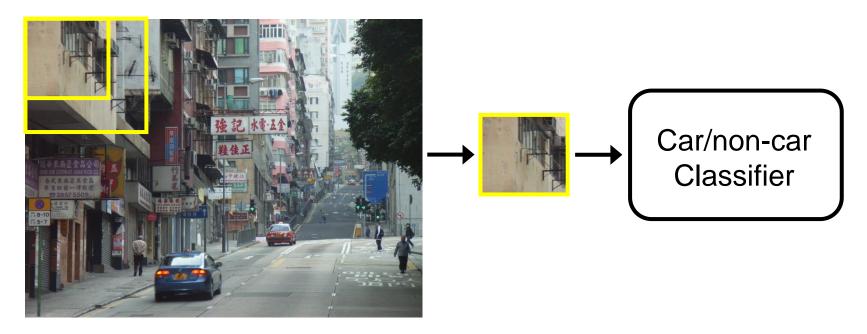
Recap: Sliding-Window Object Detection

Basic component: a binary classifier



Recap: Sliding-Window Object Detection

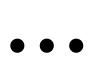
 If object may be in a cluttered scene, slide a window around looking for it.



 Essentially, this is a brute-force approach with many local decisions.

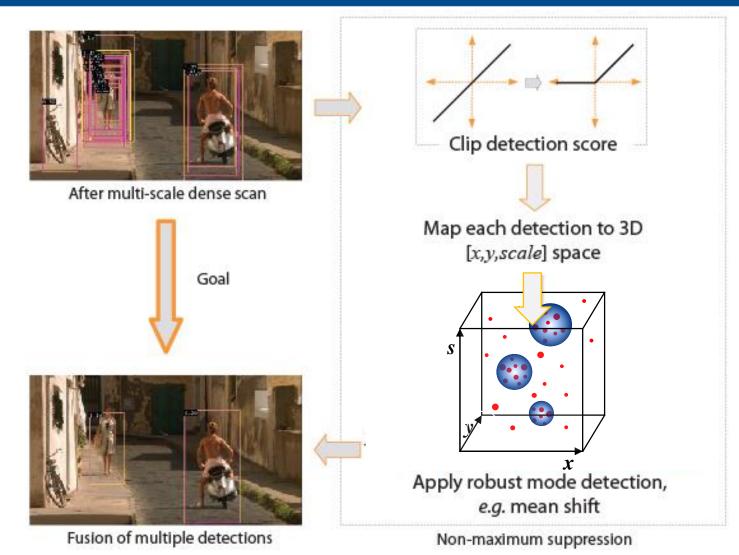
What is a Sliding Window Approach?

Search over space and scale



- Detection as subwindow classification problem
- "In the absence of a more intelligent strategy, any global image classification approach can be converted into a localization approach by using a sliding-window search."

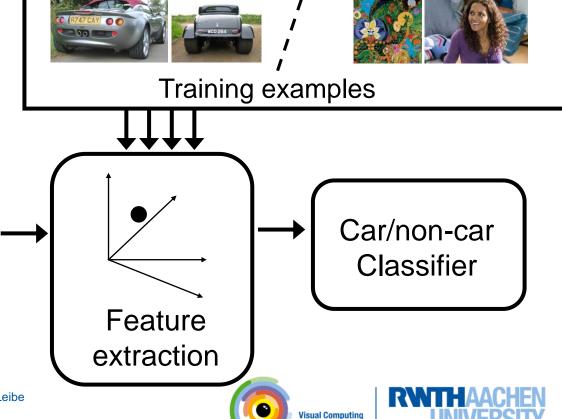
Recap: Non-Maximum Suppression



Visual Computing Institute | Prof. Dr. Bastian Leibe Computer Vision 2
Part 6 – Tracking by Detection

Recap: Sliding-Window Object Detection

- Fleshing out this pipeline a bit more, we need to:
 - 1. Obtain training data
 - 2. Define features
 - Define classifier



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2
Part 6 – Tracking by Detection

Object Detector Design

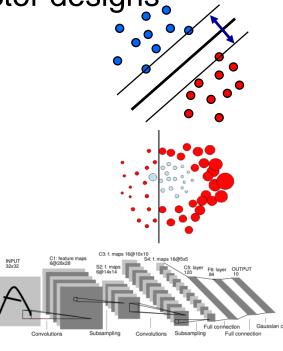
- In practice, the classifier often determines the design.
 - Types of features
 - Speedup strategies

Today, we'll look at 3 state-of-the-art detector designs

- Based on SVMs

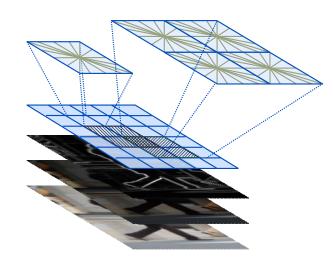
Based on Boosting

Based on CNNs



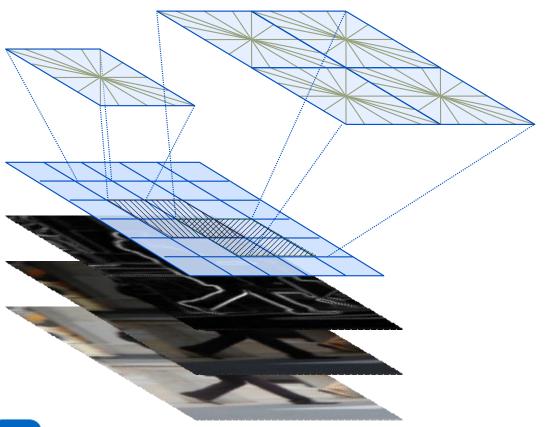
Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- CNN-based Detectors
 - Recap: CNNs
 - R-CNN



Recap: Histograms of Oriented Gradients (HOG)

- Holistic object representation
 - Localized gradient orientations



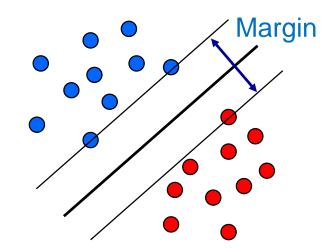
Object/Non-object Linear SVM Collect HOGs over detection window Contrast normalize over overlapping spatial cells Weighted vote in spatial & orientation cells Compute gradients Gamma compression Image Window Visual Computing

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 6 – Tracking by Detection

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$



- Formulation as a convex optimization problem
 - Find the hyperplane satisfying

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

under the constraints

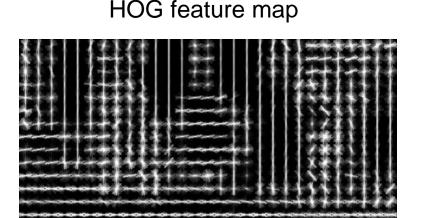
$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1 \quad \forall n$$

based on training data points \mathbf{x}_n and target values $t_n \in \{-1,1\}$

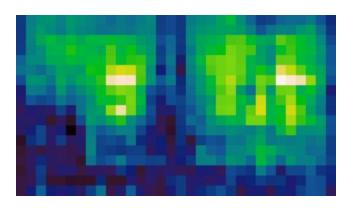
Recap: Pedestrian Detection with HOG

- Train a pedestrian template using a linear SVM
- At test time, convolve feature map with template

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b$$



Detector response map



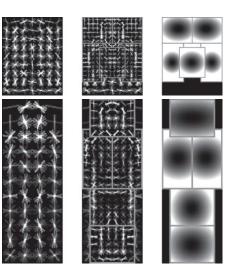
N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Pedestrian detection with HoGs & SVMs

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

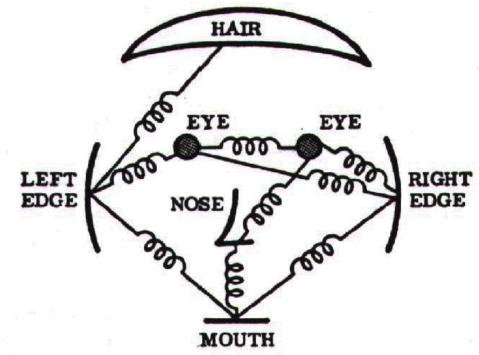
Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- CNN-based Detectors
 - Recap: CNNs
 - R-CNN



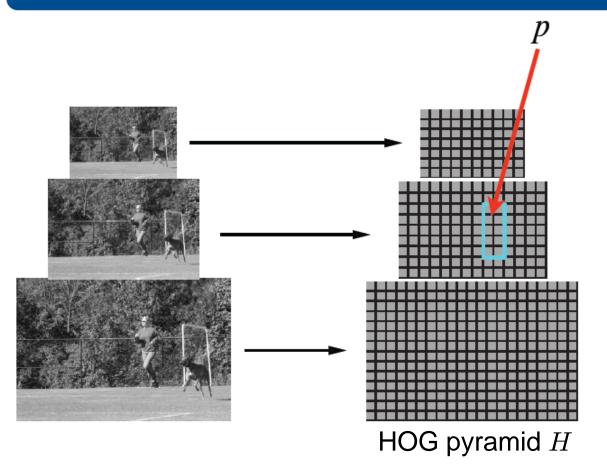
Recap: Part-Based Models

- Pictorial Structures model
 - [Fischler & Elschlager 1973]
- Model has two components
 - Parts(2D image fragments)
 - Structure (configuration of parts)



- Use in Deformable Part-based Model (DPM)
 - Parts = 5-7 semantically meaningful parts
 - Probabilistic model enabling efficient inference

Starting Point: HOG Sliding-Window Detector



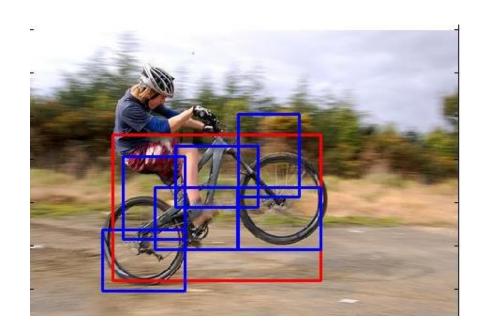
Filter F

Score of F at position p is $F \cdot \phi(p, H)$

 $\phi(p,H)$ = concatenation of HOG features from window specified by p.

- Array of weights for features in window of HOG pyramid
- Score is dot product of filter and vector

Deformable Part-based Models

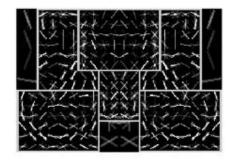


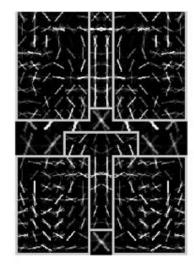


- Mixture of deformable part models (Pictorial Structures)
- Each component has global template + deformable parts
- Fully trained from bounding boxes alone

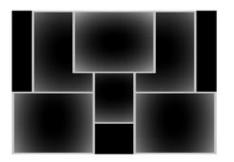
2-Component Bicycle Model

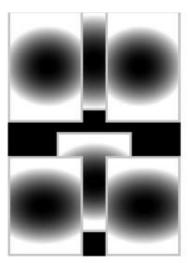
Root filters coarse resolution





Part filters finer resolution

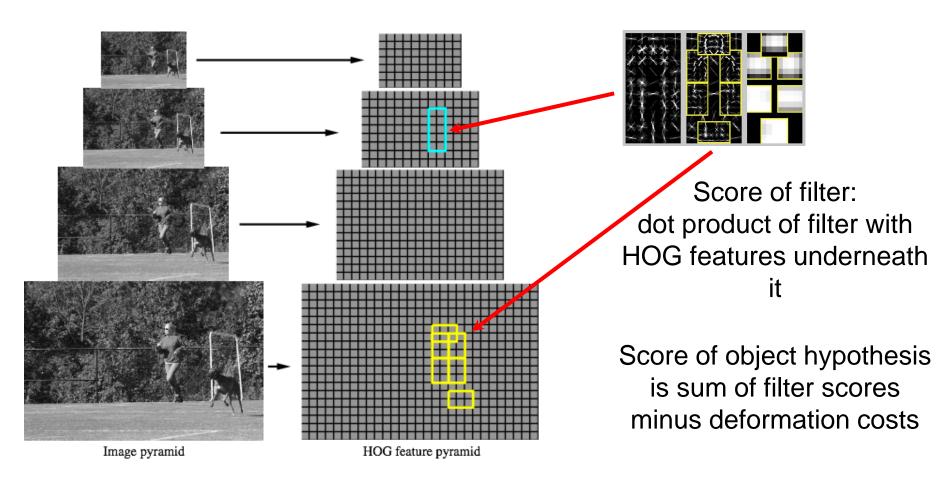




Deformation models

37

Object Hypothesis



Multiscale model captures features at two resolutions

Slide credit: Pedro Felzenszwalb

38

Score of a Hypothesis

$$score(p_0, \dots, p_n) = \underbrace{\sum_{i=0}^{n} F_i \cdot \phi(H, p_i)}_{i=0} - \underbrace{\sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)}_{i=1}$$
 displacements deformation parameters

$$score(z) = \beta \cdot \Psi(H, z)$$

1

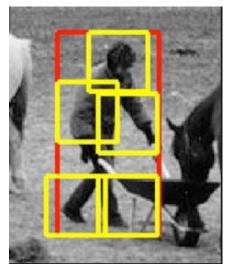
concatenation filters and deformation parameters

concatenation of HOG features and part displacement features

Slide credit: Pedro Felzenszwalb

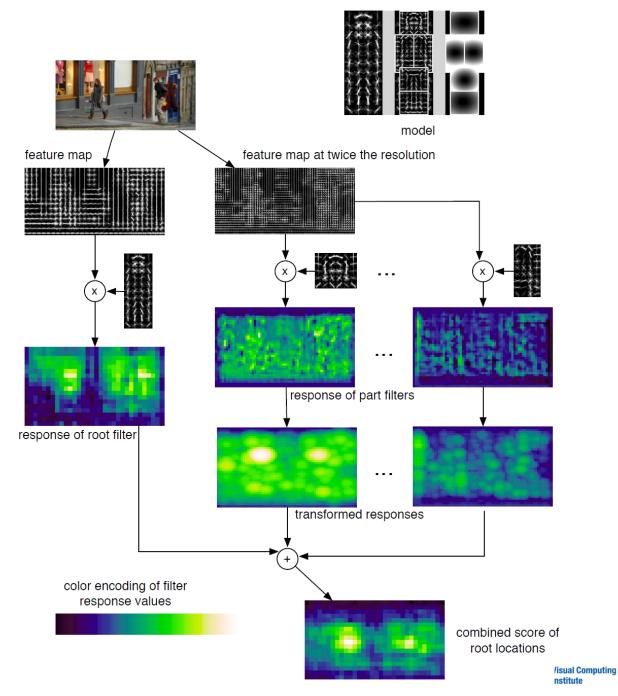
Recognition Model

$$f_w(x) = w \cdot \Phi(x)$$

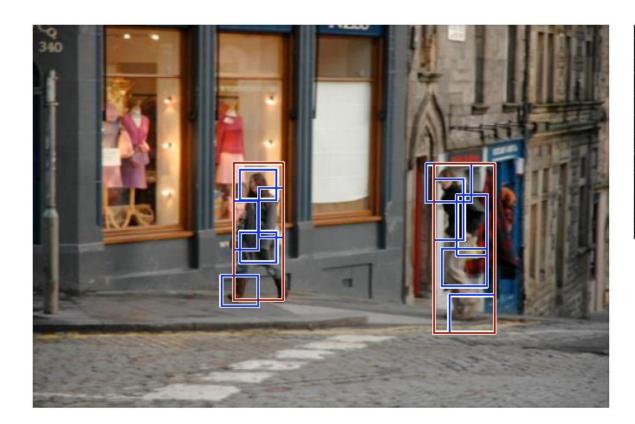


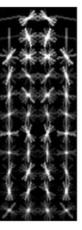
$$f_w(x) = \max_z w \cdot \Phi(x, z)$$

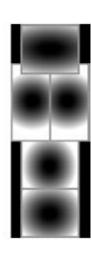
- Difference to standard HOG model
 - Hidden variable z: vector of part offsets
 - $-\Phi(x,z)$: vector of HOG features (from root filter & appropriate part sub-windows) and part offsets
 - ⇒ Need to optimize over all possible part positions



Results: Persons

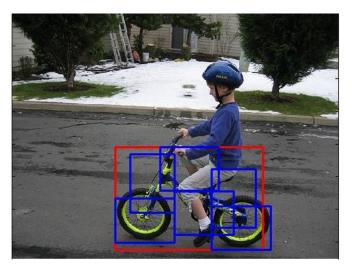


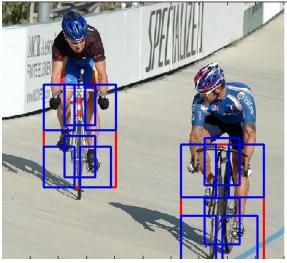


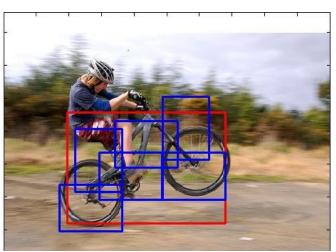


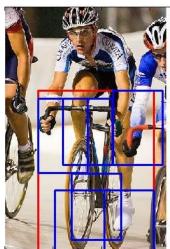
- Results (after non-maximum suppression)
 - ~1s to search all scales

Results: Bicycles



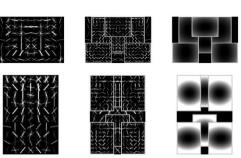






Extensions and Detailed Improvements

- More efficient features
 - Very simplified version of HOG
- Latent part (re-)learning
 - Perform several rounds of training, adapting the annotation bboxes
- Multi-aspect detection
 - Mixture model of different aspects to capture different viewpoints of objects
- Bounding box prediction
 - Infer final detection bounding box from detected part locations
- Multi-resolution models
- Cascaded evaluation



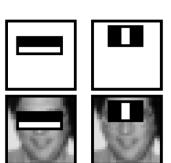
You Can Try It At Home...

- Deformable part-based models have been very successful in several evaluations.
 - ⇒ Approach was state-of-the-art until few years ago
- Source code and models trained on PASCAL 2006, 2007, and 2008 data are available here:

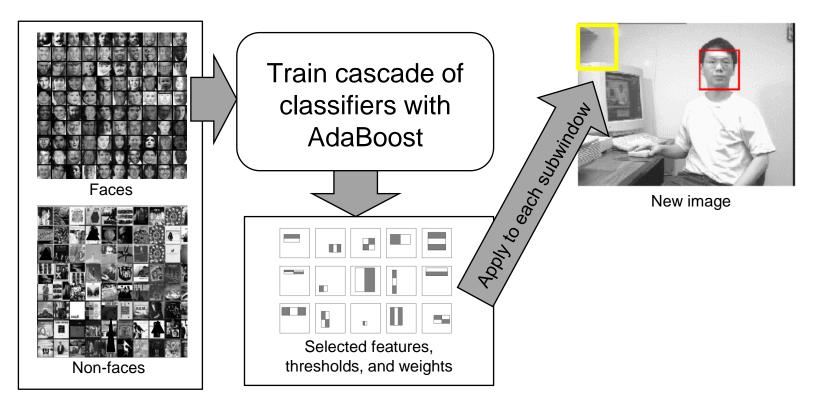
http://www.cs.uchicago.edu/~pff/latent

Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- CNN-based Detectors
 - Recap: CNNs
 - R-CNN



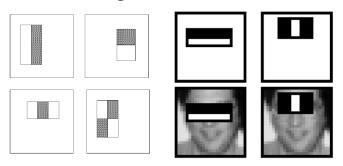
Recap: Viola-Jones Face Detector



- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade (6061 features in final layer)
- [Implementation available in OpenCV: http://sourceforge.net/projects/opencvlibrary/]

Recap: Haar Wavelets

"Rectangular" filters

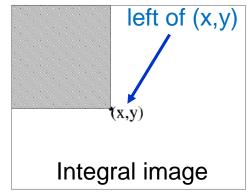


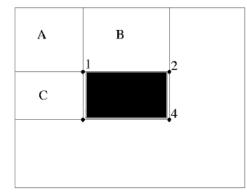
Feature output is difference between adjacent regions

> Value at (x,y) is sum of pixels above and to the

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images ⇒ Scale features directly for same cost





$$D = 1 + 4 - (2 + 3)$$

$$= A + (A + B + C + D) - (A + C + A + B)$$

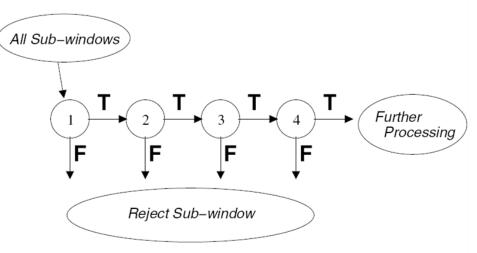
$$= D$$

48

Recap: Cascading Classifiers for Detection

 Even if the filters are fast to compute, each new image has a lot of possible windows to search...

- Idea: Classifier cascade
 - Observation: most image windows are negative and look very different from the searched object class.

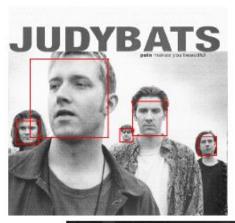


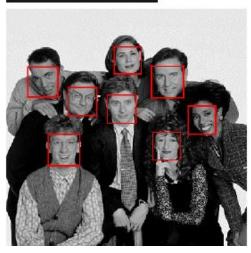
- Filter for promising regions with an initial inexpensive classifier
- Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

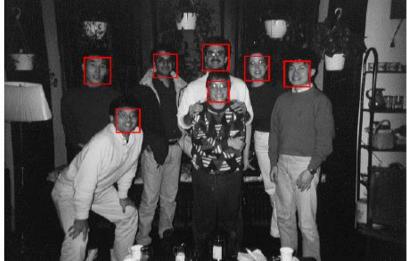
[Fleuret & Geman, IJCV'01; Rowley et al., PAMI'98; Viola & Jones, CVPR'01]

Slide credit: Kristen Grauman

Viola-Jones Face Detector: Results







You Can Try It At Home...

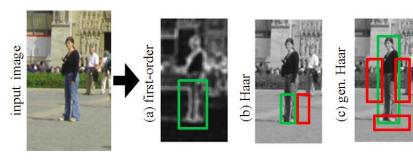
- The Viola & Jones detector was a huge success
 - First real-time face detector available
 - Many derivative works and improvements

- C++ implementation available in OpenCV [Lienhart, 2002]
 - http://sourceforge.net/projects/opencylibrary/
- Matlab wrappers for OpenCV code available, e.g. here
 - http://www.mathworks.com/matlabcentral/fileexchange/19912

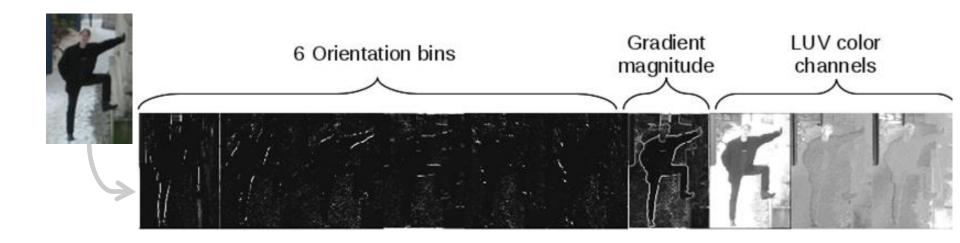
P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004

Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- CNN-based Detectors
 - Recap: CNNs
 - R-CNN

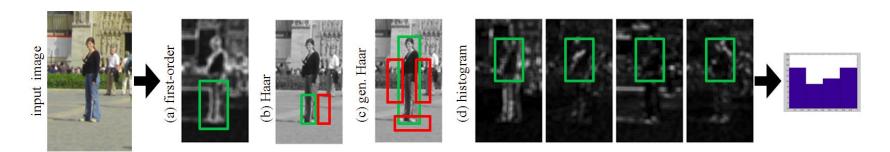


Integral Channel Features



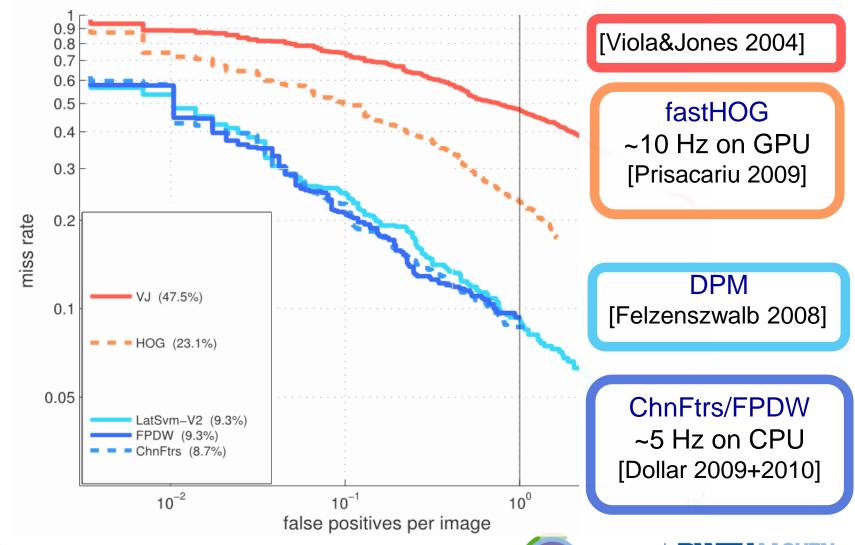
- Generalization of Haar Wavelet idea from Viola-Jones
 - Instead of only considering intensities, also take into account other feature channels (gradient orientations, color, texture).
 - Still efficiently represented as integral images.
 - P. Dollar, Z. Tu, P. Perona, S. Belongie. <u>Integral Channel Features</u>, BMVC'09.

Integral Channel Features



- Generalize also block computation
 - 1st order features:
 - Sum of pixels in rectangular region.
 - 2nd-order features:
 - Haar-like difference of sum-over-blocks
 - Generalized Haar:
 - More complex combinations of weighted rectangles
 - Histograms
 - Computed by evaluating local sums on quantized images.

Results: Integral Channel Features

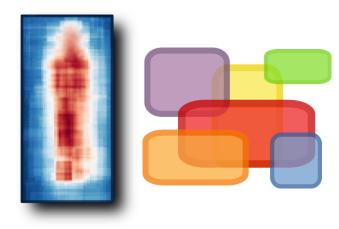


Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 6 – Tracking by Detection

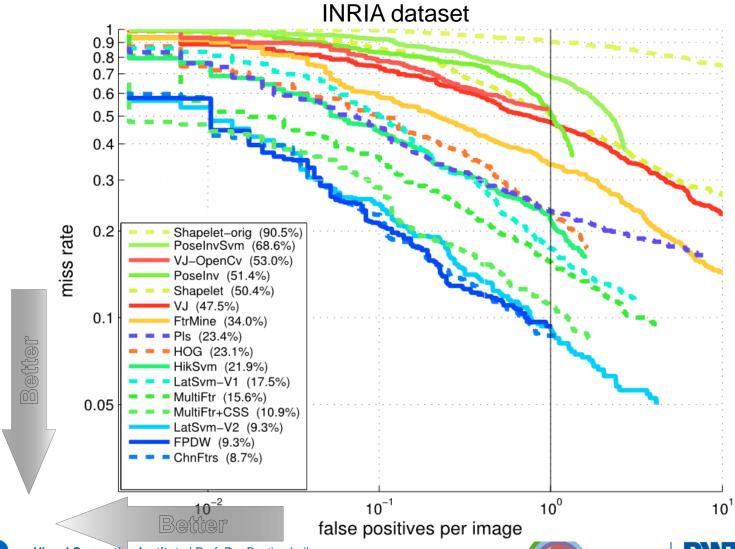
Slide credit: Rodrigo Benenson

Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- CNN-based Detectors
 - Recap: CNNs
 - R-CNN



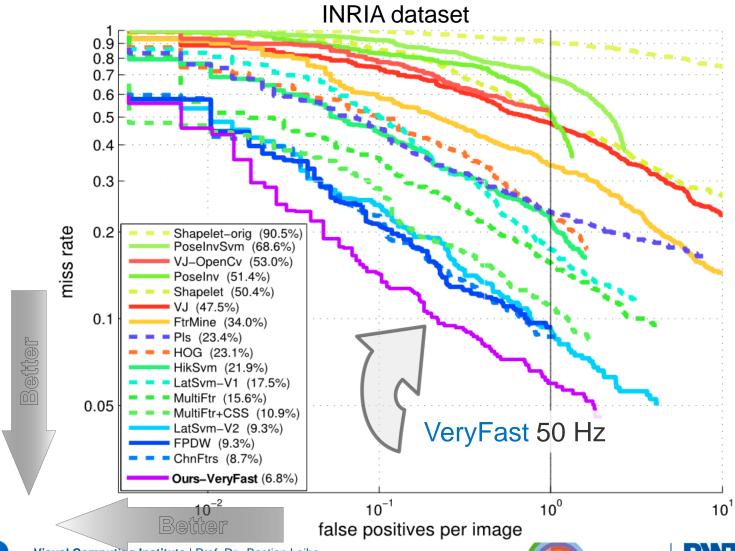
Performance Comparison of Detectors



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 6 – Tracking by Detection

Slide credit: Rodrigo Benenson

Performance Comparison of Detectors

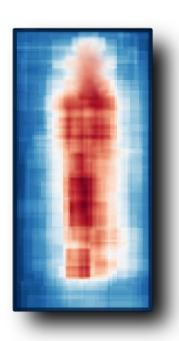


Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 6 – Tracking by Detection

Slide credit: Rodrigo Benenson

Issues for Efficient Detection

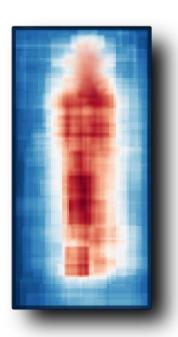
One template cannot detect at multiple scales...

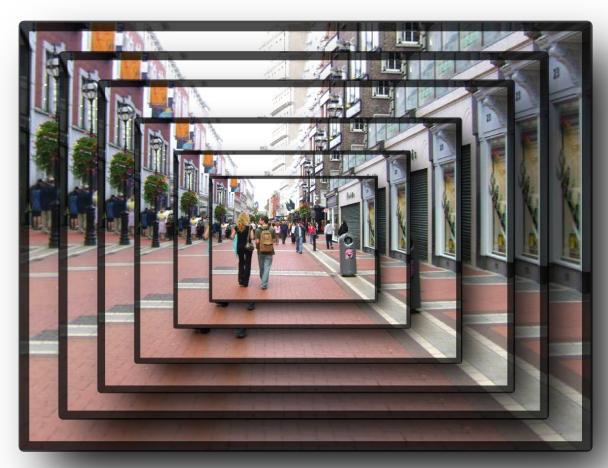


Issues for Efficient Detection

Typically, features are computed many times

~50 scales

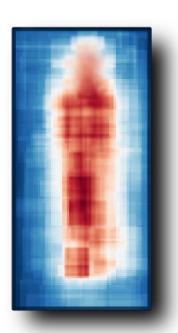




Issues for Efficient Detection

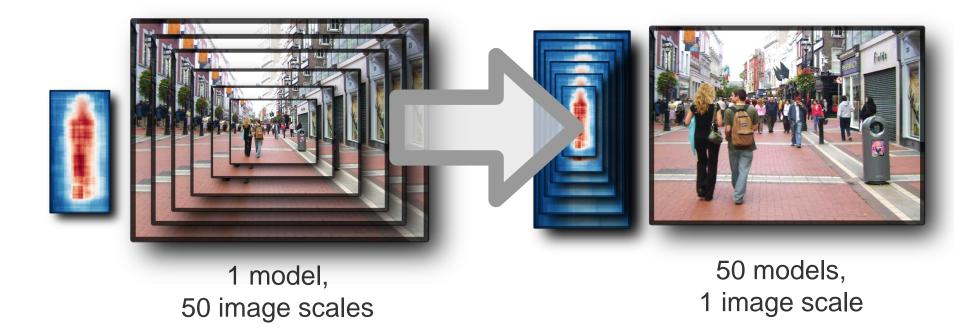
• Typically, features are computed many times

~50 scales



VeryFast Detector

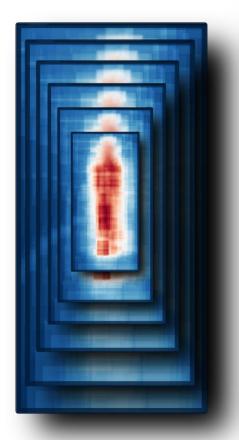
Idea 1: Invert the relation



R. Benenson, M. Mathias, R. Timofte, L. Van Gool. <u>Pedestrian Detection at 100 Frames per Second</u>, CVPR'12.

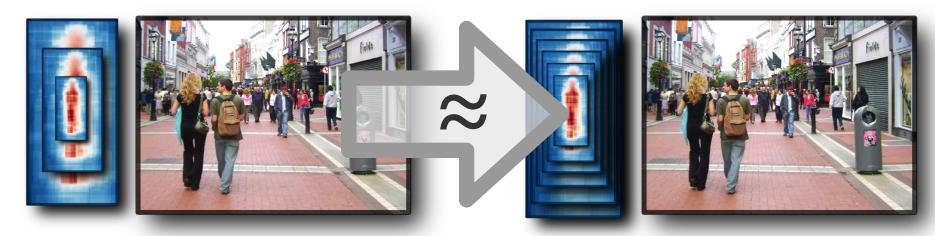
Practical Considerations

Training and running 1 model/scale is too expensive



VeryFast Detector

Idea 2: Reduce training time by feature interpolation



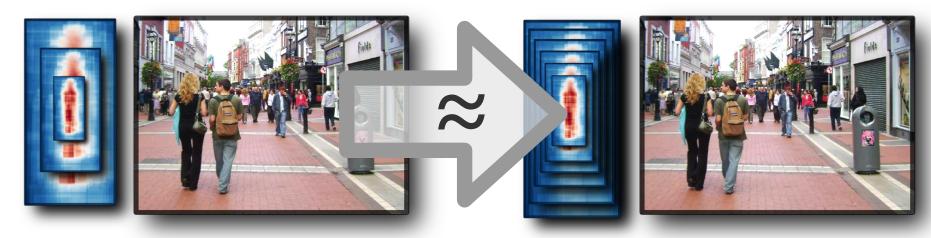
5 models, 1 image scale

50 models, 1 image scale

- Shown to be possible for Integral Channel features
 - P. Dollár, S. Belongie, Perona. <u>The Fastest Pedestrian Detector in the West</u>, BMVC 2010.

VeryFast Detector

Effect: Transfer test time computation to training time

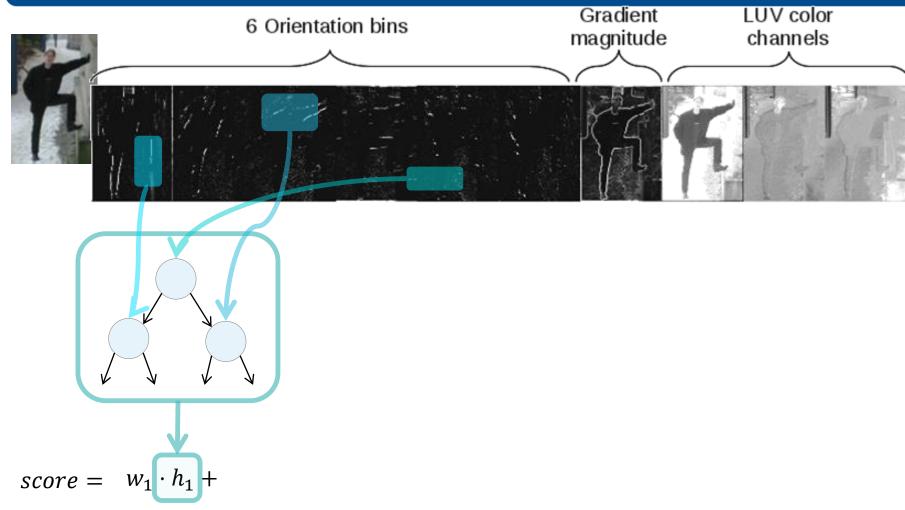


5 models, 1 image scale

50 models, 1 image scale

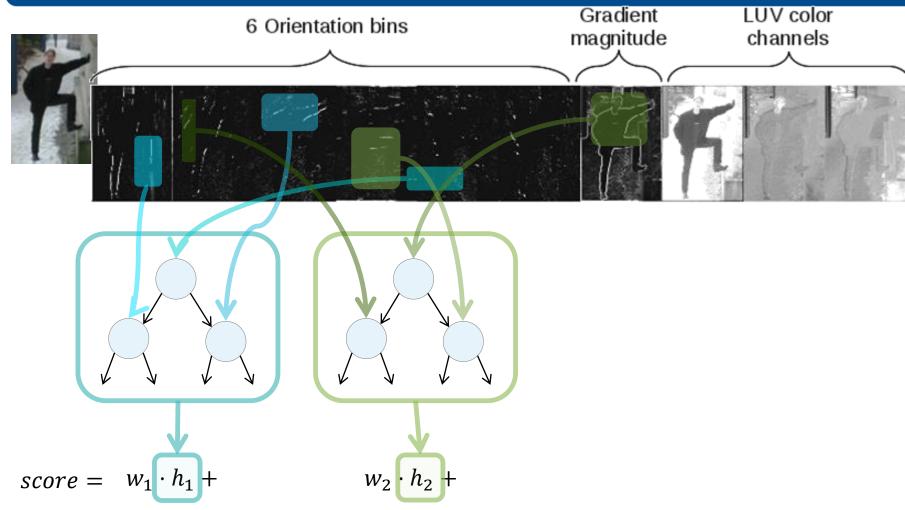
⇒ Result: 3x reduction in feature computation

VeryFast: Classifier Construction



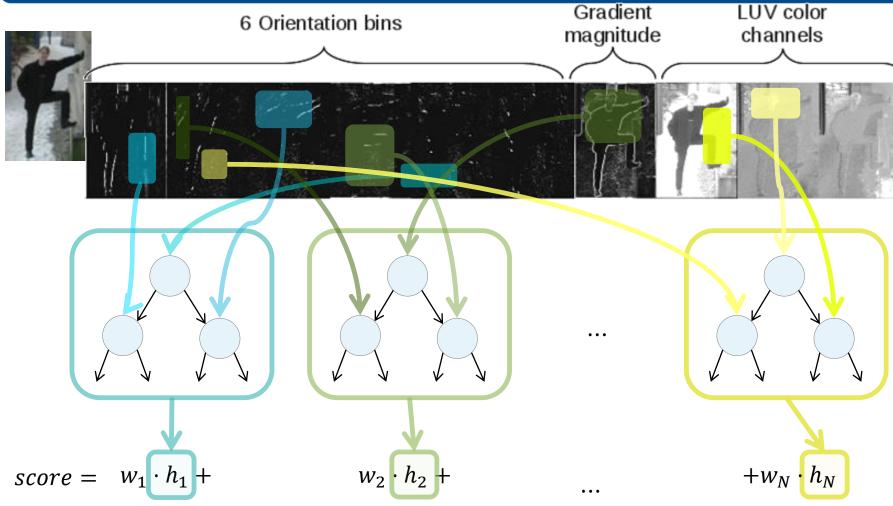
Ensemble of short trees, learned by AdaBoost

VeryFast: Classifier Construction



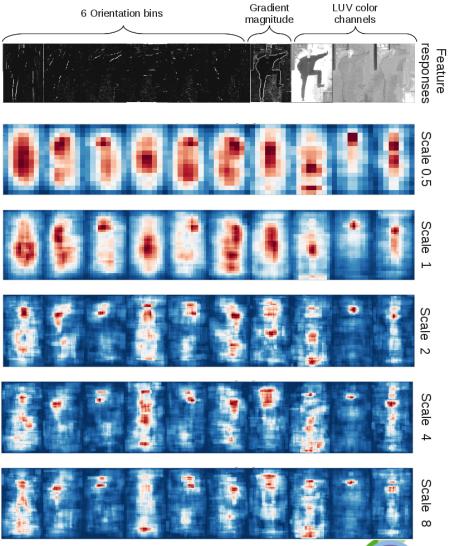
Ensemble of short trees, learned by AdaBoost

VeryFast: Classifier Construction



• Ensemble of short trees, learned by AdaBoost

Learned Models

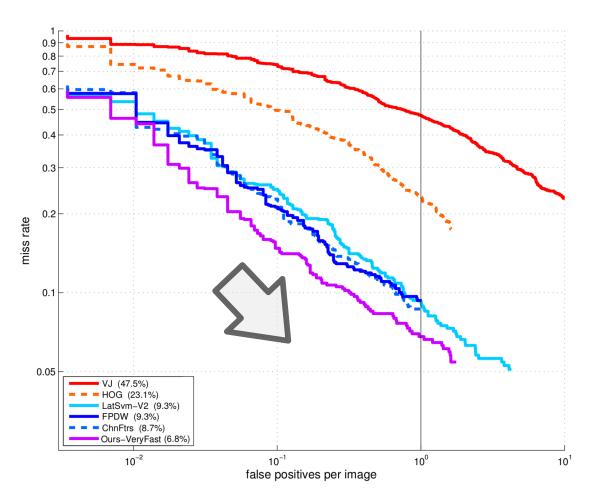


Integral Channel features

Models

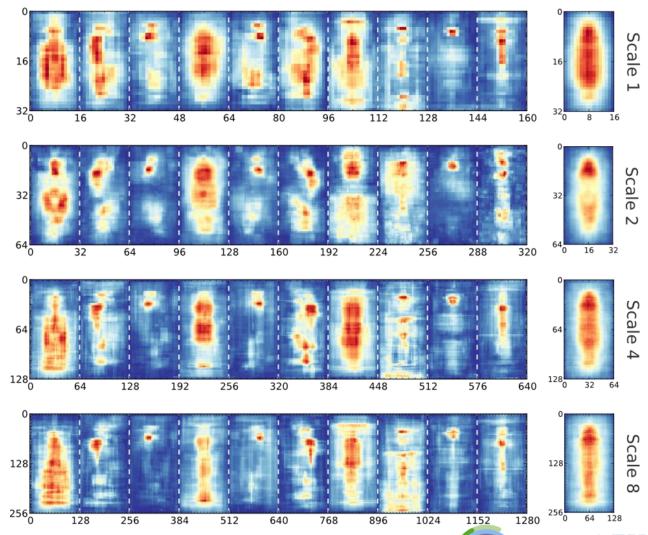
:

Results



Detection without resizing improves quality of results

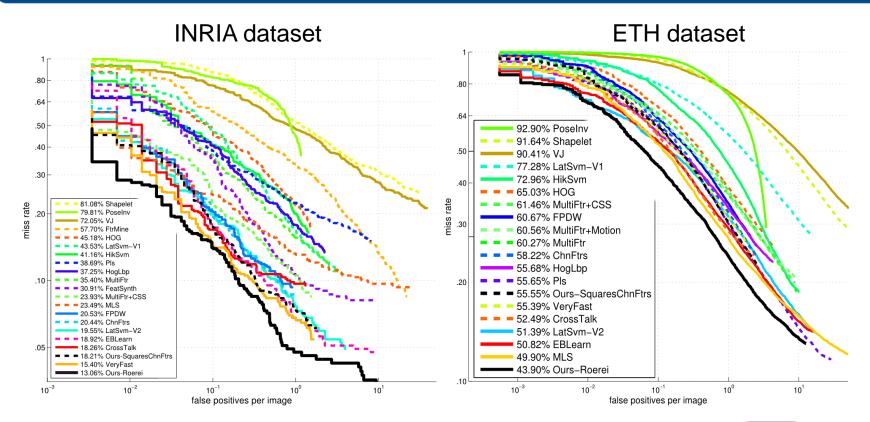
Multi-Scale Models > Single-Scale Model



Computer Vision 2

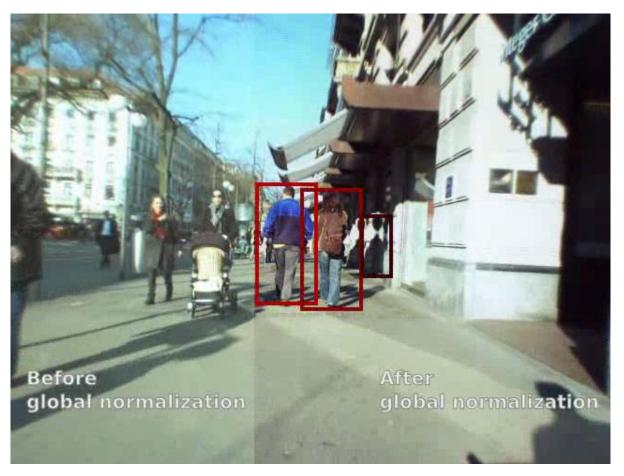
Part 6 – Tracking by Detection

Comparison to State-of-the-Art



- Extension: Roerei detector
 - Detailed evaluation of design space
 - Non-regular pooling regions found to work best.

Roerei Results



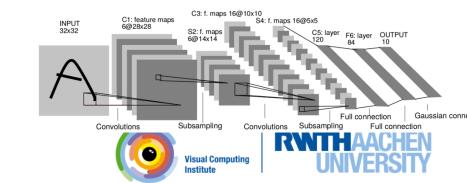
R. Benenson, M. Mathias, R. Timofte, L. Van Gool. <u>Seeking the Strongest Rigid Detector</u>. CVPR'13.

Applications: Mobile Robot Navigation

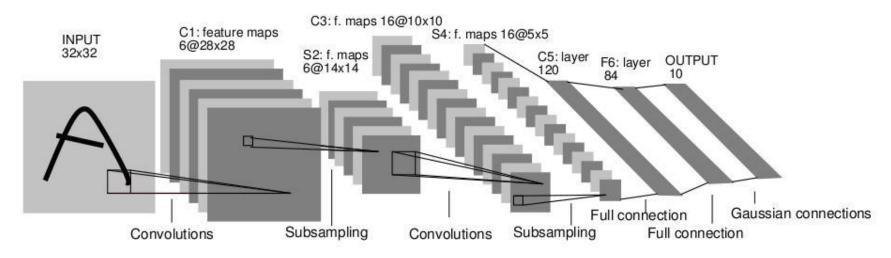
link to the video

Topics of This Lecture

- Tracking by Detection
 - Motivation
 - Recap: Object detection
- SVM based Detectors
 - Recap: HOG
 - DPM
- AdaBoost based Detectors
 - Recap: Viola-Jones
 - Integral Channel features
 - VeryFast/Roerei
- CNN-based Detectors
 - Recap: CNNs
 - R-CNN



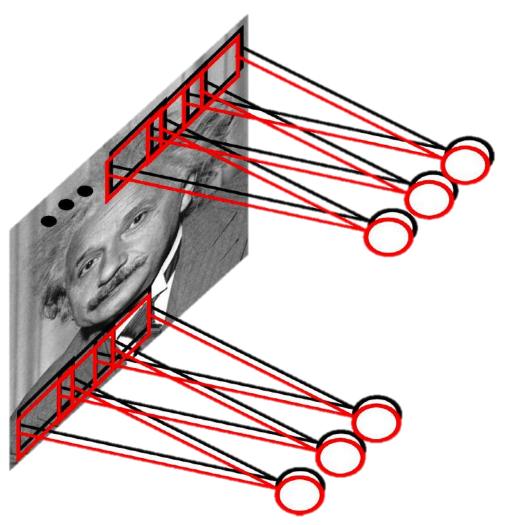
Recap: Convolutional Neural Networks



- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

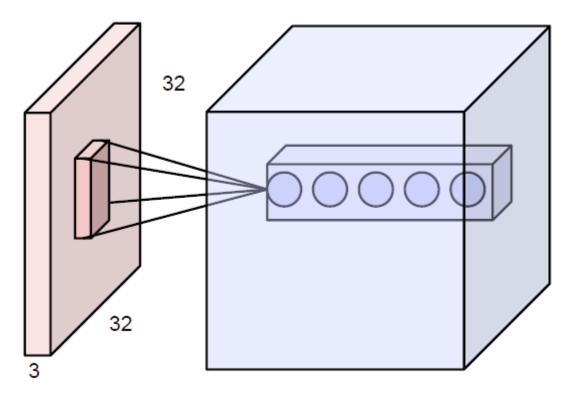
Recap: Intuition of CNNs



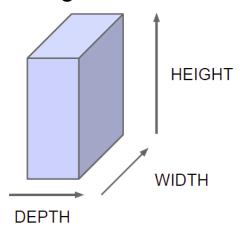
Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels
- Learn multiple filters
 - E.g. 1000×1000 image100 filters10×10 filter size
 - ⇒ only 10k parameters
- Result: Response map
 - $size: 1000 \times 1000 \times 100$
 - Only memory, not params!

Recap: Convolution Layers

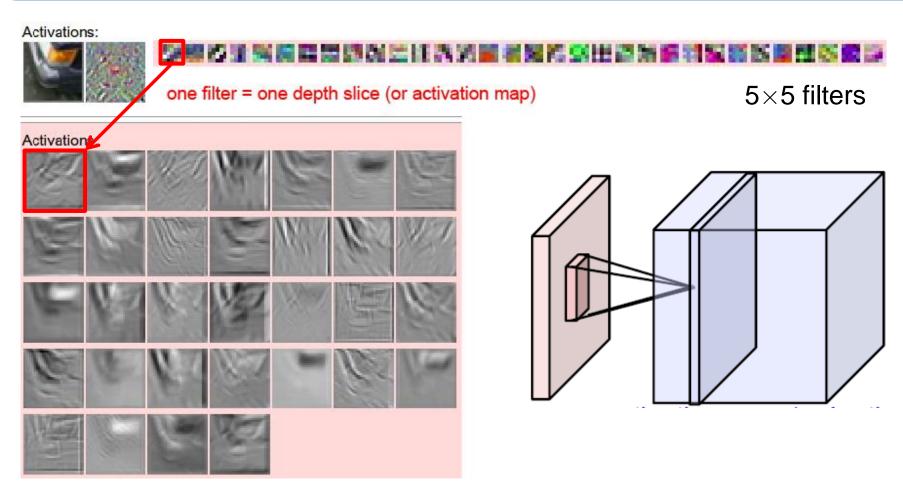


Naming convention:



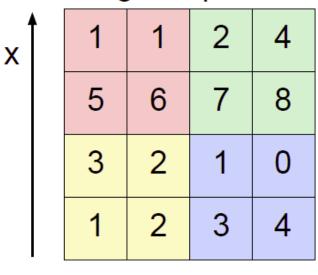
- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single $[1 \times 1 \times depth]$ depth column in output volume.

Recap: Activation Maps



Recap: Pooling Layers

Single depth slice



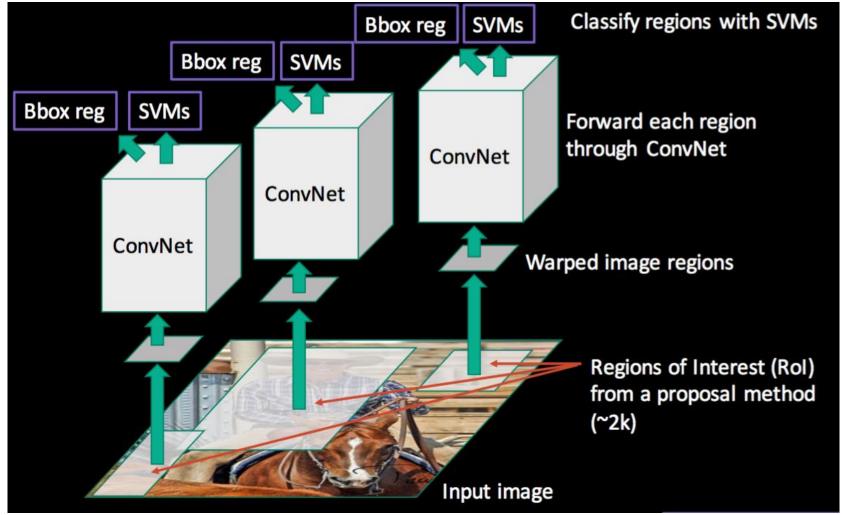
max pool with 2x2 filters and stride 2

6	8
3	4

Effect:

- Make the representation smaller without losing too much information
- Achieve robustness to translations

Recap: R-CNN for Object Detection



Recap: Faster R-CNN

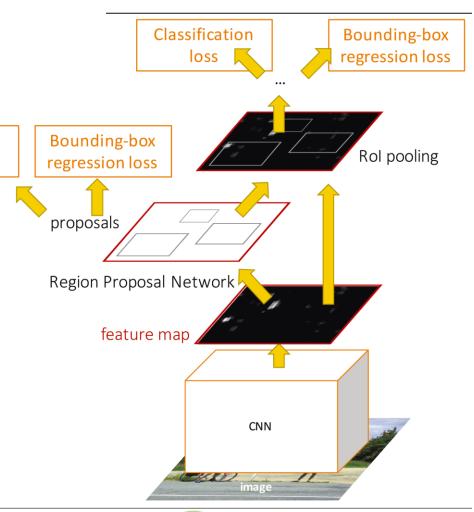
One network, four losses

Remove dependence on external region proposal algorithm.

loss

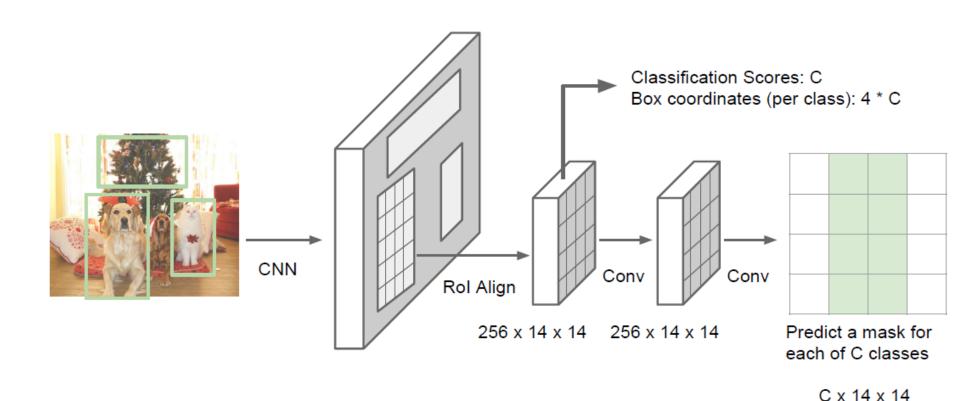
Instead, infer region proposals from same CNN.

- Feature sharing
- Joint training
 - ⇒ Object detection in a single pass becomes possible.



Slide credit: Ross Girshick

Most Recent Version: Mask R-CNN

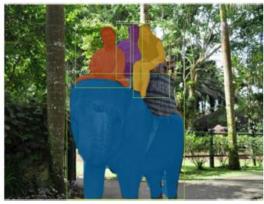


K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

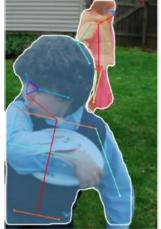
Slide credit: FeiFei Li

Mask R-CNN Results

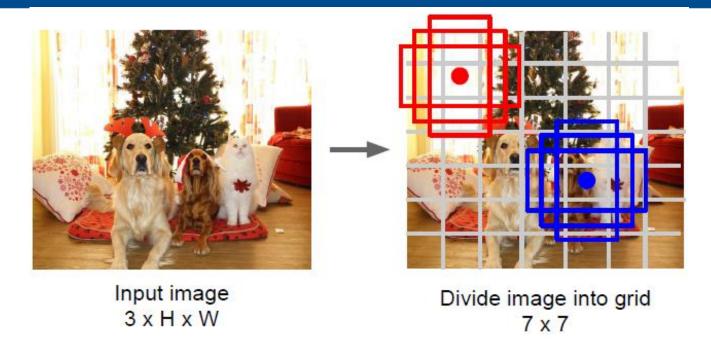
Detection + Instance segmentation



Detection + Pose estimation



YOLO / SSD



- Idea: Directly go from image to detection scores
- Within each grid cell
 - Start from a set of anchor boxes
 - Regress from each of the B anchor boxes to a final box
 - Predict scores for each of C classes (including background)

YOLO-v2 Results

J. Redmon, S. Divvala, R. Girshick, A. Farhadi, <u>You Only Look Once: Unified,</u> <u>Real-Time Object Detection</u>, CVPR 2016.

You Can Try All of This At Home...

- Detector code is publicly available
 - HOG: Dalal's original implementation:
 http://www.navneetdalal.com/software/
 - Our CUDA-optimized groundHOG code (>80 fps on GTX 580)
 http://www.vision.rwth-aachen.de/software/groundhog
 - DPM: Felzenswalb's original implementation:
 http://www.cs.uchicago.edu/~pff/latent
 - VeryFast Benenson's original implementation: https://bitbucket.org/rodrigob/doppia/
 - YOLO Joe Redmon's original implementation (YOLO v3):
 https://pjreddie.com/darknet/yolo/

