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• Single-Object Tracking

• Bayesian Filtering
 Kalman Filters, EKF

 Particle Filters

• Multi-Object Tracking

• Visual Odometry

• Visual SLAM & 3D Reconstruction

• Deep Learning for Video Analysis

Course Outline
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Today: Beyond Gaussian Error Models

Figure from Isard & Blake
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Topics of This Lecture

• Recap: Kalman Filter
 Basic ideas

 Kalman filter for 1D state

 General Kalman filter

 Limitations

 Extensions

• Particle Filters
 Basic ideas

 Propagation of general densities

 Factored sampling
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Recap: Tracking as Inference

• Inference problem
 The hidden state consists of the true parameters we care about, 

denoted X.

 The measurement is our noisy observation that results from the 
underlying state, denoted Y.

 At each time step, state changes (from Xt-1 to Xt) and we get a new 

observation Yt.

• Our goal: recover most likely state Xt given

 All observations seen so far.

 Knowledge about dynamics of state transitions.

X1 X2

Y1 Y2

Xt

Yt

…

Slide credit: Kristen Grauman
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Recap: Tracking as Induction

• Base case: 
 Assume we have initial prior that predicts state in absence of any 

evidence: P(X0)

 At the first frame, correct this given the value of Y0=y0

• Given corrected estimate for frame t: 

 Predict for frame t+1

 Correct for frame t+1

predict correct

Slide credit: Svetlana Lazebnik
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Recap: Prediction and Correction

• Prediction:

• Correction:

      1101110 ,,||,,|   ttttttt dXyyXPXXPyyXP 

Dynamics

model

Corrected estimate

from previous step

Slide credit: Svetlana Lazebnik
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Recap: Linear Dynamic Models

• Dynamics model
 State undergoes linear transformation Dt plus Gaussian noise

• Observation model
 Measurement is linearly transformed state plus Gaussian noise

 1~ ,
tt t t dN  x D x

 ~ ,
tt t t mN y M x

Slide credit: Svetlana Lazebnik, Kristen Grauman
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Example: Constant Velocity (1D Points)

time

Measurements

States

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Example: Constant Velocity (1D Points)

• State vector: position p and velocity v

• Measurement is position only













1

11 )(

tt

ttt

vv

vtpp











t

t

t
v

p
x

noise
v

pt
noisexDx

t

t

ttt 














 








1

1

1
10

1

(greek letters

denote noise

terms)

  noise
v

p
noiseMxy

t

t

tt 







 01

Slide credit: Svetlana Lazebnik, Kristen Grauman
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Example: Constant Velocity (1D Points)

• State vector: position p and velocity v

• Measurement is position only
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Slide credit: Svetlana Lazebnik, Kristen Grauman
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Example: Constant Acceleration (1D Points)

Slide credit: Kristen Grauman Figure from Forsyth & Ponce



16
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 8 – Beyond Kalman Filters

Example: Constant Acceleration (1D Points)

• State vector: position p, velocity v, and acceleration a.

• Measurement is position only
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Slide credit: Svetlana Lazebnik, Kristen Grauman
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General Motion Models

• Assuming we have differential equations for the motion
 E.g. for (undampened) periodic motion of a linear spring

• Substitute variables to transform this into linear system

• Then we have
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The Kalman Filter

• Kalman filter
 Method for tracking linear dynamical models in Gaussian noise

• The predicted/corrected state distributions are Gaussian
 You only need to maintain the mean and covariance.

 The calculations are easy (all the integrals can be done in closed form).

Slide credit: Svetlana Lazebnik
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The Kalman Filter

Know corrected state from 

previous time step, and all 

measurements up to the 

current one 

 Predict distribution over 

next state.

Time advances: t++

Time update

(“Predict”)

Measurement update

(“Correct”)

Receive measurement

 10 ,, tt yyXP 



tt  ,

Mean and std. dev.

of predicted state:

 tt yyXP ,,0 



tt  ,

Mean and std. dev.

of corrected state:

Know prediction of state, 

and next measurement 

Update distribution over 

current state.

Slide credit: Kristen Grauman
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Kalman Filter for 1D State

• Want to represent and update
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Propagation of Gaussian densities

Shifting the mean

Increasing the varianceBayesian update
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1D Kalman Filter: Prediction

• Have linear dynamic model defining predicted state 

evolution, with noise

• Want to estimate predicted distribution for next state

• Update the mean:

• Update the variance:





  1tt d

   2

10 )(,,, 

  tttt NyyXP 

 2

1,~ dtt dxNX 

2

1

22 )()( 



  tdt d

for derivations, 

see F&P Chapter 17.3

Slide credit: Kristen Grauman
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1D Kalman Filter: Correction

• Have linear model defining the mapping of state to 

measurements:

• Want to estimate corrected distribution given latest 

measurement:

• Update the mean:

• Update the variance:
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Slide credit: Kristen Grauman Derivations: F&P Chapter 17.3
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Prediction vs. Correction

• What if there is no prediction uncertainty

• What if there is no measurement uncertainty
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The prediction is ignored!

Slide credit: Kristen Grauman
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Recall: Constant Velocity Example

State is 2D: position + velocity 

Measurement is 1D: position

measurements

state

time

p
o
s
it
io

n

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce



29
Visual Computing Institute | Prof. Dr . Bastian Leibe

Computer Vision 2

Part 8 – Beyond Kalman Filters

Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Constant Velocity Model

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates 

before and after 

measurements

Slide credit: Kristen Grauman Figure from Forsyth & Ponce
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Kalman Filter: General Case (>1dim)

PREDICT CORRECT
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Slide credit: Kristen Grauman
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Summary: Kalman Filter

• Pros:
 Gaussian densities everywhere

 Simple updates, compact and efficient

 Very established method, very well understood

• Cons:
 Unimodal distribution, only single hypothesis

 Restricted class of motions defined by linear model

Slide adapted from Svetlana Lazebnik
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Remarks

• Try it!
 Not too hard to understand or program

• Start simple
 Experiment in 1D

 Make your own filter in Matlab, etc.

• Note: the Kalman filter “wants to work”
 Debugging can be difficult

 Errors can go un-noticed

Slide adapted from Greg Welch
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Topics of This Lecture

• Recap: Kalman Filter
 Basic ideas

 Kalman filter for 1D state

 General Kalman filter

 Limitations

 Extensions

• Particle Filters
 Basic ideas

 Propagation of general densities

 Factored sampling
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Extension: Extended Kalman Filter (EKF)

• Basic idea
 State transition and observation model don’t need to be linear functions 

of the state, but just need to be differentiable.

 The EKF essentially linearizes the nonlinearity around the current 

estimate by a Taylor expansion.

• Properties
 Unlike the linear KF, the EKF is in general not an optimal estimator.

 If the initial estimate is wrong, the filter may quickly diverge.

 Still, it’s the de-facto standard in many applications

 Including navigation systems and GPS

𝑦𝑡 = ℎ 𝑥𝑡 + 𝛿

𝑥𝑡 = 𝑔 𝑥𝑡−1, 𝑢𝑡 + 𝜀
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Recap: Kalman Filter – Detailed Algorithm

• Algorithm summary
 Assumption: linear model

 Prediction step

 Correction step
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Extended Kalman Filter (EKF)

• Algorithm summary
 Nonlinear model

 Prediction step

 Correction step

with the Jacobians
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Kalman Filter – Other Extensions

• Unscented Kalman Filter (UKF)
 Used for models with highly nonlinear predict and update functions.

 Here, the EKF can give very poor performance, since the covariance is 
propagated through linearization of the non-linear model.

 Idea (UKF): Propagate just a few sample points (“sigma points”) around 
the mean exactly, then recover the covariance from them.

 More accurate results than the EKF’s Taylor expansion approximation.

• Ensemble Kalman Filter (EnKF)
 Represents the distribution of the system state using a collection (an 

ensemble) of state vectors.

 Replace covariance matrix by sample covariance from ensemble.

 Still basic assumption that all prob. distributions involved are Gaussian.

 EnKFs are especially suitable for problems with a large number of 
variables.
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Even More Extensions

• Switching Linear Dynamic System (SLDS)

 Use a set of k dynamic models A(1),...,A(k), each of which describes a 

different dynamic behavior.

 Hidden variable zt determines which model is active at time t. 

 A switching process can change zt according to distribution .

Figure source: Erik Sudderth
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Topics of This Lecture

• Recap: Kalman Filter
 Basic ideas

 Kalman filter for 1D state

 General Kalman filter

 Limitations

 Extensions

• Particle Filters
 Basic ideas

 Propagation of general densities

 Factored sampling

Today: only main ideas

Formal introduction

next lecture
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When Is A Single Hypothesis Too Limiting?

• Consider this example: 

say we are tracking the 

face on the right using a 

skin color blob to get our 

measurement.

UpdateInitial position

x

y

x

y

Prediction

x

y

Measurement

x

y

Video from Jojic & Frey

Figure from Thrun & KoseckaSlide credit: Kristen Grauman
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Propagation of General Densities

Figure from Isard & Blake
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Factored Sampling

• Idea: Represent state distribution non-parametrically

 Prediction: Sample points from prior density for the state, P(X)

 Correction: Weight the samples according to P(Y |X)
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Slide credit: Svetlana Lazebnik
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Particle Filtering

• (Also known as Sequential Monte Carlo Methods)

• Idea
 We want to use sampling to propagate densities over time

(i.e., across frames in a video sequence).

 At each time step, represent posterior P(Xt|Yt) with weighted sample 

set.

 Previous time step’s sample set P(Xt-1|Yt-1) is passed to next time step 

as the effective prior.
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Particle Filtering

• Many variations, one general concept:
 Represent the posterior pdf by a set of randomly chosen weighted 

samples (particles)

 Randomly Chosen = Monte Carlo (MC)

 As the number of samples become very large – the characterization 

becomes an equivalent representation of the true pdf.

Sample space

Posterior

Slide adapted from Michael Rubinstein
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Particle Filtering

Start with weighted 

samples from previous 

time step

Sample and shift 

according to dynamics 

model

Spread due to 

randomness; this is pre-

dicted density P(Xt|Yt-1)

Weight the samples 

according to observation 

density

Arrive at corrected density 

estimate P(Xt|Yt)

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for 

visual tracking, IJCV 29(1):5-28, 1998

Slide credit: Svetlana Lazebnik

http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
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Particle Filtering – Visualization

Code and video available from

http://www.robots.ox.ac.uk/~misard/condensation.html

http://www.robots.ox.ac.uk/~misard/condensation.html
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Particle Filtering Results

http://www.robots.ox.ac.uk/~misard/condensation.html

http://www.robots.ox.ac.uk/~misard/condensation.html
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Particle Filtering Results

• Some more examples

http://www.robots.ox.ac.uk/~misard/condensation.html

Videos from  Isard & Blake

http://www.robots.ox.ac.uk/~misard/condensation.html
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Obtaining a State Estimate

• Note that there’s no explicit state estimate maintained,

just a “cloud” of particles

• Can obtain an estimate at a particular time by querying the 

current particle set

• Some approaches

 “Mean” particle

 Weighted sum of particles

 Confidence: inverse variance

 Really want a mode finder—mean of tallest peak
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Condensation: Estimating Target State

From Isard & Blake, 1998

State samples 

(thickness proportional to weight)

Mean of weighted 

state samples

Figures from  Isard & BlakeSlide credit: Marc Pollefeys
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Summary: Particle Filtering

• Pros:
 Able to represent arbitrary densities

 Converging to true posterior even for non-Gaussian and nonlinear 

system

 Efficient: particles tend to focus on regions with high probability

 Works with many different state spaces

 E.g. articulated tracking in complicated joint angle spaces

 Many extensions available
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Summary: Particle Filtering

• Cons / Caveats:
 #Particles is important performance factor

 Want as few particles as possible for efficiency.

 But need to cover state space sufficiently well.

 Worst-case complexity grows exponentially in the dimensions

 Multimodal densities possible, but still single object

 Interactions between multiple objects require special treatment.

 Not handled well in the particle filtering framework

(state space explosion).
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References and Further Reading

• A good tutorial on Particle Filters
 M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial 

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian 

Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2), pp. 

174-188, 2002.

• The CONDENSATION paper
 M. Isard and A. Blake, CONDENSATION - conditional density 

propagation for visual tracking, IJCV 29(1):5-28, 1998

http://ieeexplore.ieee.org/iel5/78/21093/00978374.pdf
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html

