

				Monocular	Correspondences
2D-10-2D A Å Å	2D-to-2D X X	Х	Х	Х	2D-to-2D
2D-to-3D X X X	2D-to-3D X X	х	Х	х	2D-to-3D
3D-to-3D X X	3D-to-3D X	Х	х		3D-to-3D

(Neud C

Summary

- · Direct image alignment avoids manually designed keypoints, can use all available image information
- Direct visual odometry
- Dense RGB-D odometry by direct image alignment with measured depth Direct image alignment for monocular cameras requires depth estimation from temporal stereo
- · Direct image alignment as non-linear least squares problem
- Linearization of the residuals requires a coarse-to-fine optimization scheme - Gaussian distribution on pose can be obtained
- SE(3) Lie algebra provides an elegant way of motion representation for gradient-based optimization
- Iteratively reweighted least squares allows for wider set of residual distributions than Gaussians

RWTHAACHEN UNIVERSITY

