Computer Vision 2 WS 2018/19

Part 20 – Repetition 23.01.2019

Guest Lecture: M.Sc. Jonathon Luiten

RWTH Aachen University, Computer Vision Group <a href="http://www.vision.rwth-aachen.de">http://www.vision.rwth-aachen.de</a>



#### • Exams

- We are in the process of sending around the exam slot assignments.
- If the assigned date doesn't work for you, please contact us.
- Exam Procedure
  - Oral exams
  - Duration 30min
  - I will give you 4 questions and expect you to answer 3 of them.





- Today, we'll summarize the most important points from the lecture.
  - It is an opportunity for you to ask questions...
  - ... or get additional explanations about certain topics.
  - So, please do ask.
- Today's slides are intended as an index for the lecture.
  - But they are not complete, won't be sufficient as only tool.
  - Also look at the exercises they often explain algorithms in detail.





# Content of the Lecture

- Single-Object Tracking
  - Background modeling
  - Template based tracking
  - Tracking by online classification
  - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





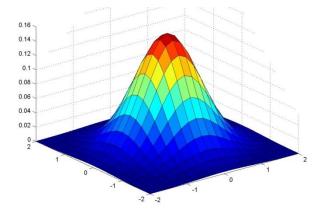
Image source: Tobias Jaeggli



# Recap: Gaussian Background Model

#### Statistical model

- Value of a pixel represents a measurement of the radiance of the first object intersected by the pixel's optical ray.
- With a static background and static lighting, this value will be a constant affected by i.i.d. Gaussian noise.



#### Idea

5

 Model the background distribution of each pixel by a single Gaussian centered at the mean pixel value:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

- Test if a newly observed pixel value has a high likelihood under this Gaussian model.
- $\Rightarrow$  Automatic estimation of a sensitivity threshold for each pixel.





# **Recap: Stauffer-Grimson Background Model**

Idea

6

– Model the distribution of each pixel by a mixture of K Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{\kappa} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \text{ where } \boldsymbol{\Sigma}_k = \sigma_k^2 \mathbf{I}$$

- Check every new pixel value against the existing K components until a match is found (pixel value within 2.5  $\sigma_k$  of  $\mu_k$ ).
- If a match is found, adapt the corresponding component.
- Else, replace the least probable component by a distribution with the new value as its mean and an initially high variance and low prior weight.
- Order the components by the value of  $w_k/\sigma_k$  and select the best B components as the background  $B = \arg\min_b \left(\sum_{k=1}^b \frac{w_k}{\sigma_k} > T\right)$



# Recap: Stauffer-Grimson Background Model

#### Online adaptation

- Instead of estimating the MoG using EM, use a simpler online adaptation, assigning each new value only to the matching component.
- Let  $M_{k,t} = 1$  iff component k is the model that matched, else 0.  $\pi_k^{(t+1)} = (1-\alpha)\pi_k^{(t)} + \alpha M_{k,t}$
- Adapt only the parameters for the matching component

$$\boldsymbol{\mu}_{k}^{(t+1)} = (1-\rho)\boldsymbol{\mu}_{k}^{(t)} + \rho x^{(t+1)}$$
$$\boldsymbol{\Sigma}_{k}^{(t+1)} = (1-\rho)\boldsymbol{\Sigma}_{k}^{(t)} + \rho (x^{(t+1)} - \boldsymbol{\mu}_{k}^{(t+1)})(x^{(t+1)} - \boldsymbol{\mu}_{k}^{(t+1)})^{T}$$

where

$$\rho = \alpha \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

(i.e., the update is weighted by the component likelihood)

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



## **Recap: Kernel Background Modeling**

- Nonparametric density estimation
  - Estimate a pixel's background distribution using the kernel density estimator  $K(\cdot)$  as

$$p(\mathbf{x}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} K(\mathbf{x}^{(t)} - \mathbf{x}^{(i)})$$

– Choose K to be a Gaussian  $\mathcal{N}(0, \Sigma)$  with  $\Sigma = \text{diag}\{\sigma_i\}$ . Then

$$p(\mathbf{x}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2}\frac{(x_j^{(t)} - x_j^{(i)})^2}{\sigma_j^2}}$$

- A pixel is considered foreground if  $p(\mathbf{x}^{(t)}) < \theta$  for a threshold  $\theta$ .
  - This can be computed very fast using lookup tables for the kernel function values, since all inputs are discrete values.
  - Additional speedup: partial evaluation of the sum usually sufficient

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



# Content of the Lecture

- Single-Object Tracking
  - Background modeling
  - Template based tracking
  - Tracking by online classification
  - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry

9

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

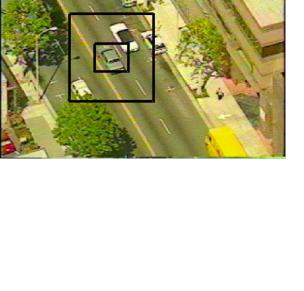
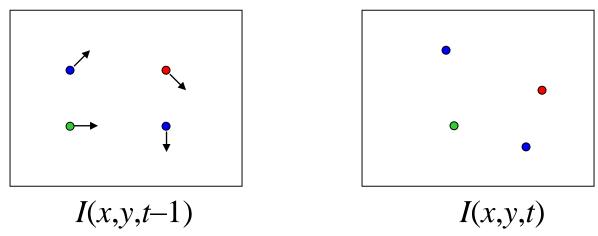






Image source: Robert Collins

# **Recap: Estimating Optical Flow**



Optical Flow

10

- Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them.

# Key assumptions

- Brightness constancy: projection of the same point looks the same in every frame.
- Small motion: points do not move very far.
- Spatial coherence: points move like their neighbors.

**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







#### **Recap: Lucas-Kanade Optical Flow**

- Use all pixels in a  $K \times K$  window to get more equations.
- Least squares problem:

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

Minimum least squares solution given by solution of

$$\begin{pmatrix} A^{T}A \\ 2 \times 2 \end{pmatrix} \stackrel{d}{}_{2 \times 1} = A^{T}b \\ \begin{array}{c} Recall \text{ the Harris detector!} \\ \end{array} \\ \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_{x}I_{t} \\ \sum I_{y}I_{t} \end{bmatrix} \\ \begin{array}{c} A^{T}A \\ A^{T}b \\ \end{array} \\ \begin{array}{c} \text{Nsual Computing Institute | Prof. Dr. Bastian Leibe \\ Computer Vision 2 \\ Part 20 - Repetition \end{array}$$

Slide credit: Svetlana Lazebnik

Visua

Comp

# **Recap: Iterative LK Refinement**

- Estimate velocity at each pixel using one iteration of LK estimation.
- Warp one image toward the other using the estimated flow field.
- Refine estimate by repeating the process.
- Iterative procedure

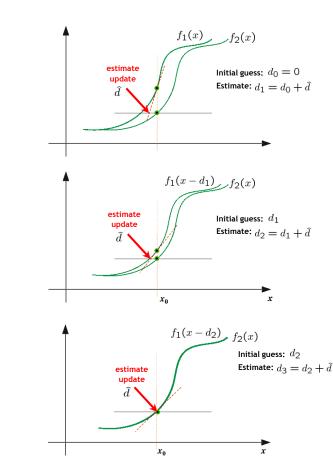
**Computer Vision 2** 

Part 20 - Repetition

- Results in subpixel accurate localization.
- Converges for small displacements.



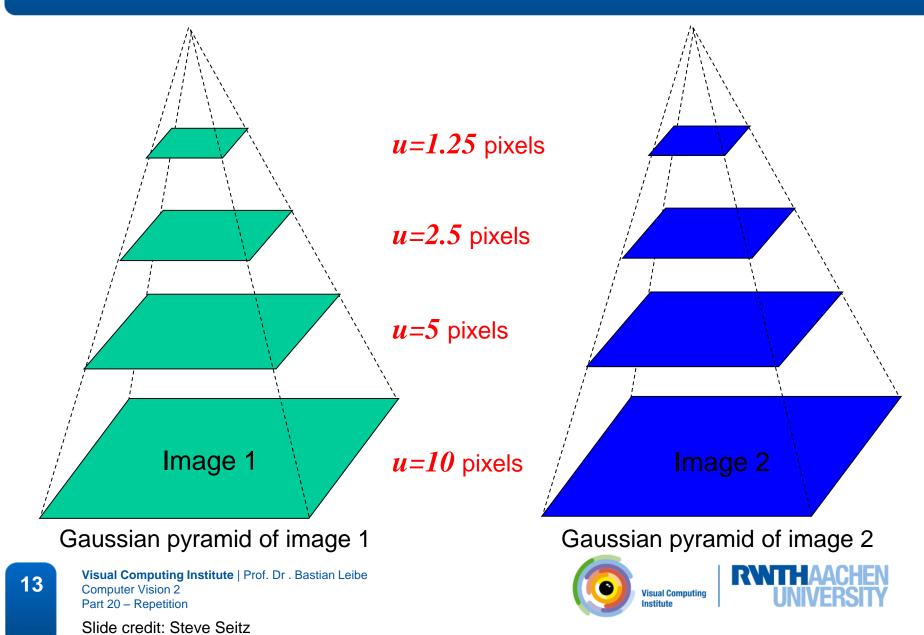




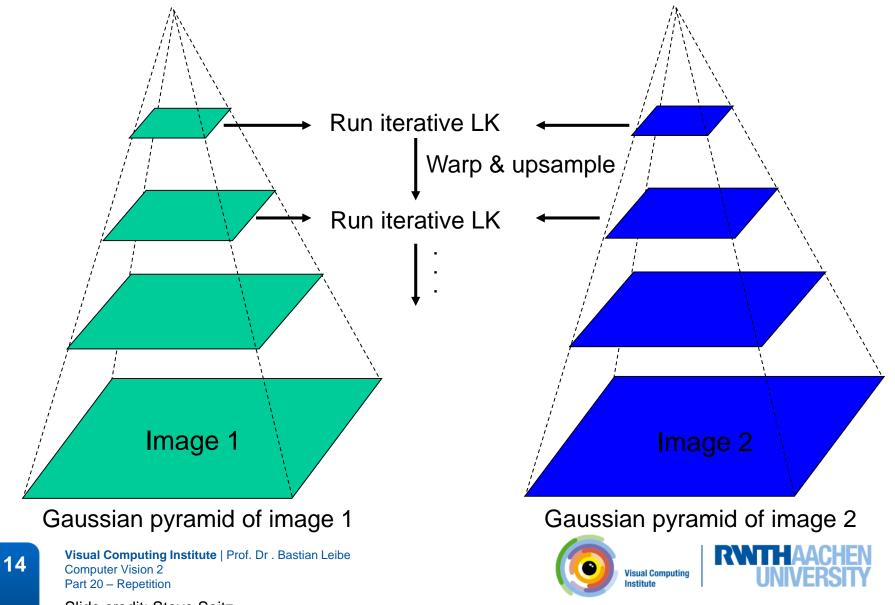




#### Recap: Coarse-to-fine Optical Flow Estimation



#### Recap: Coarse-to-fine Optical Flow Estimation



Slide credit: Steve Seitz

# Recap: Shi-Tomasi Feature Tracker ( $\rightarrow$ KLT)

• Idea

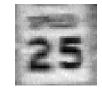
15

- Find good features using eigenvalues of second-moment matrix
- Key idea: "good" features to track are the ones that can be tracked reliably.
- Frame-to-frame tracking
  - Track with LK and a pure *translation* motion model.
  - More robust for small displacements, can be estimated from smaller neighborhoods (e.g.,  $5 \times 5$  pixels).
- Checking consistency of tracks
  - Affine registration to the first observed feature instance.
  - Affine model is more accurate for larger displacements.
  - Comparing to the first frame helps to minimize drift.

J. Shi and C. Tomasi. <u>Good Features to Track</u>. CVPR 1994.









# Recap: General LK Image Registration

### Goal

16

- Find the warping parameters  $\mathbf{p}$  that minimize the sum-of-squares intensity difference between the template image  $T(\mathbf{x})$  and the warped input image  $I(\mathbf{W}(\mathbf{x};\mathbf{p}))$ .

# LK formulation

- Formulate this as an optimization problem

$$\arg\min_{\mathbf{p}}\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) - T(\mathbf{x})\right]^{2}$$

– We assume that an initial estimate of p is known and iteratively solve for increments to the parameters  $\Delta p$ :

$$\arg\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \left[ I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$





#### **Recap: Step-by-Step Derivation**

- Key to the derivation
  - Taylor expansion around  $\Delta \mathbf{p}$

$$I(\mathbf{W}(\mathbf{x};\mathbf{p}+\Delta\mathbf{p})) \approx I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} + \mathcal{O}(\Delta \mathbf{p}^2)$$
$$= I(\mathbf{W}([x,y];p_1,\ldots,p_n))$$

 $+\begin{bmatrix} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial W_x}{\partial p_1} & \frac{\partial W_x}{\partial p_2} & \cdots & \frac{\partial W_x}{\partial p_n} \\ \frac{\partial W_y}{\partial p_1} & \frac{\partial W_y}{\partial p_2} & \cdots & \frac{\partial W_y}{\partial p_n} \end{bmatrix} \begin{bmatrix} \Delta p_1 \\ \Delta p_2 \\ \vdots \\ \Delta p \end{bmatrix}$ Gradient Jacobian Increment parameters to solve for  $\nabla I$  $\Delta \mathbf{p}$  $\partial \mathbf{p}$ Visual Computing Institute | Prof. Dr . Bastian Leibe Visual Computing Institute

**Computer Vision 2** 

Part 20 - Repetition

# Recap: Inverse Compositional LK Algorithm

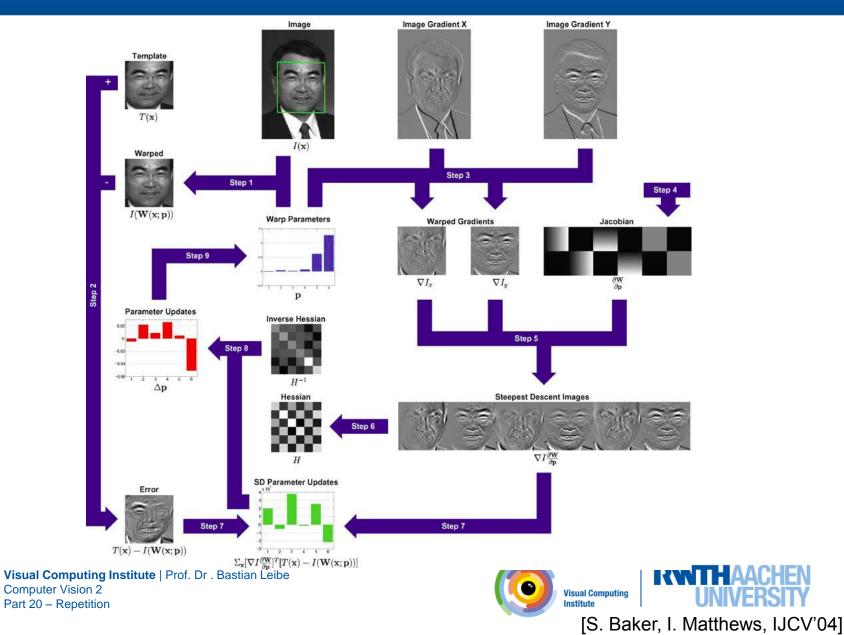
- Iterate
  - Warp I to obtain  $I(\mathbf{W}([x, y]; \mathbf{p}))$
  - Compute the error image  $T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p}))$
  - Warp the gradient  $\nabla I$  with  $\mathbf{W}([x, y]; \mathbf{p})$
  - Evaluate  $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$  at  $([x, y]; \mathbf{p})$ (Jacobian)
  - Compute steepest descent images
  - Compute Hessian matrix  $\mathbf{H} = \sum_{\mathbf{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$  Compute  $\sum_{\mathbf{x}} \left[ \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[ T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p})) \right]$

- $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[ \nabla I \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[ T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p})) \right]$ - Compute
- Update the parameters  $\mathbf{p} \leftarrow \mathbf{\bar{p}} + \Delta \mathbf{p}$
- Until  $\Delta \mathbf{p}$  magnitude is negligible





#### Recap: Inverse Compositional LK Algorithm



# **Course Outline**

- Single-Object Tracking
  - Background modeling
  - Template based tracking
  - Tracking by online classification
  - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry

20

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

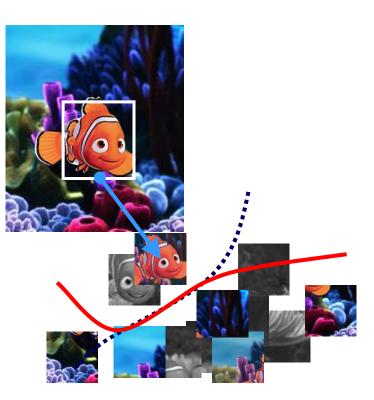


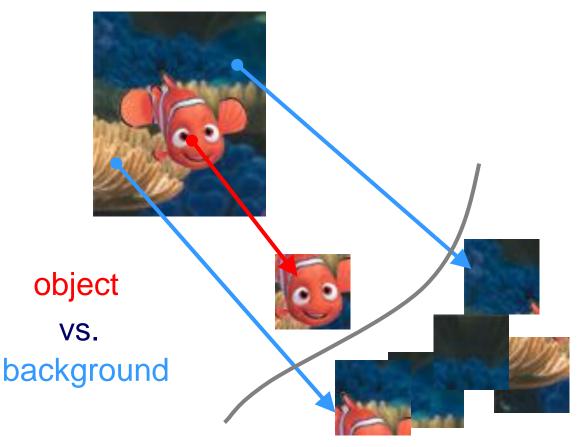




Image source: Robert Collins

## Recap: Tracking as Online Classification

Tracking as binary classification problem





Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



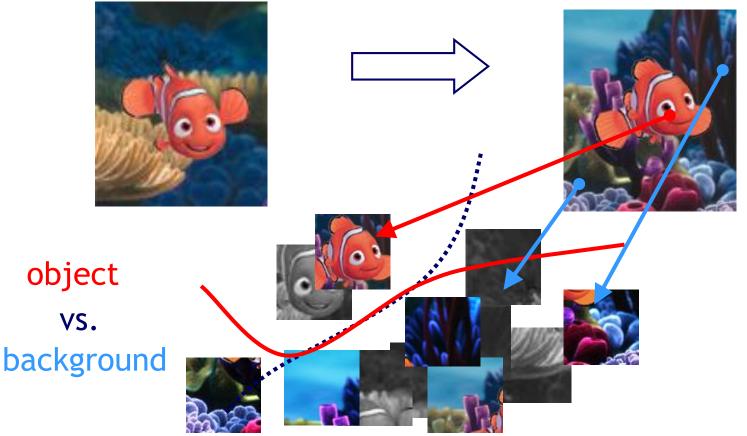


Slide credit: Helmut Grabner

Image source: Disney/Pixar

## Recap: Tracking as Online Classification

Tracking as binary classification problem

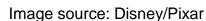


- Handle object and background changes by online updating

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Helmut Grabner

22



Visual Computing

Institute

# Recap: AdaBoost - "Adaptive Boosting"

Main idea

[Freund & Schapire, 1996]

- Iteratively select an ensemble of classifiers
- Reweight misclassified training examples after each iteration to focus training on difficult cases.
- Components
  - $-h_m(\mathbf{x})$ : "weak" or base classifier
    - Condition: <50% training error over any distribution</li>
  - $-H(\mathbf{x})$ : "strong" or final classifier

#### • AdaBoost:

23

- Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:  $\bigwedge M$ 

$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$





#### Recap: AdaBoost – Algorithm

- 1. Initialization: Set  $w_n^{(1)} = \frac{1}{N}$  for n = 1,...,N.
- 2. For m = 1, ..., M iterations
  - a) Train a new weak classifier  $h_m(\mathbf{x})$  using the current weighting coefficients  $\mathbf{W}^{(m)}$  by minimizing the weighted error function

$$J_m = \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on  $\mathbf{X}$ :

$$\epsilon_m = \frac{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^N w_n^{(m)}}$$

c) Calculate a weighting coefficient for  $h_m(\mathbf{x})$ :

$$\alpha_m = \ln\left\{\frac{1-\epsilon_m}{\epsilon_m}\right\}$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





# From Offline to Online Boosting

Main issue

25

- Computing the weight distribution for the samples.
- We do not know a priori the difficulty of a sample!
   (Could already have seen the same sample before...)
- Idea of Online Boosting
  - Estimate the importance of a sample by propagating it through a set of weak classifiers.
  - This can be thought of as modeling the information gain w.r.t. the first n classifiers and code it by the importance weight  $\lambda$  for the n+1 classifier.
  - Proven [Oza]: Given the same training set, Online Boosting converges to the same weak classifiers as Offline Boosting in the limit of  $N \to \infty$  iterations.

N. Oza and S. Russell. <u>Online Bagging and Boosting</u>. Artificial Intelligence and Statistics, 2001.





#### Recap: From Offline to Online Boosting

#### off-line

#### Given:

- set of labeled training samples  $\mathcal{X} = \{ \langle \mathbf{x_1}, y_1 \rangle, ..., \langle \mathbf{x_L}, y_L \rangle \mid y_i \pm 1 \}$ - weight distribution over them  $D_0 = 1/L$ 

#### for n = 1 to N

- train a weak classifier using samples and weight dist.

 $h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$ 

- calculate error  $e_n$
- calculate weight  $\alpha_n = f(e_n)$
- update weight dist.  $D_n$

#### next

26

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Helmut Grabner

#### on-line

#### <u>Given</u>:

- ONE labeled training sample  $\langle {f x},y
  angle \mid y\pm 1$
- strong classifier to update
- initial importance  $\lambda=1$
- for n = 1 to N
  - update the weak classifier using samples and importance

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(h_n^{weak}, \langle x, y \rangle, \lambda)$$

- update error estimation  $\hat{e_n}$
- update weight  $lpha_n=f(\widehat{e}_n)$
- update importance weight  $\lambda$

next

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

$$\underbrace{\operatorname{Visual Computing}}_{\text{Institute}} \mid \operatorname{RNTHAACHER}_{\text{UNIVERSITY}}$$

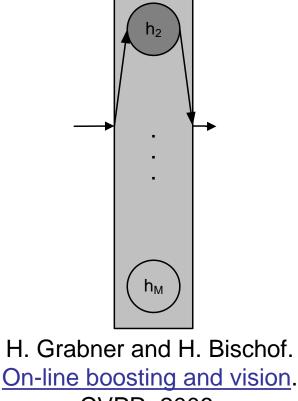
### **Recap: Online Boosting for Feature Selection**

- Introducing "Selector"
  - Selects one feature from its local feature pool

$$\mathcal{H}^{weak} = \{h_1^{weak}, ..., h_M^{weak}\}$$
$$\mathcal{F} = \{f_1, ..., f_M\}$$

$$h^{sel}(\mathbf{x}) = h_m^{weak}(\mathbf{x})$$
  
 $m = \arg\min_i e_i$ 

On-line boosting is performed on the Selectors and not on the weak classifiers directly.



hSelector

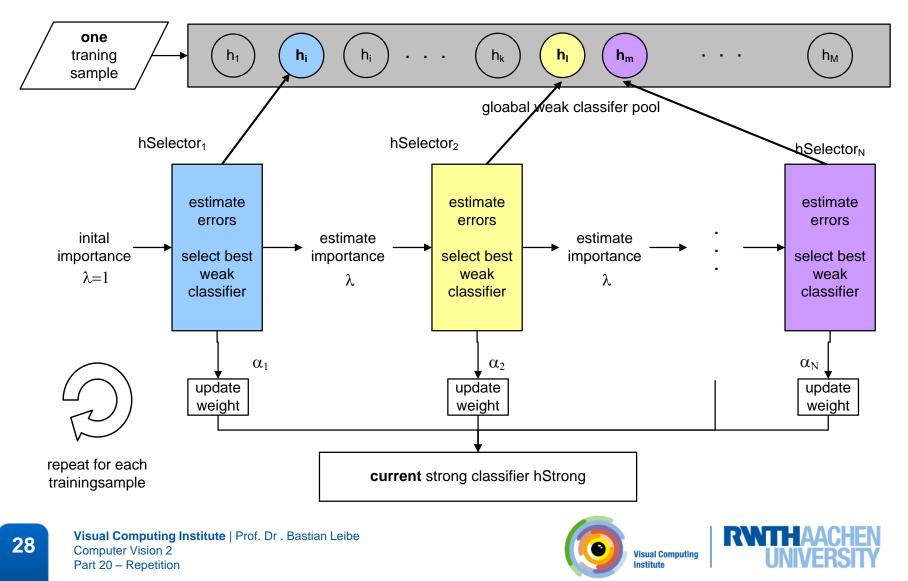
h<sub>1</sub>



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

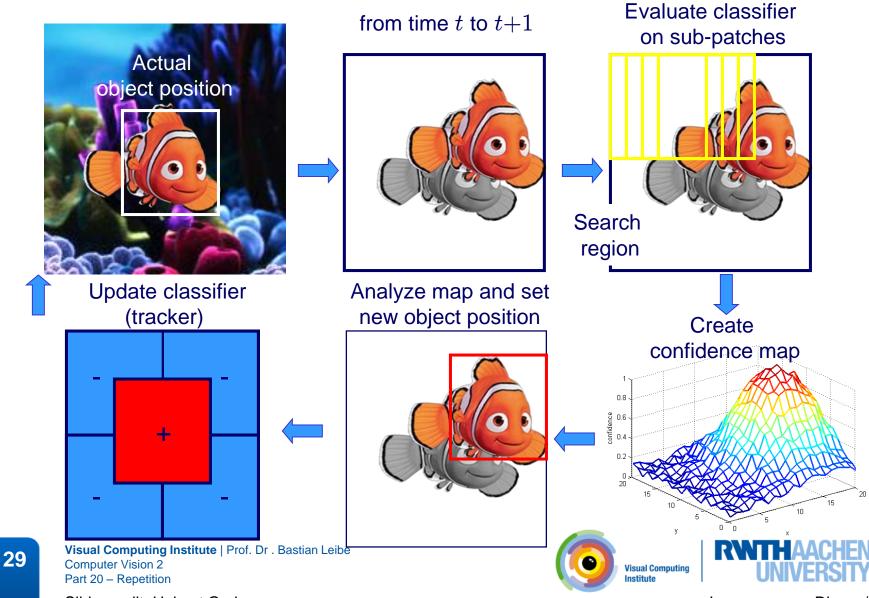
Slide credit: Helmut Grabner

#### **Recap: Direct Feature Selection**



Slide credit: Helmut Grabner

#### Recap: Tracking by Online Classification



Slide credit: Helmut Grabner

Image source: Disney/Pixar

# Recap: Drifting Due to Self-Learning Policy

#### **Tracked Patches**

0.95 0.9 0.85 0.8 (x| L= 0.75 0.7 0.65 0.6 0.55 0.5 100 200 300 500 600 700 400 frame number

 $\Rightarrow$  Not only does it drift, it also remains confident about it!

30

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Helmut Grabner



Confidence

Image source: Grabner et al., ECCV'08

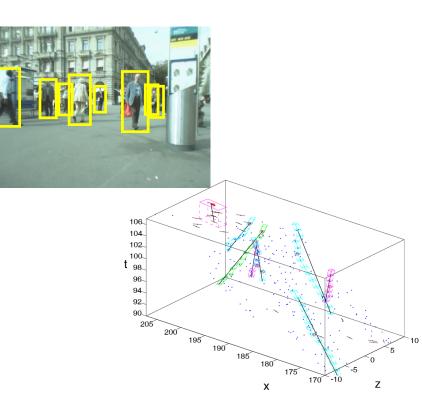
# **Course Outline**

- Single-Object Tracking
  - Background modeling
  - Template based tracking
  - Tracking by online classification
  - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry

31

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

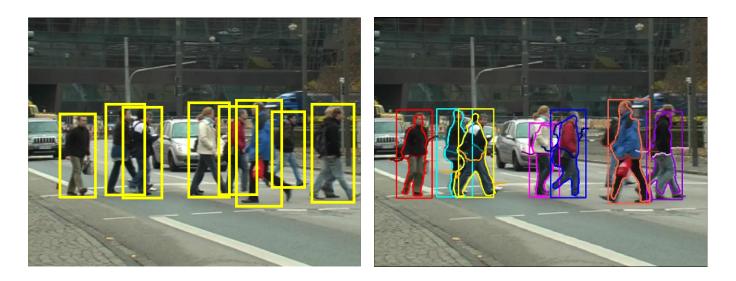
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







# Recap: Tracking-by-Detection

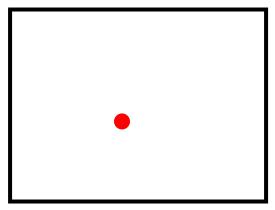


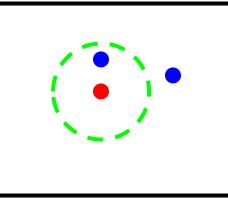
- Main ideas
  - Apply a generic object detector to find objects of a certain class
  - Based on the detections, extract object appearance models
  - Link detections into trajectories

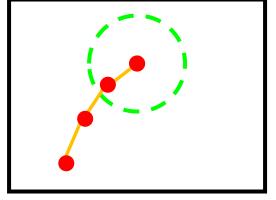




# Recap: Elements of Tracking







Detection

Data association

Prediction

- Detection
  - Where are candidate objects?
- Data association
  - Which detection corresponds to which object?
- Prediction

33

- Where will the tracked object be in the next time step?

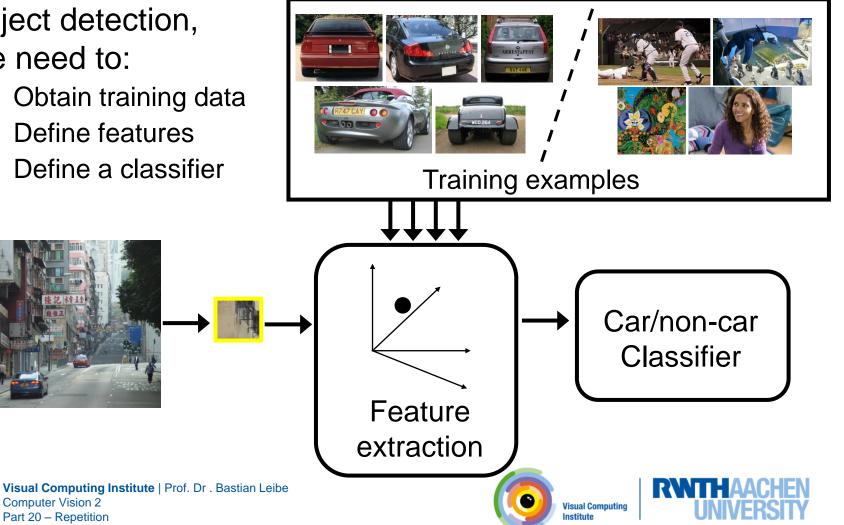
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





## **Recap: Sliding-Window Object Detection**

- For sliding-window object detection, we need to:
  - Obtain training data 1.
  - 2. Define features
  - Define a classifier 3.



Slide credit: Kristen Grauman

**Computer Vision 2** 

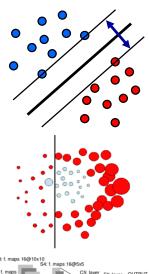
Part 20 - Repetition

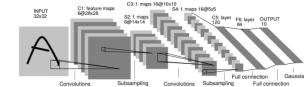
## Recap: Object Detector Design

- In practice, the classifier often determines the design.
  - Types of features
  - Speedup strategies
- We looked at 3 state-of-the-art detector designs
  - Based on SVMs

- Based on Boosting

Based on CNNs



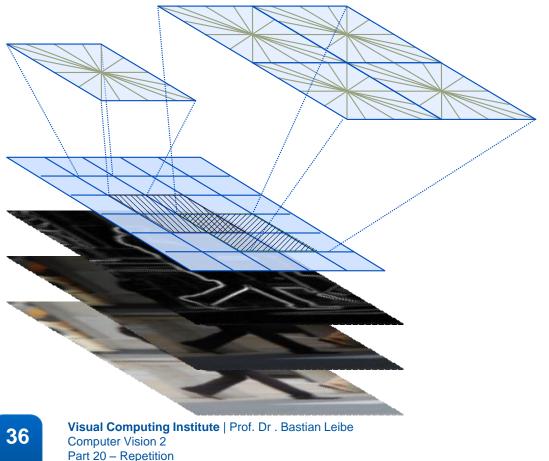




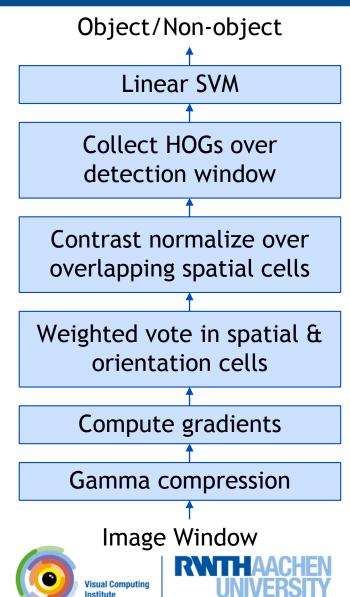


#### Recap: Histograms of Oriented Gradients (HOG)

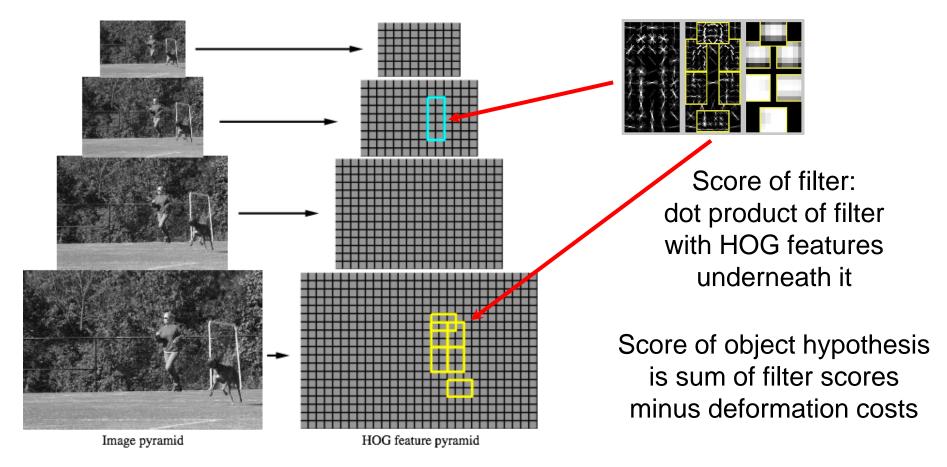
- Holistic object representation
  - Localized gradient orientations







#### Recap: Deformable Part-based Model (DPM)



• Multiscale model captures features at two resolutions

[Felzenszwalb, McAllister, Ramanan, CVPR'08]

Visual Computing

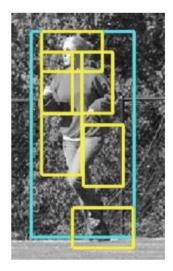
Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Pedro Felzenszwalb

#### **Recap: DPM Hypothesis Score**

$$\operatorname{score}(p_0, \dots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$$
filters
$$\operatorname{filters}^{n} d_i \cdot (dx_i^2, dy_i^2)$$
deformation parameters



score(z) =  $\beta \cdot \Psi(H, z)$ concatenation filters and concatenation deformation parameters features a

concatenation of HOG features and part displacement features

[Felzenszwalb, McAllister, Ramanan, CVPR'08]

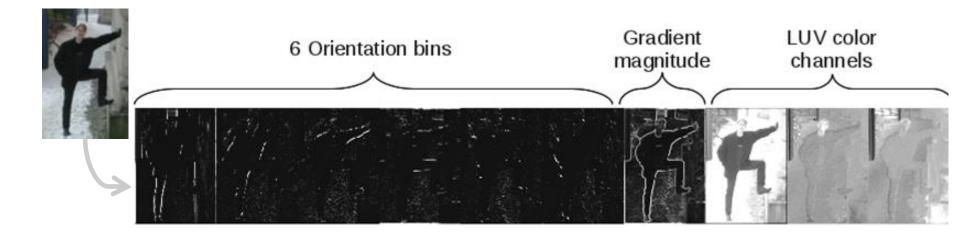




**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Pedro Felzenszwalb

#### **Recap: Integral Channel Features**



- Generalization of Haar Wavelet idea from Viola-Jones
  - Instead of only considering intensities, also take into account other feature channels (gradient orientations, color, texture).
  - Still efficiently represented as integral images.

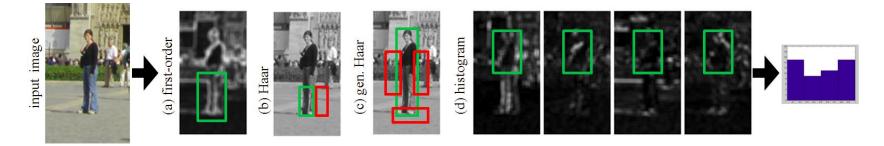
P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features, BMVC'09.







# **Recap: Integral Channel Features**



- Generalize also block computation
  - 1<sup>st</sup> order features:
    - Sum of pixels in rectangular region.
  - 2<sup>nd</sup>-order features:
    - Haar-like difference of sum-over-blocks
  - Generalized Haar:
    - More complex combinations of weighted rectangles
  - Histograms

**40** 

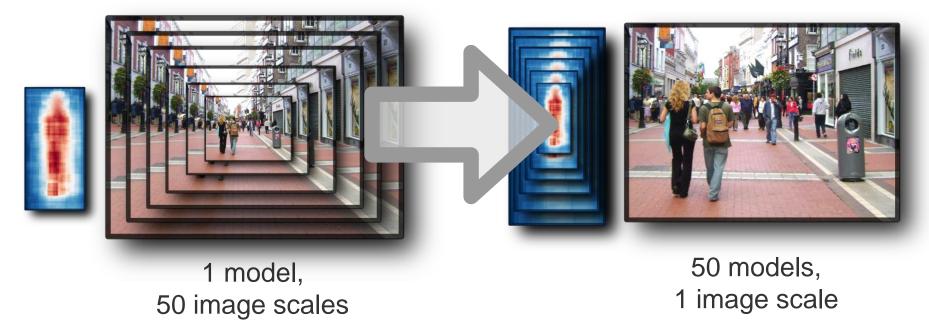
Computed by evaluating local sums on quantized images.





#### **Recap: VeryFast Detector**

• Idea 1: Invert the template scale vs. image scale relation



R. Benenson, M. Mathias, R. Timofte, L. Van Gool. <u>Pedestrian Detection at</u> <u>100 Frames per Second</u>, CVPR'12.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

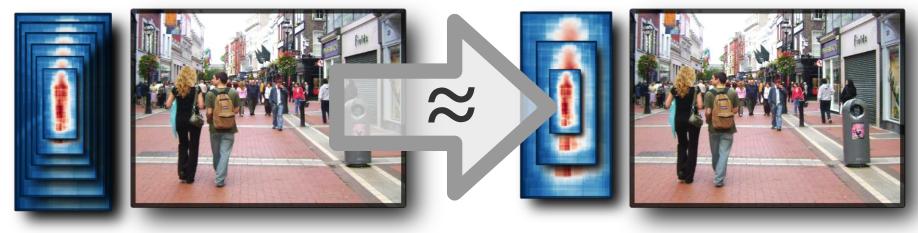
Slide credit: Rodrigo Benenson





#### Recap: VeryFast Detector

Idea 2: Reduce training time by feature interpolation



50 models, 1 image scale 5 models, 1 image scale

- Shown to be possible for Integral Channel features
  - P. Dollár, S. Belongie, Perona. <u>The Fastest Pedestrian Detector in the</u> <u>West</u>, BMVC 2010.



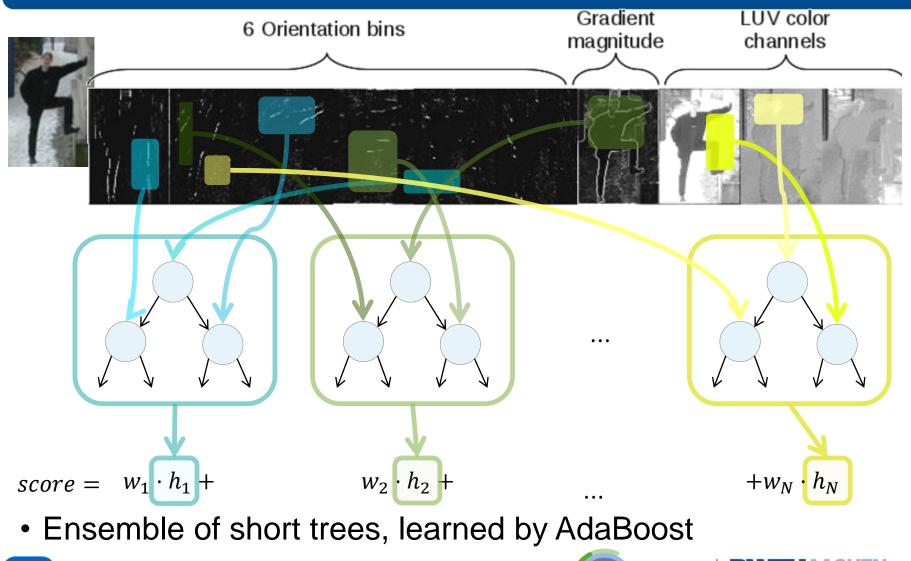
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Rodrigo Benenson





#### Recap: VeryFast Classifier Construction



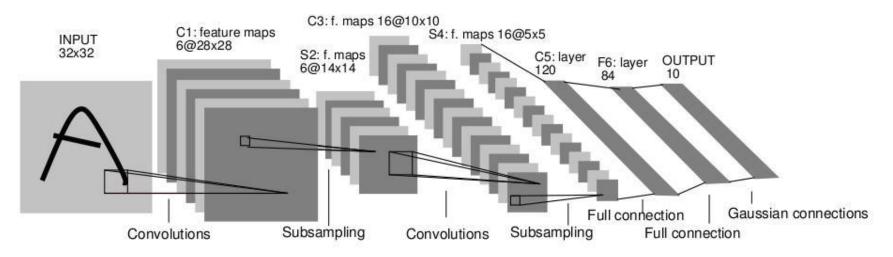
Visual Computing

Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Rodrigo Benenson

#### **Recap: Convolutional Neural Networks**



- Neural network with specialized connectivity structure
  - Stack multiple stages of feature extractors
  - Higher stages compute more global, more invariant features
  - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to</u> <u>document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

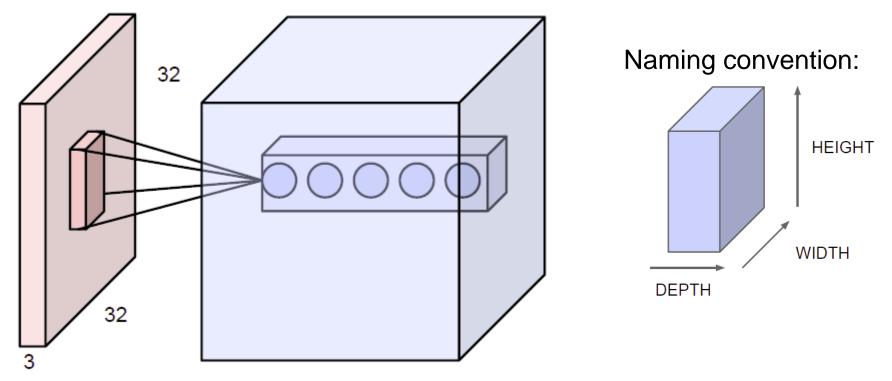
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







#### **Recap: Convolution Layers**



- All Neural Net activations arranged in 3 dimensions
  - Multiple neurons all looking at the same input region, stacked in depth
  - Form a single  $[1 \times 1 \times depth]$  depth column in output volume.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: FeiFei Li, Andrej Karpathy



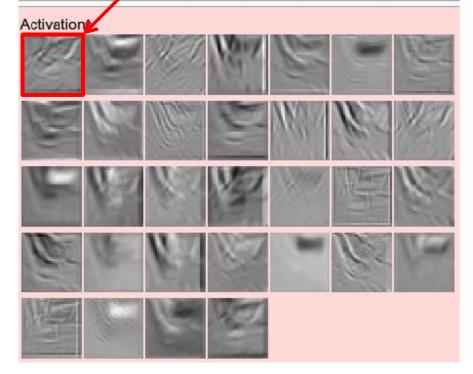
# **Recap: Activation Maps**

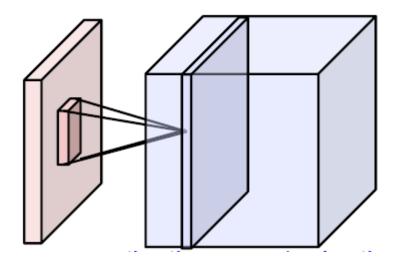
Activations:

#### 

one filter = one depth slice (or activation map)

 $5 \times 5$  filters





#### Activation maps



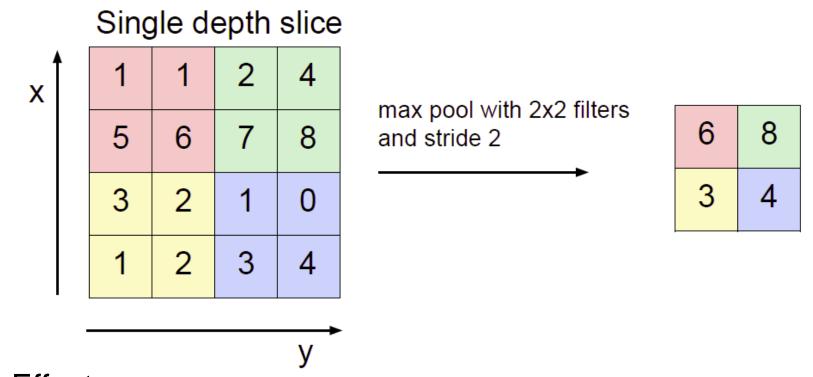
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from FeiFei Li, Andrej Karpathy





#### **Recap: Pooling Layers**

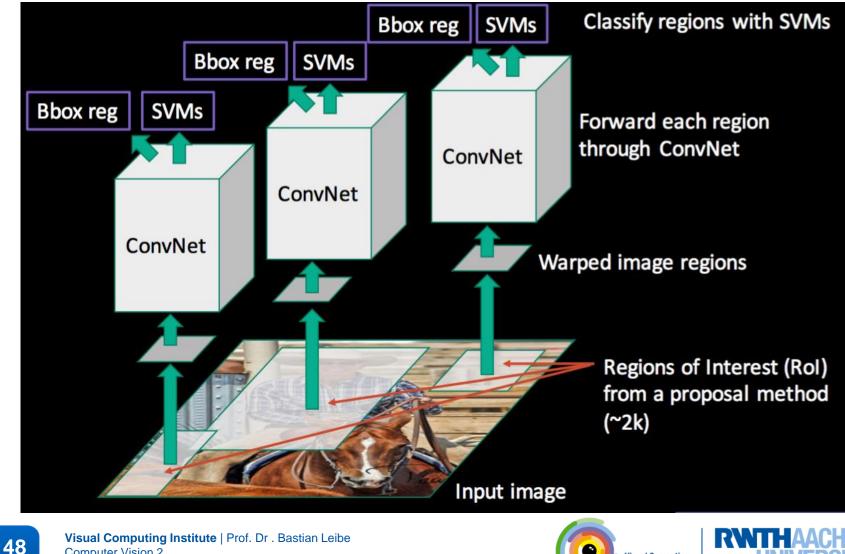


- Effect:
  - Make the representation smaller without losing too much information
  - Achieve robustness to translations





#### **Recap: R-CNN for Object Detection**

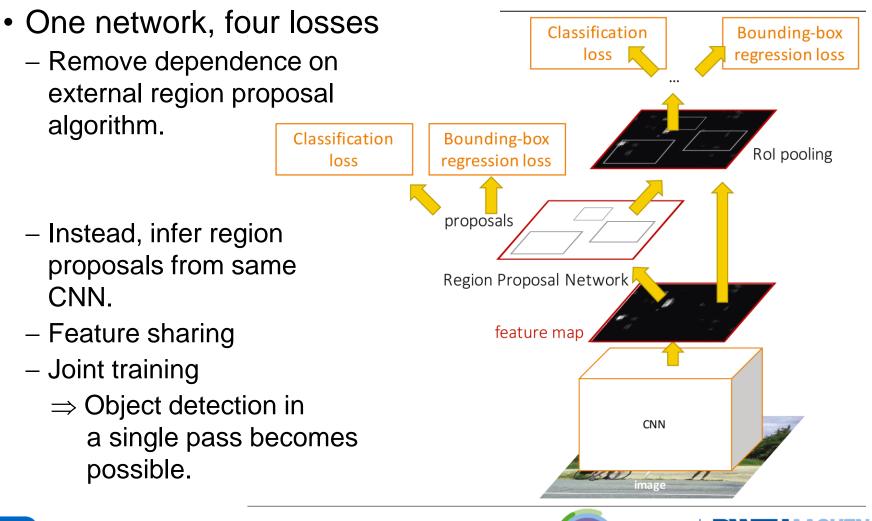


**Computer Vision 2** Part 20 - Repetition Slide credit: Ross Girshick





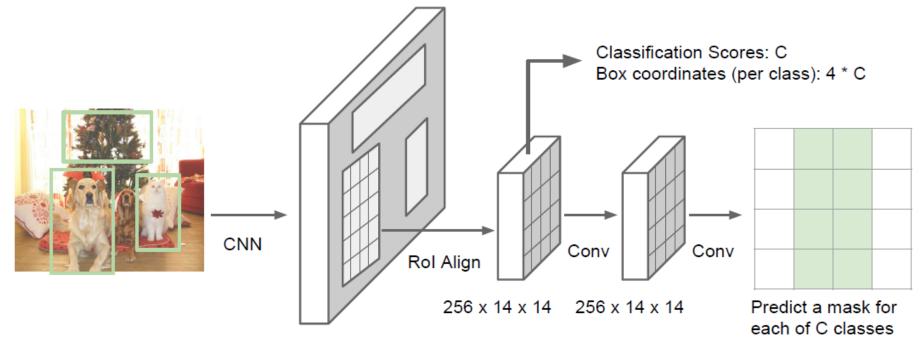
# **Recap: Faster R-CNN**



Visual Computing

Institute

#### **Recap: Mask R-CNN**



C x 14 x 14

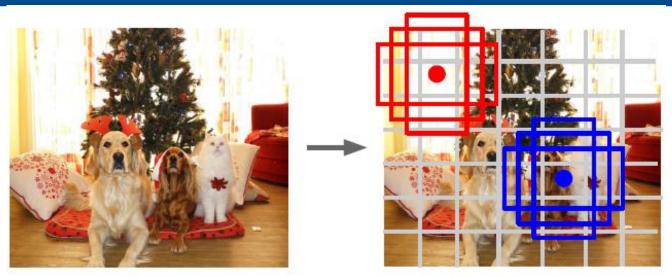
K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: FeiFei Li





#### Recap: YOLO / SSD



Input image 3 x H x W

Divide image into grid 7 x 7

- Idea: Directly go from image to detection scores
- Within each grid cell

51

- Start from a set of anchor boxes
- Regress from each of the B anchor boxes to a final box
- Predict scores for each of C classes (including background)

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: FeiFei Li

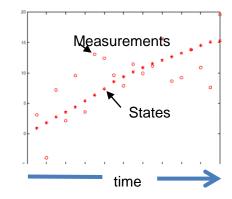




# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
  - Kalman Filters, EKF
  - Particle Filters
- Multi-Object Tracking
- Visual Odometry

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

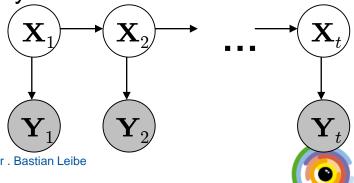






#### **Recap: Tracking as Inference**

- Inference problem
  - The hidden state consists of the true parameters we care about, denoted  $\mathbf{X}$ .
  - The measurement is our noisy observation that results from the underlying state, denoted  ${\bf Y}.$
  - At each time step, state changes (from  $\mathbf{X}_{t-1}$  to  $\mathbf{X}_{t}$ ) and we get a new observation  $\mathbf{Y}_{t}$ .
- Our goal: recover most likely state  $\mathbf{X}_t$  given
  - All observations seen so far.
  - Knowledge about dynamics of state transitions.





53

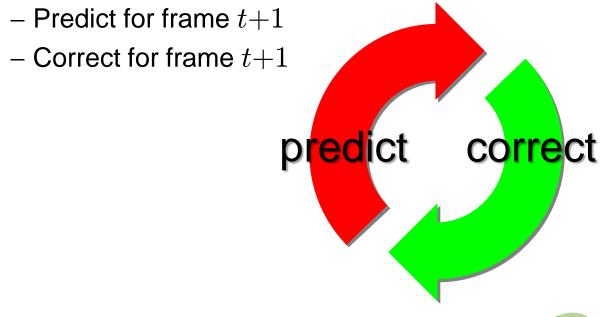


Visual Computing

Institute

#### **Recap: Tracking as Induction**

- Base case:
  - Assume we have initial prior that predicts state in absence of any evidence:  $P(\mathbf{X}_0)$
  - At the first frame, correct this given the value of  $\mathbf{Y}_0 = \mathbf{y}_0$
- Given corrected estimate for frame t:









Slide credit: Svetlana Lazebnik

#### **Recap: Prediction and Correction**

• Prediction:

55

$$P(X_{t} | y_{0}, ..., y_{t-1}) = \int P(X_{t} | X_{t-1}) P(X_{t-1} | y_{0}, ..., y_{t-1}) dX_{t-1}$$
Dynamics Corrected estimate from previous step
Correction:
$$P(X_{t} | y_{0}, ..., y_{t}) = \frac{P(y_{t} | X_{t}) P(X_{t} | y_{0}, ..., y_{t-1})}{\int P(y_{t} | X_{t}) P(X_{t} | y_{0}, ..., y_{t-1}) dX_{t}}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Svetlana Lazebnik





#### **Recap: Linear Dynamic Models**

- Dynamics model
  - State undergoes linear transformation  $D_t$  plus Gaussian noise

$$\boldsymbol{x}_{t} \sim N(\boldsymbol{D}_{t}\boldsymbol{x}_{t-1},\boldsymbol{\Sigma}_{d_{t}})$$

- Observation model
  - Measurement is linearly transformed state plus Gaussian noise

$$\boldsymbol{y}_t \sim N(\boldsymbol{M}_t \boldsymbol{x}_t, \boldsymbol{\Sigma}_{m_t})$$



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





Slide credit: Svetlana Lazebnik, Kristen Grauman

#### Recap: Constant Velocity (1D Points)

- State vector: position  $\boldsymbol{p}$  and velocity  $\boldsymbol{v}$ 

$$\begin{aligned} x_{t} &= \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix} & p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \mathcal{E} & \text{(greek letters denote noise} \\ v_{t} &= v_{t-1} + \mathcal{E} & \text{terms} \end{aligned}$$

$$x_{t} &= D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \end{bmatrix} + noise$$

Measurement is position only

$$y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix} + noise$$

57

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Svetlana Lazebnik, Kristen Grauman





#### Recap: Constant Acceleration (1D Points)

• State vector: position p, velocity v, and acceleration a.

$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \\ a_{t} \end{bmatrix} \qquad \begin{array}{l} p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \frac{1}{2}(\Delta t)^{2}a_{t-1} + \varepsilon & \text{(greek letters)} \\ v_{t} = v_{t-1} + (\Delta t)a_{t-1} + \xi & \text{terms)} \\ a_{t} = a_{t-1} + \zeta & \text{terms)} \\ a_{t} = a_{t-1} + \zeta & \text{terms)} \\ x_{t} = D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t & \frac{1}{2}(\Delta t)^{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \\ a_{t-1} \end{bmatrix} + noise \\ \begin{array}{l} p_{t-1} \\ p_{t-1} \\ a_{t-1} \end{bmatrix} + noise \\ \end{array}$$

 $a_{\star}$ 

Visual Computing

letters

Measurement is position only •

$$y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} p_t \\ v_t \end{vmatrix} + noise$$

Visual Computing Institute | Prof. Dr . Bastian Leibe **Computer Vision 2** Part 20 - Repetition

58

Slide credit: Svetlana Lazebnik, Kristen Grauman

#### **Recap: General Motion Models**

- Assuming we have differential equations for the motion
  - E.g. for (undampened) periodic motion of a linear spring

$$\frac{d^2 p}{dt^2} = -p$$

• Substitute variables to transform this into linear system

$$p_1 = p$$
  $p_2 = \frac{dp}{dt}$   $p_3 = \frac{d^2p}{dt^2}$ 

Then we have

59

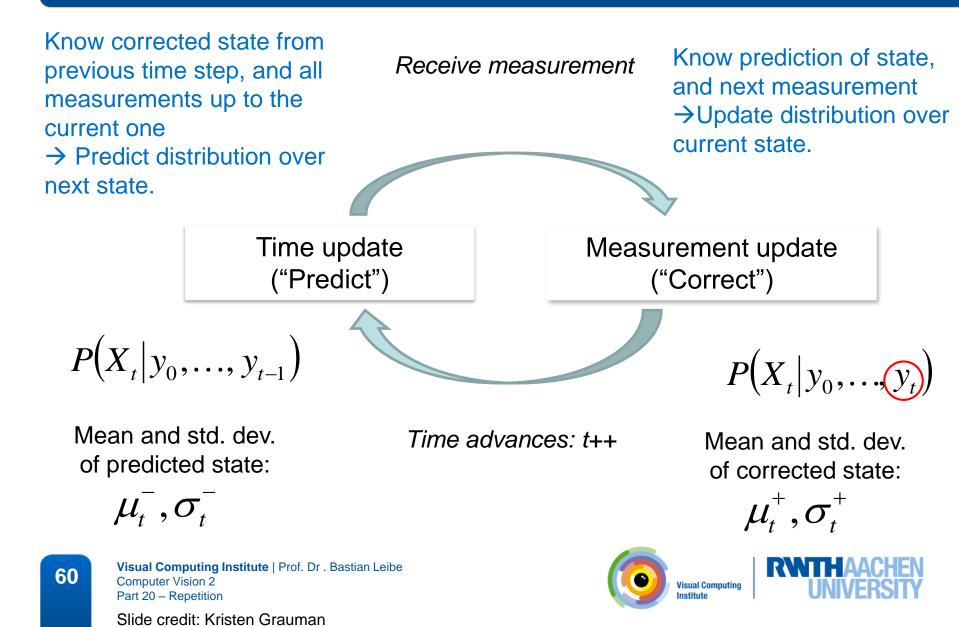
$$x_{t} = \begin{bmatrix} p_{1,t} \\ p_{2,t} \\ p_{3,t} \end{bmatrix} \qquad \begin{array}{l} p_{1,t} = p_{1,t-1} + (\Delta t) p_{2,t-1} + \frac{1}{2} (\Delta t)^{2} p_{3,t-1} + \mathcal{E} \\ p_{2,t} = p_{2,t-1} + (\Delta t) p_{3,t-1} + \mathcal{E} \\ p_{3,t} = -p_{1,t-1} + \mathcal{E} \\ \end{array} \qquad \begin{array}{l} D_{t} = \begin{bmatrix} 1 & \Delta t & \frac{1}{2} (\Delta t)^{2} \\ 0 & 1 & \Delta t \\ -1 & 0 & 0 \\ \end{array}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





#### Recap: The Kalman Filter



#### Recap: General Kalman Filter (>1dim)

**PREDICT** 

$$x_t^- = D_t x_{t-1}^+$$
$$\Sigma_t^- = D_t \Sigma_{t-1}^+ D_t^T + \Sigma_{d_t}$$

More weight on residual when measurement error covariance approaches 0.

CORRECT

Less weight on residual as a priori estimate error covariance approaches 0.

Visual Computing

$$\begin{split} K_t &= \Sigma_t^- M_t^T \left( M_t \Sigma_t^- M_t^T + \Sigma_{m_t} \right)^{-1} \\ x_t^+ &= x_t^- + K_t \left( y_t - M_t x_t^- \right) \text{``residual''} \\ \Sigma_t^+ &= \left( I - K_t M_t \right) \Sigma_t^- \end{split}$$



for derivations, see F&P Chapter 17.3

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Kristen Grauman

#### Recap: Kalman Filter – Detailed Algorithm

- Algorithm summary
  - Assumption: linear model

$$\mathbf{x}_t = \mathbf{D}_t \mathbf{x}_{t-1} + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{M}_t \mathbf{x}_t + \delta_t$$

- Prediction step

$$egin{array}{rcl} \mathbf{x}_t^- &=& \mathbf{D}_t \mathbf{x}_{t-1}^+ \ \mathbf{\Sigma}_t^- &=& \mathbf{D}_t \mathbf{\Sigma}_{t-1}^+ \mathbf{D}_t^T + \mathbf{\Sigma}_{d_t} \end{array}$$

- Correction step

$$egin{array}{rcl} \mathbf{K}_t &= \mathbf{\Sigma}_t^- \mathbf{M}_t^T \left( \mathbf{M}_t \mathbf{\Sigma}_t^- \mathbf{M}_t^T + \mathbf{\Sigma}_{m_t} 
ight)^{-1} \ \mathbf{x}_t^+ &= \mathbf{x}_t^- + \mathbf{K}_t \left( \mathbf{y}_t - \mathbf{M}_t \mathbf{x}_t^- 
ight) \ \mathbf{\Sigma}_t^+ &= \left( \mathbf{I} - \mathbf{K}_t \mathbf{M}_t 
ight) \mathbf{\Sigma}_t^- \end{array}$$







## Extended Kalman Filter (EKF)

- Algorithm summary
  - Nonlinear model

$$\mathbf{x}_t = \mathbf{g}(\mathbf{x}_{t-1}) + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{h}(\mathbf{x}_t) + \delta_t$$

- Prediction step

$$\mathbf{x}_{t}^{-} = \mathbf{g} \left( \mathbf{x}_{t-1}^{+} \right)$$
$$\mathbf{\Sigma}_{t}^{-} = \mathbf{G}_{t} \mathbf{\Sigma}_{t-1}^{+} \mathbf{G}_{t}^{T} + \mathbf{\Sigma}_{d_{t}}$$

Correction step

$$egin{array}{rcl} \mathbf{K}_t &=& \mathbf{\Sigma}_t^- \mathbf{H}_t^T \left( \mathbf{H}_t \mathbf{\Sigma}_t^- \mathbf{H}_t^T + \mathbf{\Sigma}_{m_t} 
ight)^{-1} \ \mathbf{x}_t^+ &=& \mathbf{x}_t^- + \mathbf{K}_t \left( \mathbf{y}_t - \mathbf{h} \left( \mathbf{x}_t^- 
ight) 
ight) \ \mathbf{\Sigma}_t^+ &=& \left( \mathbf{I} - \mathbf{K}_t \mathbf{H}_t 
ight) \mathbf{\Sigma}_t^- \end{array}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





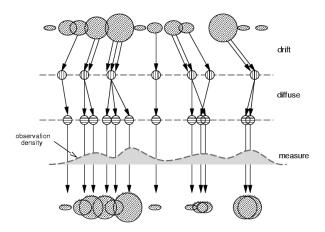
with the Jacobians

$$\begin{aligned} \mathbf{G}_t &= \left. \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_{t-}^+} \\ \mathbf{H}_t &= \left. \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_t^-} \end{aligned}$$

# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering

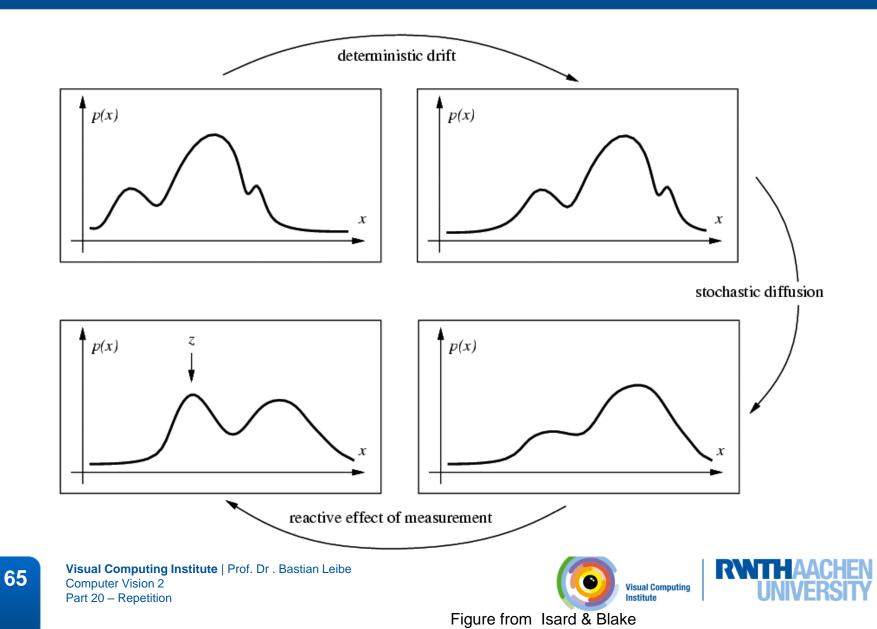
   Kalman Filters, EKF
  - Particle Filters
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



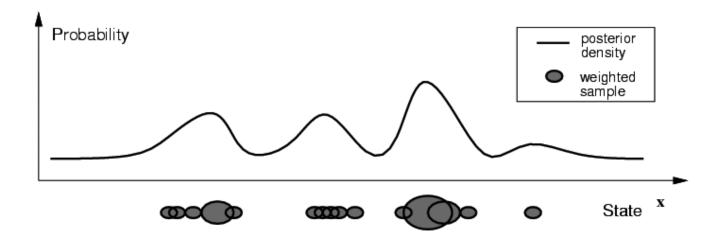




#### **Recap: Propagation of General Densities**



#### **Recap: Factored Sampling**



- Idea: Represent state distribution non-parametrically
  - Prediction: Sample points from prior density for the state, P(X)
  - Correction: Weight the samples according to P(Y|X)

$$P(X_{t} | y_{0},..., y_{t}) = \frac{P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})}{\int P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})dX_{t}}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

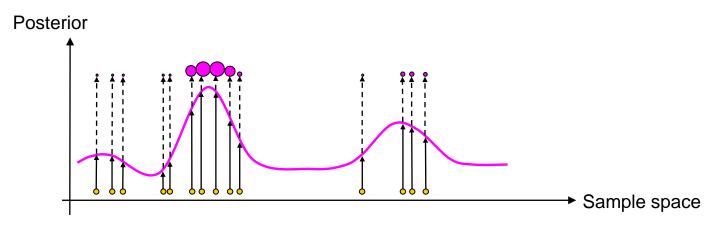






# **Recap: Particle Filtering**

- Many variations, one general concept:
  - Represent the posterior pdf by a set of randomly chosen weighted samples (particles)



- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf.



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







#### **Background: Monte-Carlo Sampling**

• Objective:

68

- Evaluate expectation of a function  $f(\mathbf{z})$ w.r.t. a probability distribution  $p(\mathbf{z})$ .

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

- Monte Carlo Sampling idea
  - Draw L independent samples  $z^{(l)}$  with l = 1, ..., L from p(z).
  - This allows the expectation to be approximated by a finite sum

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^l)$$

- As long as the samples  $z^{(l)}$  are drawn independently from p(z), then

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f]$$

 $\Rightarrow$  Unbiased estimate, independent of the dimension of z!

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Bernt Schiele



p(z)

Image source: C.M. Bishop, 2006

f(z)

#### **Background: Importance Sampling**

Idea

**69** 

- Use a proposal distribution  $q(\mathbf{z})$  from which it is easy to draw samples and which is close in shape to f.
- Express expectations in the form of a finite sum over samples  $\{z^{(l)}\}\$  drawn from q(z).

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d\mathbf{z}$$
$$\simeq \frac{1}{L} \sum_{l=1}^{L} \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})} f(\mathbf{z}^{(l)}) p(z) \int_{p(z)}^{p(z)} q(z)$$

- with importance weights

$$r_l = \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Bernt Schiele

Image source: C.M. Bishop, 2006

Visual Computing

Institute

f(z)

#### **Recap: Sequential Importance Sampling**

$$\begin{aligned} \mathbf{function} & \left[ \left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[ \left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ \eta &= 0 \\ \text{Initialize} \\ \mathbf{for} & i = 1:N \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) \end{aligned}$$

$$w_t^i = w_{t-1}^i \frac{p(\mathbf{y}_t | \mathbf{x}_t^i) p(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i)}{q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t)}$$
$$\eta = \eta + w_t^i$$

end for i = 1:N $w_t^i = w_t^i/\eta$ 

#### end

70

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein

Sample from proposal pdf

Update weights

Update norm. factor

#### Normalize weights





#### Recap: Sequential Importance Sampling

$$\begin{aligned} & \text{function } \left[ \left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[ \left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \text{for } i = 1:N & \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) p(\mathbf{x}_{t}^{i} | \mathbf{x}_{t-1}^{i})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t})} & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \text{end} & \\ & \text{for } i = 1:N & \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{For a concrete algorithm,} \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \end{aligned}$$

#### end

71

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein





#### Recap: SIS Algorithm with Transitional Prior

$$\begin{aligned} & \text{function } \left[ \left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[ \left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \text{for } i = 1:N & \\ & \mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \text{end} & \\ & \text{for } i = 1:N & \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \end{aligned}$$



72

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein





### **Recap: Resampling**

- Degeneracy problem with SIS
  - After a few iterations, most particles have negligible weights.
  - Large computational effort for updating particles with very small contribution to  $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ .
- Idea: Resampling
  - Eliminate particles with low importance weights and increase the number of particles with high importance weight.

$$\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N} \rightarrow \left\{\mathbf{x}_{t}^{i*}, \frac{1}{N}\right\}_{i=1}^{N}$$

– The new set is generated by sampling with replacement from the discrete representation of  $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$  such that

$$\Pr\left\{\mathbf{x}_t^{i*} = \mathbf{x}_t^j\right\} = w_t^j$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

73

Slide adapted from Michael Rubinstein



isual Computing

# Recap: Efficient Resampling Approach

#### • From Arulampalam paper:

Algorithm 2: Resampling Algorithm  $[\{\mathbf{x}_{k}^{j*}, w_{k}^{j}, i^{j}\}_{i=1}^{N_{s}}] = \text{RESAMPLE} [\{\mathbf{x}_{k}^{i}, w_{k}^{i}\}_{i=1}^{N_{s}}]$ • Initialize the CDF:  $c_1 = 0$ • FOR  $i = 2: N_*$ - Construct CDF:  $c_i = c_{i-1} + w_k^i$ END FOR Start at the bottom of the CDF: i = 1 Draw a starting point: u<sub>1</sub> ~ U[0, N<sub>s</sub><sup>-1</sup>] • For  $j = 1: N_s$ - Move along the CDF:  $u_j = u_1 + N_s^{-1}(j-1)$ - WHILE  $u_i > c_i$ \* i = i + 1- END WHILE - Assign sample:  $\mathbf{x}_k^{j*} = \mathbf{x}_k^i$ - Assign weight:  $w_k^j = N_s^{-1}$ - Assign parent:  $i^{j} = i$ 

END FOR

74

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Robert Collins

Basic idea: choose one initial small random number; deterministically sample the rest by "crawling" up the cdf. This is  $\mathcal{O}(N)$ !





### **Recap: Generic Particle Filter**

$$\begin{aligned} \mathbf{function} \ \left[ \left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] &= PF\left[ \left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Apply SIS \ filtering \ \left[ \left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] &= SIS\left[ \left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Calculate \ N_{eff} \end{aligned}$$

$$\begin{array}{ll} \mathbf{if} & N_{eff} < N_{thr} \\ & \left[ \left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = RESAMPLE \left[ \left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] \\ \mathbf{end} \end{array}$$

- We can also apply resampling selectively
  - Only resample when it is needed, i.e.,  $N_{\it eff}$  is too low.
  - $\Rightarrow$  Avoids drift when the tracked state is stationary.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide adapted from Michael Rubinstein





# Recap: Sampling-Importance-Resampling (SIR)

function  $[\mathcal{X}_t] = SIR[\mathcal{X}_{t-1}, \mathbf{y}_t]$  $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ for i = 1:NSample  $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$  $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$ end for i = 1:NDraw i with probability  $\propto w_t^i$ Add  $\mathbf{x}_{t}^{i}$  to  $\mathcal{X}_{t}$ 

#### end

76

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein

Initialize

Generate new samples

Update weights

Resample





# Recap: Sampling-Importance-Resampling (SIR)

function 
$$[\mathcal{X}_t] = SIR [\mathcal{X}_{t-1}, \mathbf{y}_t]$$
  
 $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$   
for  $i = 1:N$   
 $Sample \ \mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$   
 $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$   
end  
for  $i = 1:N$ 

Draw i with probability  $\propto w_t^i$ Add  $\mathbf{x}_t^i$  to  $\mathcal{X}_t$ 

#### end

77

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein

Important property:

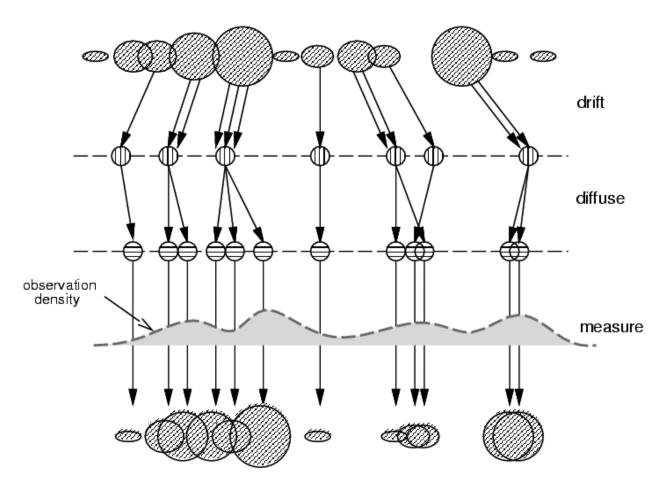
Particles are distributed according to pdf from previous time step.

Particles are distributed according to posterior from this time step.





#### **Recap: Condensation Algorithm**



Start with weighted samples from previous time step

Sample and shift according to dynamics model

Spread due to randomness; this is predicted density  $P(X_t|Y_{t-1})$ 

Weight the samples according to observation density

Arrive at corrected density estimate  $P(X_t|Y_t)$ 

#### M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for</u> <u>visual tracking</u>, IJCV 29(1):5-28, 1998

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Svetlana Lazebnik

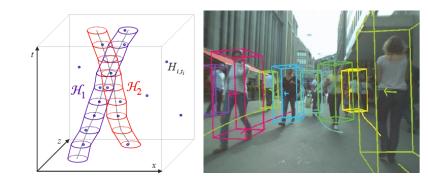




# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
  - Kalman Filters, EKF
  - Particle Filters
- Multi-Object Tracking
  - Introduction
  - MHT

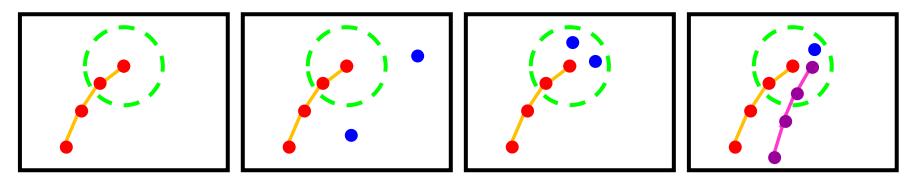
- Network Flow Optimization
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis







# **Recap: Motion Correspondence Ambiguities**



- 1. Predictions may not be supported by measurements
  - Have the objects ceased to exist, or are they simply occluded?
- 2. There may be unexpected measurements
  - Newly visible objects, or just noise?
- 3. More than one measurement may match a prediction
  - Which measurement is the correct one (what about the others)?
- 4. A measurement may match to multiple predictions
  - Which object shall the measurement be assigned to?

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



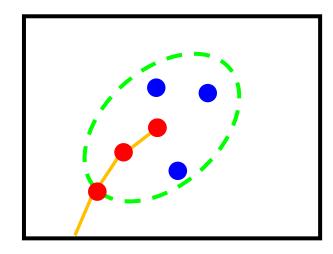


## Recap: Mahalanobis Distance

- Gating / Validation volume
  - Our KF state of track  $\mathbf{x}_l$  is given by

the prediction  $\hat{\mathbf{x}}_{l}^{(k)}$  and covariance  $\boldsymbol{\Sigma}_{p,l}^{(k)}$ .

- We define the innovation that measurement  $\mathbf{y}_j$  brings to track  $\mathbf{x}_l$  at time k as  $\mathbf{v}_{j,l}^{(k)} = (\mathbf{y}_j^{(k)} - \mathbf{x}_{p,l}^{(k)})$ 



- With this, we can write the observation likelihood shortly as

$$p(\mathbf{y}_{j}^{(k)}|\mathbf{x}_{l}^{(k)}) \sim \exp\left\{-\frac{1}{2}\mathbf{v}_{j,l}^{(k)^{T}}\boldsymbol{\Sigma}_{p,l}^{(k)^{-1}}\mathbf{v}_{j,l}^{(k)}\right\}$$

- We define the ellipsoidal gating or validation volume as

$$V^{(k)}(\gamma) = \left\{ \mathbf{y} | (\mathbf{y} - \mathbf{x}_{p,l}^{(k)})^T \mathbf{\Sigma}_{p,l}^{(k)^{-1}} (\mathbf{y} - \mathbf{x}_{p,l}^{(k)}) \le \gamma \right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





#### Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

#### 82

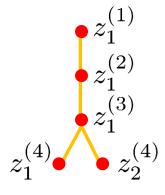
### **Recap: Track-Splitting Filter**

#### Idea

- Instead of assigning the measurement that is currently closest, as in the NN algorithm, select the sequence of measurements that minimizes the *total* Mahalanobis distance over some interval!
- Form a track tree for the different association decisions
- Modified log-likelihood provides the merit of a particular node in the track tree.
- Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.
- Problem
  - The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.







# **Recap: Pruning Strategies**

- In order to keep this feasible, need to apply pruning
  - Deleting unlikely tracks
    - May be accomplished by comparing the modified log-likelihood  $\lambda(k)$ , which has a  $\chi^2$  distribution with  $kn_z$  degrees of freedom, with a threshold  $\alpha$  (set according to  $\chi^2$  distribution tables).
    - Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
    - $\Rightarrow$  Use sliding window or exponential decay term.
  - Merging track nodes
    - If the state estimates of two track nodes are similar, merge them.
    - E.g., if both tracks validate identical subsequent measurements.
  - Only keeping the most likely  $N \, {\rm tracks}$ 
    - Rank tracks based on their modified log-likelihood.

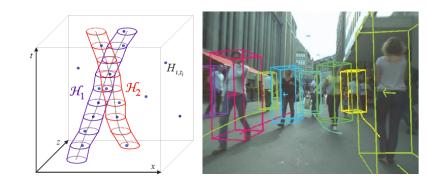




# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
  - Kalman Filters, EKF
  - Particle Filters
- Multi-Object Tracking
  - Introduction
  - MHT

- Network Flow Optimization
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



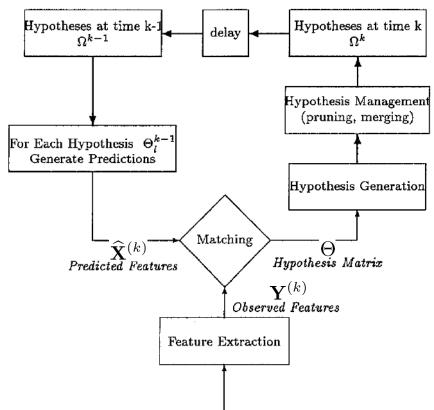


# Recap: Multi-Hypothesis Tracking (MHT)

Ideas

85

- Instead of forming a track tree, keep a set of hypotheses that generate child hypotheses based on the associations.
- Enforce exclusion constraints between tracks and measurements in the assignment.
- Integrate track generation into the assignment process.
- After hypothesis generation, merge and prune the current hypothesis set.



Raw Sensor Data

D. Reid, <u>An Algorithm for Tracking Multiple Targets</u>, IEEE Trans. Automatic Control, Vol. 24(6), pp. 843-854, 1979.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

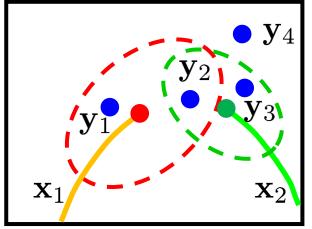




# Recap: Hypothesis Generation

Create hypothesis matrix of the feasible associations

 $\Theta = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \mathbf{x}_{fa} \mathbf{x}_{nt} \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \mathbf{y}_4 \end{bmatrix}$ 



• Interpretation

86

- Columns represent tracked objects, rows encode measurements
- A non-zero element at matrix position (i,j) denotes that measurement  $\mathbf{y}_i$  is contained in the validation region of track  $\mathbf{x}_j$ .
- Extra column  $\mathbf{x}_{fa}$  for association as false alarm.
- Extra column  $\mathbf{x}_{nt}$  for association as *new track*.
- Enumerate all assignments that are consistent with this matrix.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





# Recap: Assignments

| $Z_{j}$        | $\mathbf{x}_1$ | $\mathbf{x}_2$ | $\mathbf{x}_{fa}$ | $\mathbf{x}_{nt}$ |
|----------------|----------------|----------------|-------------------|-------------------|
| $\mathbf{y}_1$ | 0              | 0              | 1                 | 0                 |
| $\mathbf{y}_2$ | 1              | 0              | 0                 | 0                 |
| $\mathbf{y}_3$ | 0              | 1              | 0                 | 0                 |
| $\mathbf{y}_4$ | 0              | 0              | 0                 | 1                 |

- Impose constraints
  - A measurement can originate from only one object.
  - $\Rightarrow$  Any row has only a single non-zero value.
  - An object can have at most one associated measurement per time step.
  - $\Rightarrow$  Any column has only a single non-zero value, except for  $\mathbf{x}_{fa}$ ,  $\mathbf{x}_{nt}$





# **Recap: Calculating Hypothesis Probabilities**

- Probabilistic formulation
  - It is straightforward to enumerate all possible assignments.
  - However, we also need to calculate the probability of each child hypothesis.
  - This is done recursively:





#### **Recap: Measurement Likelihood**

Use KF prediction

- Assume that a measurement  $\mathbf{y}_i^{(k)}$  associated to a track  $\mathbf{x}_j$  has a Gaussian pdf centered around the measurement prediction  $\hat{\mathbf{x}}_j^{(k)}$  with innovation covariance  $\widehat{\boldsymbol{\Sigma}}_j^{(k)}$ .
- Further assume that the pdf of a measurement belonging to a new track or false alarm is uniform in the observation volume W (the sensor's field-of-view) with probability  $W^{-1}$ .
- Thus, the measurement likelihood can be expressed as

$$p\left(\mathbf{Y}^{(k)}|Z_{j}^{(k)},\Omega_{p(j)}^{(k-1)}\right) = \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)};\hat{\mathbf{x}}_{j},\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}} W^{-(1-\delta_{i})}$$
$$= W^{-(N_{fal}+N_{new})} \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)};\hat{\mathbf{x}}_{j},\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}}$$
$$\underbrace{V_{isual Computing Institute | Prof. Dr. Bastian Leibe}_{Computer Vision 2} \mathbb{P}_{art 20 - Repetition} \mathbb{P}_{isual Computing Institute} | \mathbb{P}_{isual Computing Institute | Prof. Dr. Bastian Leibe}$$

#### Recap: Probability of an Assignment Set

$$p(Z_j^{(k)}|\Omega_{p(j)}^{(k-1)})$$

- Composed of three terms
  - 1. Probability of the number of tracks  $N_{det},\,N_{fal},\,N_{new}$ 
    - Assumption 1:  $N_{det}$  follows a Binomial distribution

$$p(N_{det}|\Omega_{p(j)}^{(k-1)}) = \binom{N}{N_{det}} p_{det}^{N_{det}} (1 - p_{det})^{(N-N_{det})}$$

where N is the number of tracks in the parent hypothesis

- Assumption 2:  $N_{fal}$  and  $N_{new}$  both follow a Poisson distribution with expected number of events  $\lambda_{fal}W$  and  $\lambda_{new}W$ 

$$p(N_{det}, N_{fal}, N_{new} | \Omega_{p(j)}^{(k-1)}) = \binom{N}{N_{det}} p_{det}^{N_{det}} (1 - p_{det})^{(N-N_{det})}$$

 $\cdot \mu(N_{fal}; \lambda_{fal}W) \cdot \mu(N_{new}; \lambda_{new}W)$ 

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

# Recap: Probability of an Assignment Set

- 2. Probability of a specific assignment of measurements
  - Such that  $M_k = N_{det} + N_{fal} + N_{new}$  holds.
  - This is determined as  $1 \ \mathrm{over}$  the number of combinations

$$\begin{pmatrix} M_k \\ N_{det} \end{pmatrix} \begin{pmatrix} M_k - N_{det} \\ N_{fal} \end{pmatrix} \begin{pmatrix} M_k - N_{det} - N_{fal} \\ N_{new} \end{pmatrix}$$

- 3. Probability of a specific assignment of tracks
  - Given that a track can be either detected or not detected.
  - This is determined as  $1 \ {\rm over}$  the number of assignments

$$\frac{N!}{(N-N_{det})!} \left( \begin{array}{c} N-N_{det} \\ N_{det} \end{array} \right)$$

 $\Rightarrow$  When combining the different parts, many terms cancel out!



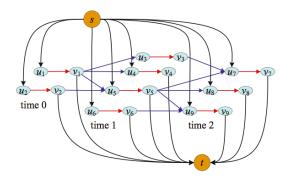
# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
  - Kalman Filters, EKF
  - Particle Filters
- Multi-Object Tracking
  - Introduction
  - MHT

92

- Network Flow Optimization
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

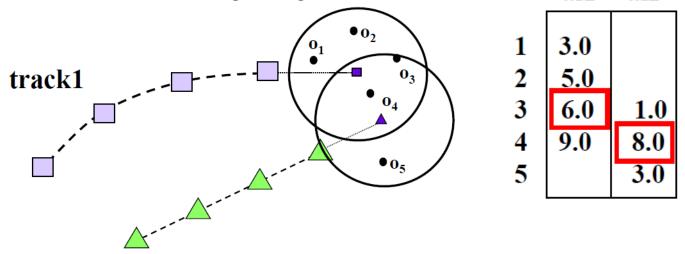
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





## **Recap: Linear Assignment Formulation**

- Form a matrix of pairwise similarity scores
- Example: Similarity based on motion prediction
  - Predict motion for each trajectory and assign scores for each measurement based on inverse (Mahalanobis) distance, such that closer measurements get higher scores.
     ai1 ai2



track2

- Choose at most one match in each row and column to maximize sum of

#### scores

93

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







## **Recap: Linear Assignment Problem**

7

- Formal definition
  - Maximize

$$\sum_{i=1}^{N}\sum_{j=1}^{M}w_{ij}z_{ij}$$

subject to

94

$$\sum_{j=1}^{j} z_{ij} = 1; \ i = 1, 2, \dots, N$$

$$\sum_{i=1}^{j} z_{ij} = 1; \ j = 1, 2, \dots, M$$

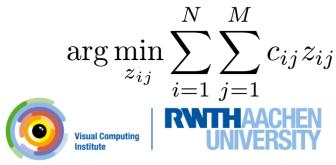
$$z_{ij} \in \{0, 1\}$$

Those constraints ensure that Z is a permutation matrix

- The permutation matrix constraint ensures that we can only match up one object from each row and column.
- Note: Alternatively, we can minimize cost rather than maximizing weights.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Robert Collins



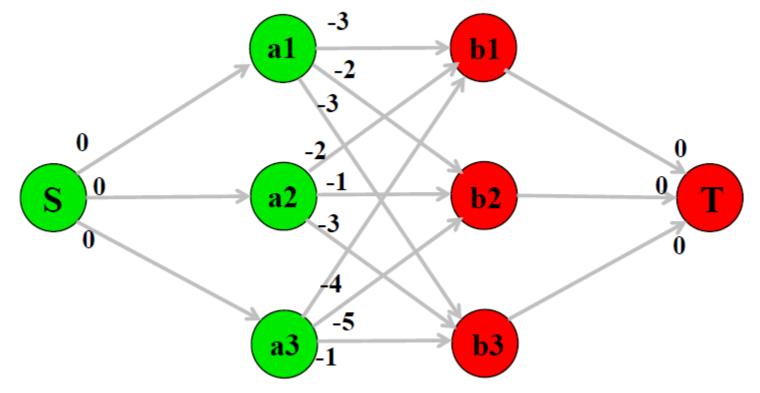
# **Recap: Optimal Solution**

- Greedy Algorithm
  - Easy to program, quick to run, and yields "pretty good" solutions in practice.
  - But it often does not yield the optimal solution
- Hungarian Algorithm
  - There is an algorithm called Kuhn-Munkres or "Hungarian" algorithm specifically developed to efficiently solve the linear assignment problem.
  - Reduces assignment problem to bipartite graph matching.
  - When starting from an  $N \times N$  matrix, it runs in  $\mathcal{O}(N^3)$ .
    - $\Rightarrow$  If you need LAP, you should use it.





#### **Recap: Min-Cost Flow**



- Conversion into flow graph
  - Transform weights into costs  $c_{ij} = \alpha w_{ij}$
  - Add source/sink nodes with 0 cost.
  - Directed edges with a capacity of 1.

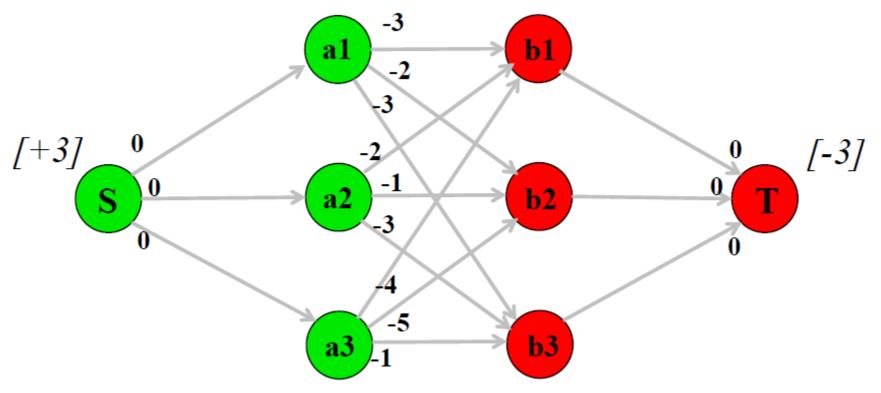
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

#### Slide credit: Robert Collins





#### **Recap: Min-Cost Flow**



- Conversion into flow graph
  - Pump N units of flow from source to sink.
  - Internal nodes pass on flow ( $\Sigma$  flow in =  $\Sigma$  flow out).

 $\Rightarrow$  Find the optimal paths along which to ship the flow.

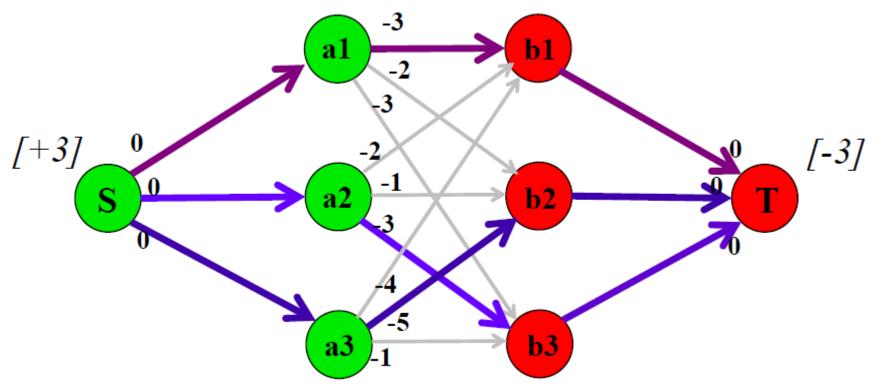
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







#### **Recap: Min-Cost Flow**



- Conversion into flow graph
  - Pump N units of flow from source to sink.
  - Internal nodes pass on flow ( $\Sigma$  flow in =  $\Sigma$  flow out).

 $\Rightarrow$  Find the optimal paths along which to ship the flow.

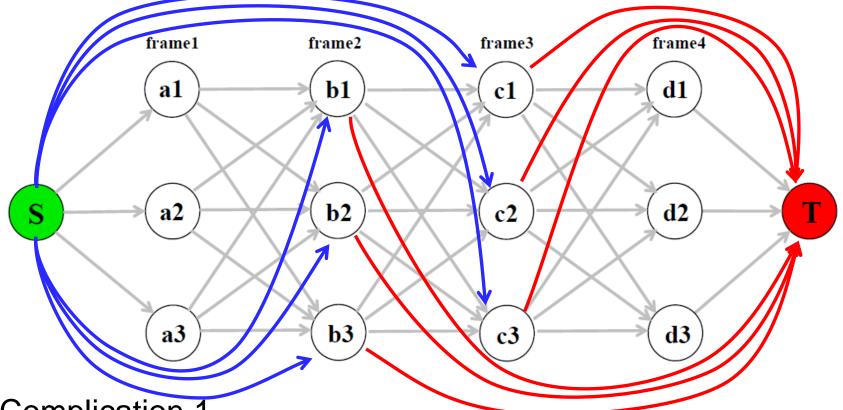
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







### **Recap: Using Network Flow for Tracking**



- Complication 1
  - Tracks can start later than frame1 (and end earlier than frame4)
    - $\Rightarrow$  Connect the source and sink nodes to all intermediate nodes.

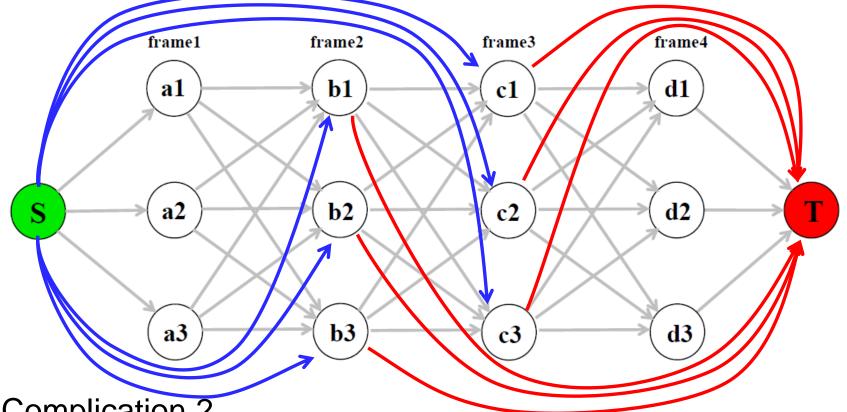


Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition





Slide credit: Robert Collins



- Complication 2
  - Trivial solution: zero cost flow!



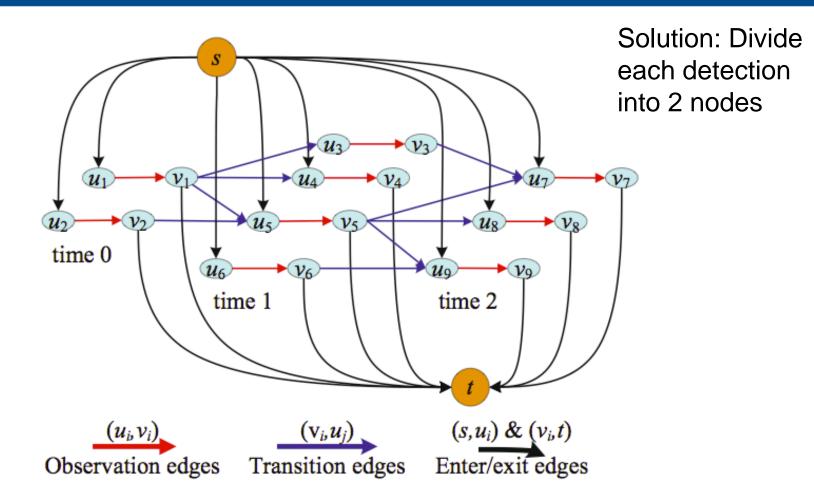
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Robert Collins





#### **Recap: Network Flow Approach**



Zhang, Li, Nevatia, <u>Global Data Association for Multi-Object Tracking</u> using Network Flows, CVPR'08.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

101



image source: [Zhang, Li, Nevatia, CVPR'08]

### **Recap: Min-Cost Formulation**

Objective Function

$$\mathcal{T}^* = \underset{\mathcal{T}}{\operatorname{argmin}} \sum_{i} C_{in,i} f_{in,i} + \sum_{i} C_{i,out} f_{i,out}$$
$$+ \sum_{i,j} C_{i,j} f_{i,j} + \sum_{i} C_{i} f_{i}$$

• subject to

102

- Flow conservation at all nodes

$$f_{in,i} + \sum_{j} f_{j,i} = f_i = f_{out,i} + \sum_{j} f_{i,j} \ \forall i$$

- Edge capacities

$$f_i \leq 1$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

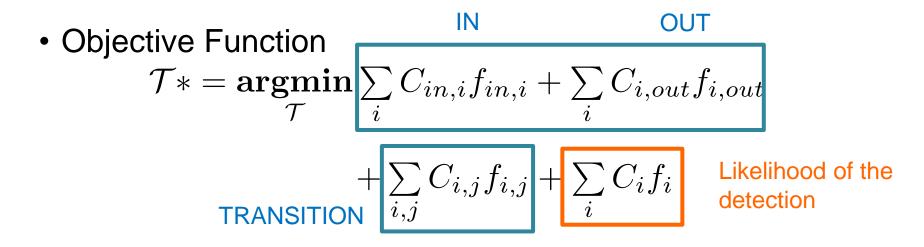




Slide credit: Laura Leal

## **Min-Cost Formulation**

10



Equivalent to Maximum A-Posteriori formulation

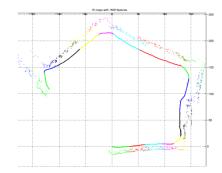
# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
  - Introduction
  - MHT

104

- Network Flow Optimization
- Visual Odometry
  - Sparse interest-point based methods
  - Dense direct methods
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

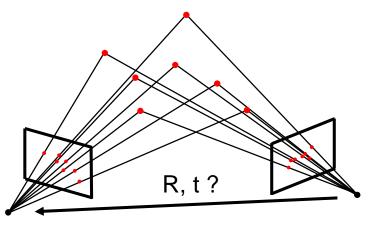




## Recap: What is Visual Odometry ?

# Visual odometry (VO)...

- ... is a variant of tracking
  - Track motion (position and orientation) of the camera from its images
  - Only considers a limited set of recent images for real-time constraints
- ... also involves a data association problem
  - Motion is estimated from corresponding interest points or pixels in images, or by correspondences towards a local 3D reconstruction









Slide credit: Jörg Stückler

#### Recap: Direct vs. Indirect Methods

#### Direct methods

 formulate alignment objective in terms of photometric error (e.g., intensities)

$$p(\mathbf{I}_2 \mid \mathbf{I}_1, \boldsymbol{\xi}) \longrightarrow E(\boldsymbol{\xi}) = \int_{\mathbf{u} \in \Omega} |\mathbf{I}_1(\mathbf{u}) - \mathbf{I}_2(\omega(\mathbf{u}, \boldsymbol{\xi}))| d\mathbf{u}$$

- Indirect methods
  - formulate alignment objective in terms of reprojection error of geometric primitives (e.g., points, lines)

$$p(\mathbf{Y}_2 \mid \mathbf{Y}_1, \boldsymbol{\xi}) \longrightarrow E(\boldsymbol{\xi}) = \sum_i |\mathbf{y}_{1,i} - \omega(\mathbf{y}_{2,i}, \boldsymbol{\xi})|$$

106 Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

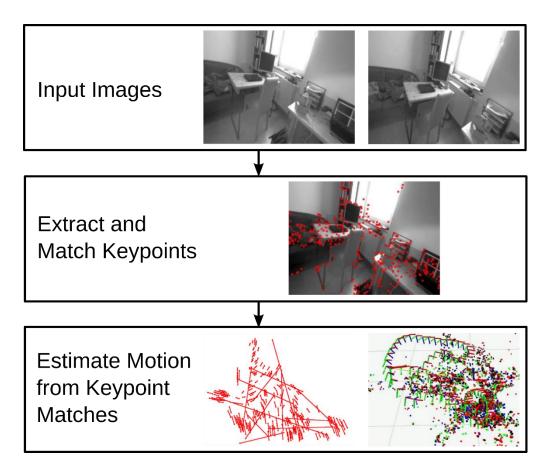
Slide credit: Jörg Stückler





# Recap: Point-based Visual Odometry Pipeline

- Keypoint detection and local description (CV I)
- Robust keypoint matching (CV I)
- Motion estimation
  - 2D-to-2D: motion from
     2D point correspondences
  - 2D-to-3D: motion from
     2D points to local 3D map
  - 3D-to-3D: motion from
     3D point correspondences
     (e.g., stereo, RGB-D)





Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



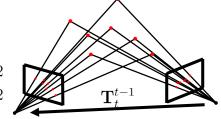




Images from Jakob Engel

### **Recap: Motion Estimation from Point Correspondences**

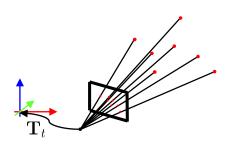
- 2D-to-2D
  - Reproj. error:  $E\left(\mathbf{T}_{t}^{t-1}, X\right) = \sum \left\| \left\| \bar{\mathbf{y}}_{t,i} - \pi\left( \bar{\mathbf{x}}_{i} \right) \right\|_{2}^{2} + \left\| \left\| \bar{\mathbf{y}}_{t-1,i} - \pi\left( \mathbf{T}_{t}^{t-1} \bar{\mathbf{x}}_{i} \right) \right\|_{2}^{2} \right\|_{2}^{2}$



- Introduced linear algorithm: 8-point

• 2D-to-3D – Reprojection error:

$$E(\mathbf{T}_t) = \sum_{i=1}^N \|\mathbf{y}_{t,i} - \pi(\mathbf{T}_t \bar{\mathbf{x}}_i)\|_2^2$$

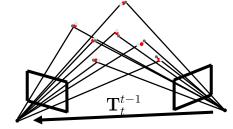


- Introduced linear algorithm: DLT PnP
- 3D-to-3D

108

- Reprojection error:  $E\left(\mathbf{T}_{t}^{t-1}\right) = \sum_{i=1}^{N} \left\|\overline{\mathbf{x}}_{t-1,i} \mathbf{T}_{t}^{t-1}\overline{\mathbf{x}}_{t,i}\right\|_{2}^{2}$
- Introduced linear algorithm: Arun's method

Visual Computing Institute | Prof. Dr . Bastian Leibe **Computer Vision 2** Part 20 - Repetition Slide credit: Jörg Stückler





Visual Computing



# Recap: Eight-Point Algorithm for Essential Matrix Est.

- First proposed by Longuet and Higgins, 1981
- Algorithm:
  - 1. Rewrite epipolar constraints as a linear system of equations

 $\tilde{\mathbf{y}}_i \mathbf{E} \tilde{\mathbf{y}}'_i = \mathbf{a}_i \mathbf{E}_s = 0 \quad \longrightarrow \quad \mathbf{A} \mathbf{E}_s = 0 \quad \mathbf{A} = (\mathbf{a}_1^\top, \dots, \mathbf{a}_N^\top)^\top$ 

using Kronecker product  $\mathbf{a}_i = \tilde{\mathbf{y}}_i \otimes \tilde{\mathbf{y}}'_i$  and  $\mathbf{E}_s = (e_{11}, e_{12}, e_{13}, \dots, e_{33})^{\mathsf{T}}$ 

- 2. Apply singular value decomposition (SVD) on  $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \mathbf{S}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\mathsf{T}}$  and unstack the 9th column of  $\mathbf{V}_{\mathbf{A}}$  into  $\tilde{\mathbf{E}}$ .
- 3. Project the approximate  $\tilde{\mathbf{E}}$  into the (normalized) essential space: Determine the SVD of  $\tilde{\mathbf{E}} = \mathbf{U} \operatorname{diag}(\sigma_1, \sigma_2, \sigma_3) \mathbf{V}^{\mathsf{T}}$  with  $\mathbf{U}, \mathbf{V} \in \mathbf{SO}(3)$ and replace the singular values  $\sigma_1 \ge \sigma_2 \ge \sigma_3$  with 1,1,0 to find

# $\mathbf{E} = \mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{\mathsf{T}}$



**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







## Recap: Eight-Point Algorithm cont.

- Algorithm (cont.):
  - Determine one of the following 2 possible solutions that intersects the points in front of both cameras:

$$\mathbf{R} = \mathbf{U}\mathbf{R}_{Z}^{\top}\left(\pm\frac{\pi}{2}\right)\mathbf{V}^{\top} \qquad \widehat{\mathbf{t}} = \mathbf{U}\mathbf{R}_{Z}\left(\pm\frac{\pi}{2}\right)\operatorname{diag}(1,1,0)\mathbf{U}^{\top}$$

- A derivation can be found in the MASKS textbook, Ch. 5
- Remarks
  - Algebraic solution does not minimize geometric error
  - Refine using non-linear least-squares of reprojection error
  - Alternative: formulate epipolar constraints as "distance from epipolar line" and minimize this non-linear least-squares problem



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler





## Recap: Eight-Point Algorithm cont.

- Normalized essential matrix:  $\|\mathbf{E}\| = \|\widehat{\mathbf{t}}\| = 1$
- Linear algorithms exist that require only 6 points for general motion
- Non-linear 5-point algorithm with up to 10 (possibly complex) solutions
- Points need to be in "general position": certain degenerate configurations exists (e.g., all points on a plane)
- No translation, ideally:  $\left\| \widehat{\mathbf{t}} \right\| = 0 \Rightarrow \| \mathbf{E} \| = 0$
- But: for small translations, signal-to-noise ratio of image parallax may be problematic: "spurious" pose estimate







#### Recap: Relative Scale Recovery

- Problem:
  - Each subsequent frame-pair gives another solution for the reconstruction scale
- Solution:
  - Triangulate overlapping points  $Y_{t-2}, Y_{t-1}, Y_t$  for current and last frame pair

 $\Rightarrow X_{t-2,t-1}, X_{t-1,t}$ 

 Rescale translation of current relative pose estimate to match the reconstruction scale with the distance ratio between corresponding point pairs

$$r_{i,j} = \frac{\|\mathbf{x}_{t-2,t-1,i} - \mathbf{x}_{t-2,t-1,j}\|_2}{\|\mathbf{x}_{t-1,t,i} - \mathbf{x}_{t-1,t,j}\|_2}$$

- Use mean or robust median over available pair ratios







**Input:** image sequence  $I_{0:t}$ 

**Output:** aggregated camera poses  $T_{0:t}$ 

## Algorithm:

For each current image  $I_k$ :

- 1. Extract and match keypoints between  $I_{k-1}$  and  $I_k$
- 2. Compute relative pose  $\mathbf{T}_k^{k-1}$  from essential matrix between  $I_{k-1}$ ,  $I_k$
- 3. Compute relative scale and rescale translation of  $\mathbf{T}_{k}^{k-1}$  accordingly
- 4. Aggregate camera pose by  $T_k = T_{k-1}T_k^{k-1}$







### **Recap: Triangulation**

- Goal: Reconstruct 3D point  $\tilde{\mathbf{x}} = (x, y, z, w)^{\top} \in \mathbb{P}^3$  from 2D image observations  $\{\mathbf{y}_1, \dots, \mathbf{y}_N\}$  for known camera poses  $\{\mathbf{T}_1, \dots, \mathbf{T}_N\}$
- Linear solution: Find 3D point such that reprojections equal its projections  $\mathbf{v}'_{\cdot} = \pi(\mathbf{T}_{\cdot}\widetilde{\mathbf{x}}) = \begin{pmatrix} \frac{r_{11}x + r_{12}y + r_{13}z + t_xw}{r_{31}x + r_{32}y + r_{33}z + t_zw} \end{pmatrix}$

$$\mathbf{y}_{i}' = \pi(\mathbf{T}_{i}\widetilde{\mathbf{x}}) = \begin{pmatrix} \frac{110 + 129 + 130 + 12w}{r_{31}x + r_{32}y + r_{33}z + t_{z}w} \\ \frac{r_{21}x + r_{22}y + r_{23}z + t_{y}w}{r_{31}x + r_{32}y + r_{33}z + t_{z}w} \end{pmatrix}$$

- Each image provides one constraint  $\mathbf{y}_i \mathbf{y}'_i = 0$
- Leads to system of linear equations  $\mathbf{A}\widetilde{\mathbf{x}} = 0$  , two approaches:
  - Set w = 1 and solve nonhomogeneous system
  - Find nullspace of  ${\bf A}$  using SVD (this is what we did in CV I)
- Non-linear solution: Minimize least squares reprojection error (more accurate)

$$\min_{\mathbf{x}} \left\{ \sum_{i=1}^{N} \|\mathbf{y}_{i} - \mathbf{y}_{i}'\|_{2}^{2} \right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

114





### Recap: Direct Linear Transform for PnP

- Goal: determine projection matrix  $\mathbf{P} = (\mathbf{R} \ \mathbf{t}) \in \mathbb{R}^{3 \times 4} = \begin{pmatrix} \mathbf{F}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_2 \end{pmatrix}$
- Each 2D-to-3D point correspondence 3D:  $\widetilde{\mathbf{x}}_i = (x_i, y_i, z_i, w_i)^\top \in \mathbb{P}^3$  2D:  $\widetilde{\mathbf{y}}_i = (x'_i, y'_i, w'_i)^\top \in \mathbb{P}^2$ gives two constraints

$$\begin{pmatrix} \mathbf{0} & -w_i' \widetilde{\mathbf{x}}_i^\top & y_i' \widetilde{\mathbf{x}}_i^\top \\ w_i' \widetilde{\mathbf{x}}_i^\top & \mathbf{0} & -x_i' \widetilde{\mathbf{x}}_i^\top \end{pmatrix} \begin{pmatrix} \mathbf{P}_1^\top \\ \mathbf{P}_2^\top \\ \mathbf{P}_3^\top \end{pmatrix} = \mathbf{0}$$

through  $\widetilde{\mathbf{y}}_i \times (\mathbf{P}\widetilde{\mathbf{x}}_i) = 0$ 

- Form linear system of equation Ap = 0 with  $p := \begin{pmatrix} P_1^\top \\ P_2^\top \\ P_3^\top \end{pmatrix} \in \mathbb{R}^9$  from  $N \ge 6$  correspondences
- Solve for p: determine unit singular vector of A corresponding to its smallest eigenvalue

115 Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler



**Input:** image sequence  $I_{0:t}$ 

**Output:** aggregated camera poses  $T_{0:t}$ 

### Algorithm:

Initialize:

- 1. Extract and match keypoints between  $I_0$  and  $I_1$
- 2. Determine camera pose (Essential matrix) and triangulate 3D keypoints  $X_1$

For each current image  $I_k$ :

- 1. Extract and match keypoints between  $I_{k-1}$  and  $I_k$
- 2. Compute camera pose  $T_k$  using PnP from 2D-to-3D matches
- 3. Triangulate all new keypoint matches between  $I_{k-1}$  and  $I_k$  and add them to the local map  $X_k$







## Recap: 3D Rigid-Body Motion from 3D-to-3D Matches

- [Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 1987]
- Corresponding 3D points,  $N \ge 3$

$$X_{t-1} = \{ \mathbf{x}_{t-1,1}, \dots, \mathbf{x}_{t-1,N} \} \qquad X_t = \{ \mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,N} \}$$

• Determine means of 3D point sets

$$\boldsymbol{\mu}_{t-1} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t-1,i} \qquad \boldsymbol{\mu}_t = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t,i}$$

• Determine rotation from

$$\mathbf{A} = \sum_{i=1}^{N} \left( \mathbf{x}_{t-1} - \boldsymbol{\mu}_{t-1} \right) \left( \mathbf{x}_{t} - \boldsymbol{\mu}_{t} \right)^{\top} \qquad \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^{\top} \qquad \mathbf{R}_{t-1}^{t} = \mathbf{V} \mathbf{U}^{\top}$$

• Determine translation as  $\mathbf{t}_{t-1}^t = \boldsymbol{\mu}_t - \mathbf{R}_{t-1}^t \boldsymbol{\mu}_{t-1}$ 

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

117





**Input:** stereo image sequence  $I_{0:t}^{l}, I_{0:t}^{r}$ 

**Output:** aggregated camera poses  $T_{0:t}$ 

# Algorithm:

For each current stereo image  $I_k^l, I_k^r$ :

- 1. Extract and match keypoints between  $I_k^l$  and  $I_{k-1}^l$
- 2. Triangulate 3D points  $X_k$  between  $I_k^l$  and  $I_k^r$
- 3. Compute camera pose  $\mathbf{T}_{k}^{k-1}$  from 3D-to-3D point matches  $X_k$  to  $X_{k-1}$
- 4. Aggregate camera poses by  $T_k = T_{k-1}T_k^{k-1}$







### **Recap: Keypoint Detectors**

- Corners
  - Image locations with locally prominent intensity variation
  - Intersections of edges
- Examples: Harris, FAST
- Scale-selection: Harris-Laplace



Harris Corners

**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

119

- Blobs
  - Image regions that stick out from their surrounding in intensity/texture
  - Circular high-contrast regions
- E.g.: LoG, DoG (SIFT), SURF
- Scale-space extrema in LoG/DoG

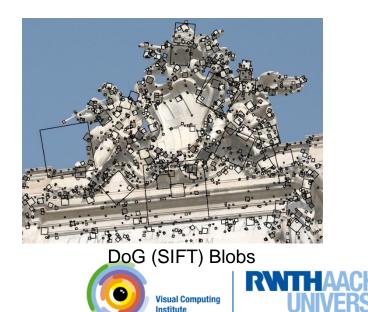


Image source: Svetlana Lazebnik

## Recap: RANSAC

RANdom SAmple Consensus algorithm for robust estimation

#### • Algorithm:

120

Input: data D , s required data points for fitting, success probability p , outlier ratio  $|\epsilon|$ 

Output: inlier set

- 1. Compute required number of iterations  $N = \frac{\log (1-p)}{\log (1-(1-\epsilon)^s)}$
- 2. For N iterations do:
  - 1. Randomly select a subset of s data points
  - 2. Fit model on the subset
  - 3. Count inliers and keep model/subset with largest number of inliers
- 3. Refit model using found inlier set





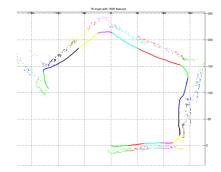
## **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
  - Introduction

121

- MHT, (JPDAF)
- Network Flow Optimization
- Visual Odometry
  - Sparse interest-point based methods
  - Dense direct methods
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



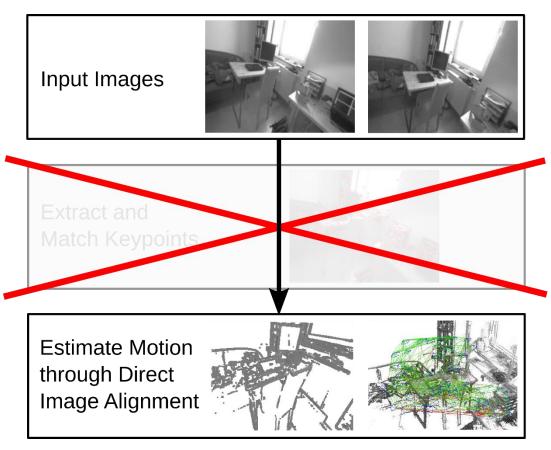


## Recap: Direct Visual Odometry Pipeline

- Avoid manually designed keypoint detection and matching
- Instead: direct image alignment

 $E(\boldsymbol{\xi}) = \int_{\mathbf{u}\in\Omega} |\mathbf{I}_1(\mathbf{u}) - \mathbf{I}_2(\omega(\mathbf{u}, \boldsymbol{\xi}))| \, d\mathbf{u}$ 

- Warping requires depth
  - RGB-D
  - Fixed-baseline stereo
  - Temporal stereo, tracking and (local) mapping





**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



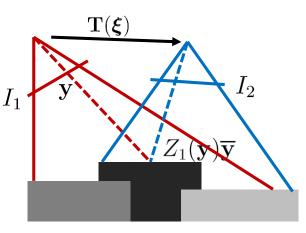




# Recap: Direct Image Alignment Principle

- Idea
  - If we know the pixel depth, we can "simulate" an image from a different viewpoint
  - Ideally, the warped image is the same as the image taken from that pose:

$$I_1(\mathbf{y}) = I_2(\pi(\mathbf{T}(\boldsymbol{\xi})Z_1(\mathbf{y})\overline{\mathbf{y}}))$$



- Estimate the warp by minimizing the residuals (similar to LK alignment)

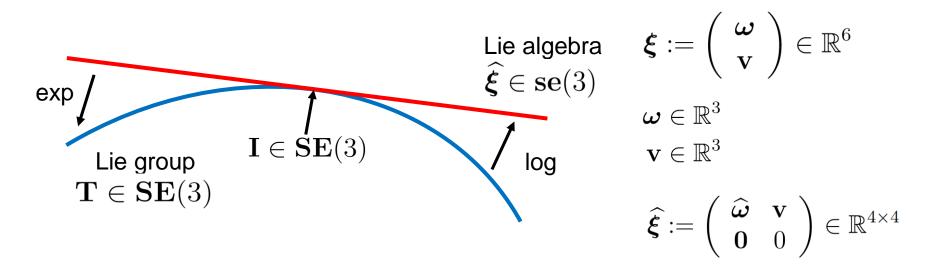
$$E(\boldsymbol{\xi}) = \sum_{\mathbf{y}\in\Omega} \frac{r(\mathbf{y},\boldsymbol{\xi})^2}{\sigma_I^2} \qquad r(\mathbf{y},\boldsymbol{\xi}) = I_1(\mathbf{y}) - I_2(\pi(\mathbf{T}(\boldsymbol{\xi})Z_1(\mathbf{y})\overline{\mathbf{y}}))$$

- $\Rightarrow$  Non-linear least-squares problem (use second-order tools)
- Important issue in practice: How to parametrize the poses?





# Recap: Representing Motion using Lie Algebra se(3)

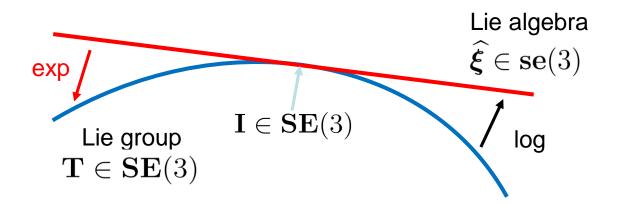


- $\mathbf{SE}(3)$  is a smooth manifold, i.e. a Lie group
- Its Lie algebra se(3) provides an elegant way to parametrize poses for optimization
- Its elements  $\widehat{\boldsymbol{\xi}} \in \mathbf{se}(3)$  form the tangent space of  $\mathbf{SE}(3)$  at identity
- The se(3) elements can be interpreted as rotational and translational velocities (twists)





#### Recap: Exponential Map of SE(3)



• The exponential map finds the transformation matrix for a twist:

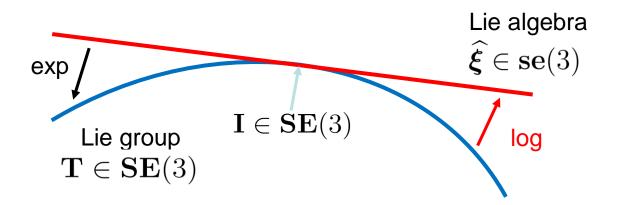
$$\exp\left(\widehat{\boldsymbol{\xi}}\right) = \left(\begin{array}{cc} \exp\left(\widehat{\boldsymbol{\omega}}\right) & \mathbf{Av} \\ \mathbf{0} & 1 \end{array}\right)$$

$$\exp\left(\widehat{\boldsymbol{\omega}}\right) = \mathbf{I} + \frac{\sin\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|}\widehat{\boldsymbol{\omega}} + \frac{1 - \cos\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|^{2}}\widehat{\boldsymbol{\omega}}^{2} \qquad \mathbf{A} = \mathbf{I} + \frac{1 - \cos\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|^{2}}\widehat{\boldsymbol{\omega}} + \frac{\left|\boldsymbol{\omega}\right| - \sin\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|^{3}}\widehat{\boldsymbol{\omega}}^{2}$$

125 Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler



#### Recap: Logarithm Map of SE(3)



• The logarithm maps twists to transformation matrices:

$$\log \left( \mathbf{T} \right) = \begin{pmatrix} \log \left( \mathbf{R} \right) & \mathbf{A}^{-1} \mathbf{t} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$
$$\log \left( \mathbf{R} \right) = \frac{|\omega|}{2\sin |\omega|} \left( \mathbf{R} - \mathbf{R}^T \right) \qquad |\omega| = \cos^{-1} \left( \frac{\operatorname{tr} \left( \mathbf{R} \right) - 1}{2} \right)$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

126



## **Recap: Working with Twist Coordinates**

- Let's define the following notation:
  - $-\text{Inversion of hat operator:} \begin{pmatrix} 0 & -\omega_3 & \omega_2 & v_1 \\ \omega_3 & 0 & -\omega_1 & v_2 \\ -\omega_2 & \omega_1 & 0 & v_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}^{\vee} = (\omega_1 \ \omega_2 \ \omega_3 \ v_1 \ v_2 \ v_3)^{\top}$
  - Conversion:  $\boldsymbol{\xi}(\mathbf{T}) = (\log(\mathbf{T}))^{\vee}, \quad \mathbf{T}(\boldsymbol{\xi}) = \exp(\widehat{\boldsymbol{\xi}})$
  - Pose inversion:  $\boldsymbol{\xi}^{-1} = \log(\mathbf{T}(\boldsymbol{\xi})^{-1}) = -\boldsymbol{\xi}$
  - Pose concatenation:  $\boldsymbol{\xi}_1 \oplus \boldsymbol{\xi}_2 = (\log \left( \mathbf{T} \left( \boldsymbol{\xi}_2 \right) \mathbf{T} \left( \boldsymbol{\xi}_1 \right) \right))^{\vee}$
  - Pose difference:  $\boldsymbol{\xi}_1 \ominus \boldsymbol{\xi}_2 = \left( \log \left( \mathbf{T} \left( \boldsymbol{\xi}_2 \right)^{-1} \mathbf{T} \left( \boldsymbol{\xi}_1 \right) \right) \right)^{\vee}$







### **Recap: Optimization with Twist Coordinates**

- Twists provide a minimal local representation without singularities
- Since SE(3) is a smooth manifold, we can decompose transformations in each optimization step into the transformation itself and an infinitesimal increment

$$\mathbf{T}(\boldsymbol{\xi}) = \mathbf{T}(\boldsymbol{\xi}) \exp\left(\widehat{\delta \boldsymbol{\xi}}\right) = \mathbf{T}\left(\delta \boldsymbol{\xi} \oplus \boldsymbol{\xi}\right)$$

• We can then optimize an energy function  $E(\xi_i, \delta\xi)$  in order to estimate the pose increment  $\delta\xi$ , e.g., using Gradient descent

$$\delta \boldsymbol{\xi}^* = \mathbf{0} - \eta \nabla_{\delta \boldsymbol{\xi}} E(\boldsymbol{\xi}_i, \delta \boldsymbol{\xi})$$
$$\Gamma\left(\boldsymbol{\xi}_{i+1}\right) = \mathbf{T}\left(\boldsymbol{\xi}_i\right) \exp\left(\widehat{\delta \boldsymbol{\xi}^*}\right)$$

128

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

Γ





**Input:** RGB-D image sequence  $I_{0:t}, Z_{0:t}$ **Output:** aggregated camera poses  $T_{0:t}$ 

#### Algorithm:

For each current RGB-D image  $I_k, Z_k$ :

- 1. Estimate relative camera motion  $\mathbf{T}_k^{k-1}$  towards the previous RGB-D frame using direct image alignment
- 2. Concatenate estimated camera motion with previous frame camera pose to obtain current camera pose estimate  $T_k = T_{k-1}T_k^{k-1}$



**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
  - Sparse interest-point based methods
  - Dense direct methods
- Visual SLAM & 3D Reconstruction
  - Online SLAM methods
  - Full SLAM methods

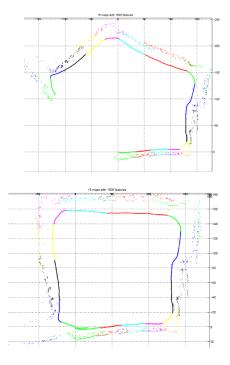
**Computer Vision 2** 

Part 20 - Repetition

130

Deep Learning for Video Analysis





Visual Computing

Institute

## **Recap: Definition of Visual SLAM**

- Visual SLAM
  - The process of simultaneously estimating the egomotion of an object and the environment map using only inputs from visual sensors on the object
- Inputs: images at discrete time steps t,
  - Monocular case: Set of images
  - Stereo case: Left/right images

$$I_{0:t}^{l} = \{I_{0}^{l}, \dots, I_{t}^{l}\}, I_{0:t}^{r} = \{I_{0}^{r}, \dots, I_{t}^{r}\}$$

- RGB-D case: Color/depth images  $I_{0:t} = \{I_0, \ldots, I_t\}$ ,  $Z_{0:t} = \{Z_0, \ldots, Z_t\}$ 

 $I_{0,t} = \{I_{0,1}, \dots, I_{t}\}$ 

– Robotics: **control inputs**  $U_{1:t}$ 

#### • Output:

- Camera pose estimates  $T_t \in SE(3)$  in world reference frame. For convenience, we also write  $\xi_t = \xi(T_t)$
- Environment map M

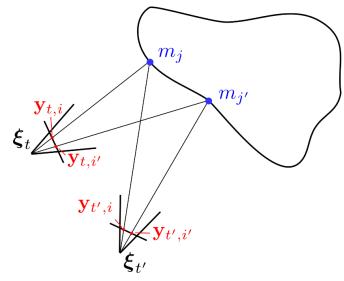


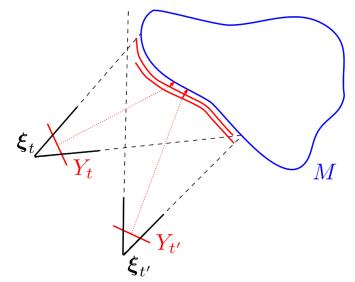
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler





#### **Recap: Map Observations in Visual SLAM**





With  $Y_t$  we denote observations of the environment map in image  $I_t$ , e.g.,

- Indirect point-based method:  $Y_t = \{\mathbf{y}_{t,1}, \dots, \mathbf{y}_{t,N}\}$  (2D or 3D image points)
- Direct RGB-D method:

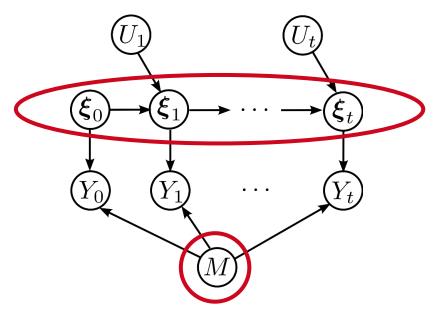
- $Y_t = \{\mathbf{y}_{t,1}, \dots, \mathbf{y}_{t,N}\}$  $Y_t = \{I_t, Z_t\}$
- (all image pixels)
- Involves data association to map elements  $M = \{m_1, \dots, m_S\}$ 
  - We denote correspondences by  $c_{t,i} = j$ ,  $1 \le i \le N$ ,  $1 \le j \le S$







## **Recap: Probabilistic Formulation of Visual SLAM**



- SLAM posterior probability:  $p(\boldsymbol{\xi}_{0:t}, M \mid Y_{0:t}, U_{1:t})$
- Observation likelihood:  $p(Y_t | \boldsymbol{\xi}_t, M)$

• State-transition probability:  $p(\boldsymbol{\xi}_t \mid \boldsymbol{\xi}_t)$ 

133

Visual Computing Institute | Prof. Dr . Bastian Leibe **Computer Vision 2** Part 20 - Repetition Slide credit: Jörg Stückler

$$\boldsymbol{\varsigma}_t \mid \boldsymbol{\varsigma}_{t-1}, \boldsymbol{O}_t$$

II





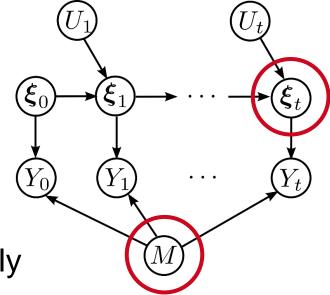
# Recap: Online SLAM Methods

• Marginalize out previous poses

$$p\left(\boldsymbol{\xi}_{t}, M \mid Y_{0:t}, U_{1:t}\right) = \int \dots \int p\left(\boldsymbol{\xi}_{0:t}, M \mid Y_{0:t}, U_{1:t}\right) d\boldsymbol{\xi}_{t-1} \dots d\boldsymbol{\xi}_{0}$$

- Poses can be marginalized individually in a recursive way
- Variants:
  - Tracking-and-Mapping: Alternating pose and map estimation
  - Probabilistic filters, e.g., EKF-SLAM









### Recap: EKF SLAM

- Detected keypoint  $y_i$  in an image observes "landmark" position  $m_j$  in the map  $M = \{m_1, \dots, m_S\}$ .
- Idea: Include landmarks into state variable

$$\mathbf{x}_{t} = \begin{pmatrix} \mathbf{\xi}_{t} \\ \mathbf{m}_{t,1} \\ \vdots \\ \mathbf{m}_{t,S} \end{pmatrix} \qquad \mathbf{\Sigma}_{t} = \begin{pmatrix} \mathbf{\Sigma}_{t,\boldsymbol{\xi}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\boldsymbol{\xi}\mathbf{m}_{1}} & \cdots & \mathbf{\Sigma}_{t,\boldsymbol{\xi}\mathbf{m}_{S}} \\ \mathbf{\Sigma}_{t,\mathbf{m}_{1}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\mathbf{m}_{1}\mathbf{m}_{1}} & \cdots & \mathbf{\Sigma}_{t,\mathbf{m}_{1}\mathbf{m}_{S}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{\Sigma}_{t,\mathbf{m}_{S}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\mathbf{m}_{S}\mathbf{m}_{1}} & \cdots & \mathbf{\Sigma}_{t,\mathbf{m}_{S}\mathbf{m}_{S}} \end{pmatrix} \\ = \begin{pmatrix} \mathbf{\Sigma}_{t,\boldsymbol{\xi}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\boldsymbol{\xi}\mathbf{m}} \\ \mathbf{\Sigma}_{t,\mathbf{m}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\mathbf{m}\mathbf{m}} \end{pmatrix}$$







#### **Recap: 2D EKF-SLAM State-Transition Model**

State/control variables

 $\boldsymbol{\xi}_{t} = (x_{t} \ y_{t} \ \theta_{t})^{\top} \qquad \mathbf{m}_{t,j} = (m_{t,j,x} \ m_{t,j,y})^{\top}$  $\mathbf{u}_{t} = (v_{t} \ \omega_{t})^{\top} = (\|\mathbf{v}\|_{2} \ \|\boldsymbol{\omega}\|_{2})^{\top}$ 

- State-transition model
  - Pose:

$$\begin{aligned} \boldsymbol{\xi}_{t} &= g_{\boldsymbol{\xi}}(\boldsymbol{\xi}_{t-1}, \mathbf{u}_{t}) + \boldsymbol{\epsilon}_{\boldsymbol{\xi}, t} & \boldsymbol{\epsilon}_{\boldsymbol{\xi}, t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d_{t}, \boldsymbol{\xi}}\right) \\ g_{\boldsymbol{\xi}}(\boldsymbol{\xi}_{t-1}, \mathbf{u}_{t}) &= \begin{pmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{pmatrix} + \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \theta_{t-1} + \frac{v_{t}}{\omega_{t}} \sin (\theta_{t} + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \theta_{t-1} - \frac{v_{t}}{\omega_{t}} \cos (\theta_{t} + \omega_{t} \Delta t) \\ \omega_{t} \Delta t \end{pmatrix} \end{aligned}$$

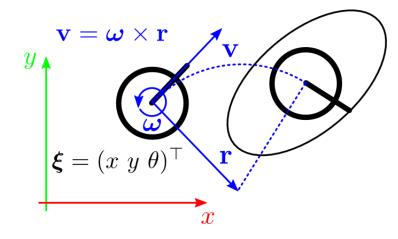
- Landmarks:  $\mathbf{m}_t = g_{\mathbf{m}}(\mathbf{m}_{t-1}) = \mathbf{m}_{t-1}$ 

- Combined:

136

$$\mathbf{x}_{t} = g(\mathbf{x}_{t-1}, \mathbf{u}_{t}) + \boldsymbol{\epsilon}_{t}, \boldsymbol{\epsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d_{t}}\right) \quad g(\mathbf{x}_{t-1}, \mathbf{u}_{t}) = \begin{pmatrix} g_{\boldsymbol{\xi}}(\boldsymbol{\xi}_{t-1}, \mathbf{u}_{t}) \\ g_{\mathbf{m}}(\mathbf{m}_{t-1}) \end{pmatrix} \quad \boldsymbol{\Sigma}_{d_{t}} = \begin{pmatrix} \boldsymbol{\Sigma}_{d_{t}, \boldsymbol{\xi}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler







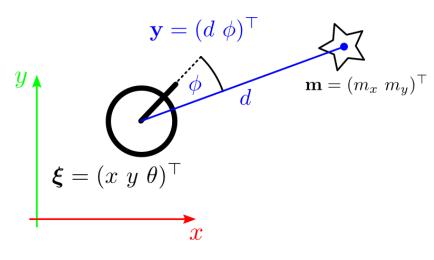
#### **Recap: 2D EKF-SLAM Observation Model**

- State/measurement variables  $\mathbf{y}_t = (d_t \ \phi_t)^\top$   $\mathbf{m}_{t,j} = (m_{t,j,x} \ m_{t,j,y})^\top$
- Observation model:

$$\mathbf{y}_t = h(\boldsymbol{\xi}_t, \mathbf{m}_{t, c_t}) + \boldsymbol{\delta}_t \qquad \boldsymbol{\delta}_t \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{m_t}\right)$$

$$h(\boldsymbol{\xi}_{t}, \mathbf{m}_{t,c_{t}}) = \begin{pmatrix} \|\mathbf{m}_{t,c_{t}}^{\text{rel}}\|_{2} \\ \operatorname{atan2}\left(\mathbf{m}_{t,c_{t},y}^{\text{rel}}, \mathbf{m}_{t,c_{t},x}^{\text{rel}}\right) \end{pmatrix}$$

$$\mathbf{m}_{t,c_t}^{\text{rel}} := \mathbf{R}(-\theta_t) \left( \mathbf{m}_{t,c_t} - (x_t \ y_t)^\top \right)$$





Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

137

## **Recap: State Initialization**

- First frame:
  - Anchor reference frame at initial pose
  - Set pose covariance to zero

 $\mathbf{x}_0^- = \mathbf{0} \ \mathbf{\Sigma}_{0, \boldsymbol{\xi} \boldsymbol{\xi}}^- = \mathbf{0}$ 

- New landmark:
  - Initial position unknown
  - Initialize mean at zero
  - Initialize covariance to infinity (large value)

$$\Sigma_{0,\xi\mathbf{m}}^{-} = \Sigma_{0,\mathbf{m}\xi}^{-} = \mathbf{0}$$

$$\mathbf{\Sigma}^{-}_{0,\mathbf{m}\mathbf{m}}=\infty\mathbf{I}$$



**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



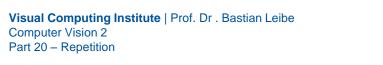


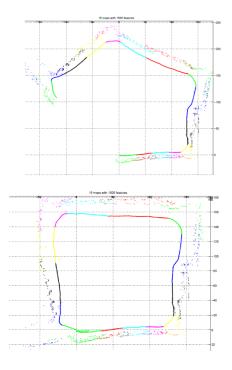
# **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
  - Sparse interest-point based methods
  - Dense direct methods
- Visual SLAM & 3D Reconstruction
  - Online SLAM methods
  - Full SLAM methods

139

Deep Learning for Video Analysis





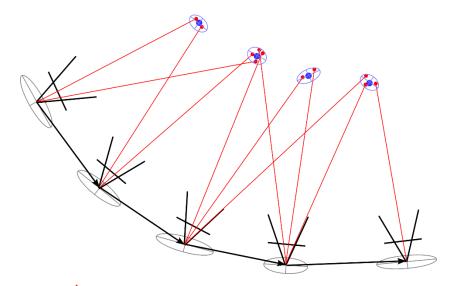
Visual Computing

image source: [Clemente et al., RSS 2007]

Institute

## **Recap: Full SLAM Approaches**

- SLAM graph optimization:
  - Joint optimization for poses and map elements from image observations of map elements and control inputs



- Pose graph optimization:
  - Optimization of poses from relative pose constraints deduced from the image observations
  - Map recovered from the optimized poses





**Visual Computing Institute** | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

140

# **Pose Graph Optimization**

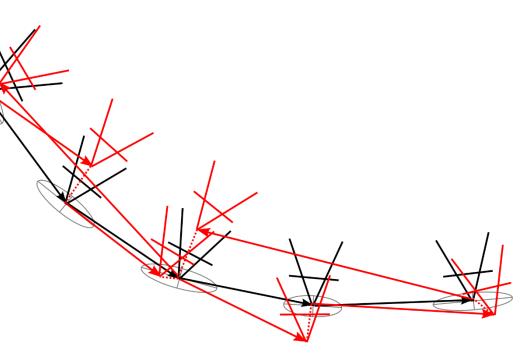
- Optimization of poses
  - From relative pose constraints deduced from the image observations
  - Map recovered from the optimized poses

- Deduce relative constraints between poses from image observations, e.g.,
  - 8-point algorithm

141

Direct image alignment

Slide credit: Jörg Stückler







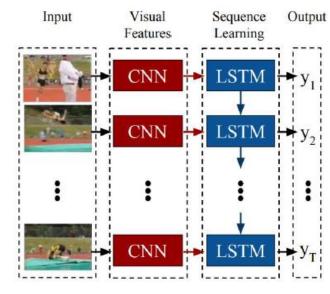
## **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
  - Online SLAM methods
  - Full SLAM methods

142

- Deep Learning for Video Analysis
  - CNNs for video analysis
  - CNNs for motion estimation
  - Video object segmentation

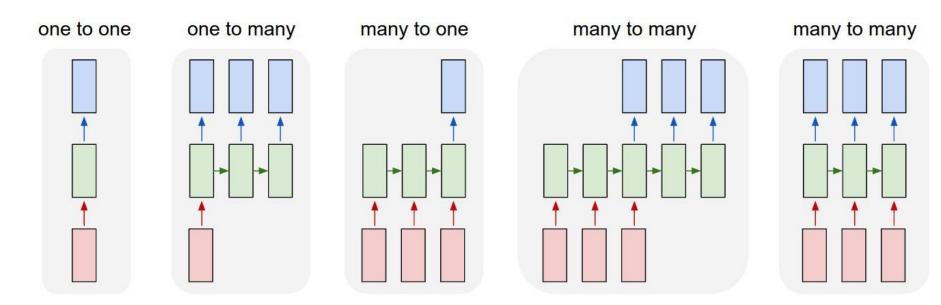
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







# **Recap: Recurrent Networks**



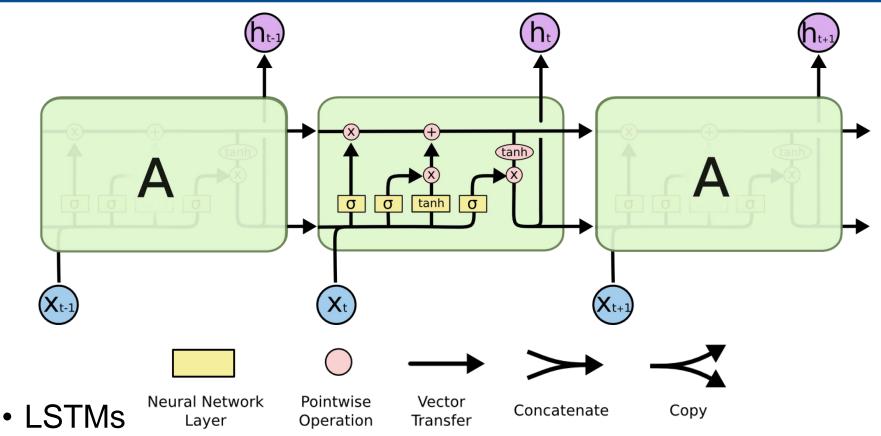
- Feed-forward networks
  - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- Recurrent Neural Networks
  - Generalize this to arbitrary mappings







## Recap: Long Short-Term Memory (LSTM)



- Inspired by the design of memory cells
- Each module has 4 layers, interacting in a special way.
- Effect: LSTMs can learn longer dependencies (~100 steps) than RNNs

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

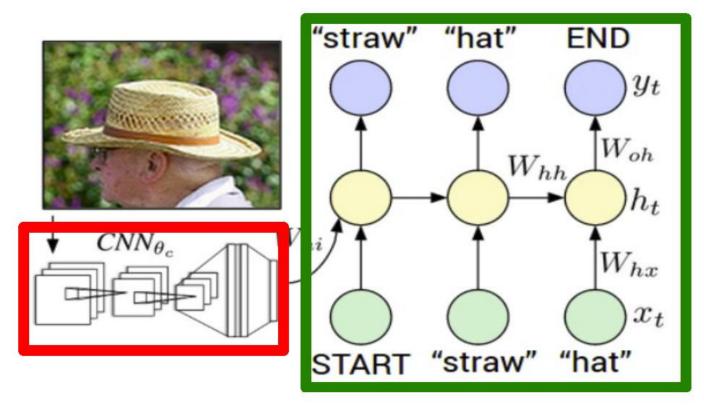
144





Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

## Recap: Image Tagging



- Simple combination of CNN and RNN
  - Use CNN to define initial state  $\mathbf{h}_0$  of an RNN.
  - Use RNN to produce text description of the image.

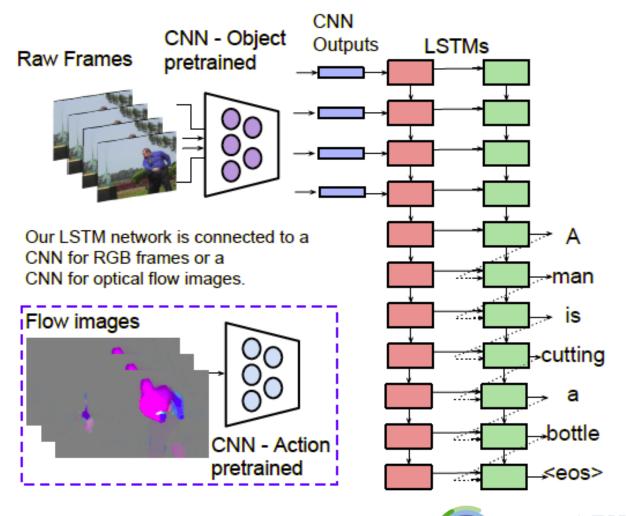
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide adapted from Andrej Karpathy

145





#### Recap: Video to Text Description





146



Visual Computing

Institute

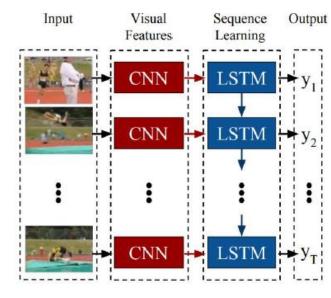
## **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
  - Online SLAM methods
  - Full SLAM methods

147

- Deep Learning for Video Analysis
  - CNNs for video analysis
  - CNNs for motion estimation
  - Video object segmentation

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



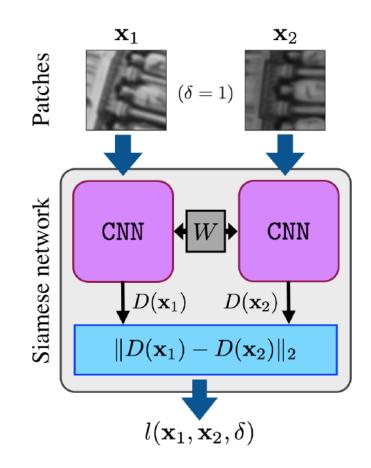




## **Recap: Learning Similarity Functions**

- Siamese Network
  - Present the two stimuli to two identical copies of a network (with shared parameters)
  - Train them to output similar values if the inputs are (semantically) similar.
- Used for many matching tasks
  - Face identification
  - Stereo estimation
  - Optical flow

148

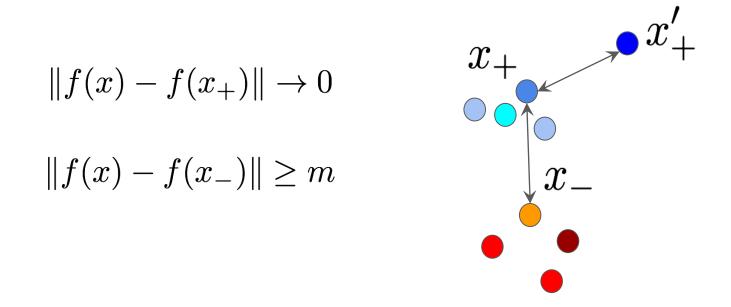






#### Recap: Metric Learning – Contrastive Loss

- Mapping an image to a metric embedding space
  - Metric space: distance relationship = class membership



#### Yi et al., LIFT: Learned Invariant Feature Transform, ECCV 16

149

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Christopher Choy



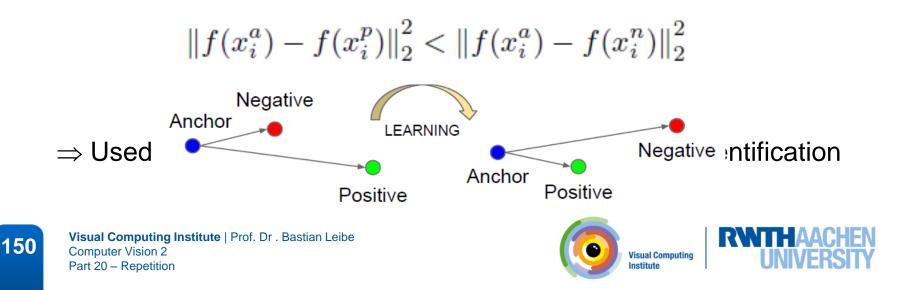
### Recap: Metric Learning – Triplet Loss

- Learning a discriminative embedding
  - Present the network with triplets of examples
     Negative

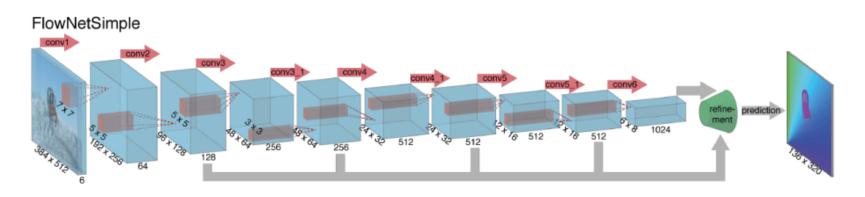


Positive

- Apply triplet loss to learn an embedding  $f(\cdot)$  that groups the positive example closer to the anchor than the negative one.



## Recap: FlowNet – FlowNetSimple Design

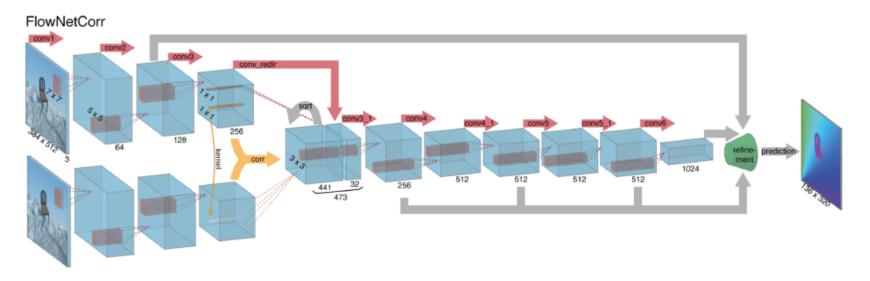


- Simple initial design
  - Simply stack two sequential images together and feed them through the network
  - In order to compute flow, the network has to compare image patches
  - But it has to figure out on its own how to do that...





# Recap: FlowNet – FlowNetCorr Design



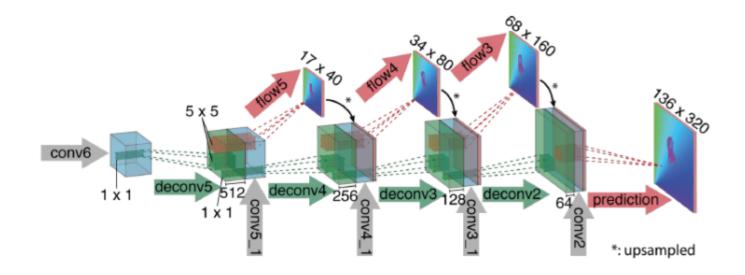
- Correlation network
  - Central idea: compute a correlation score between two feature maps

$$c(\mathbf{x}_1, \mathbf{x}_2) = \sum_{\mathbf{o} \in [-k,k] \times [-k,k]} \langle \mathbf{f}_1(\mathbf{x}_1 + \mathbf{o}), \mathbf{f}_2(\mathbf{x}_2 + \mathbf{o}) \rangle$$

- Then refine the correlation scores and turn them into flow predictions



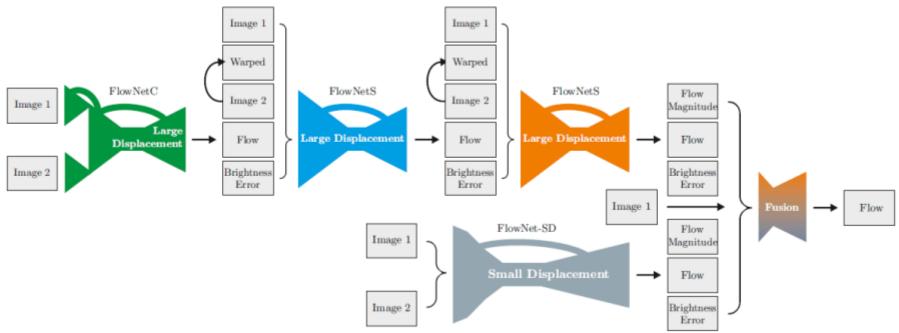
## Recap: FlowNet – Flow Refinement



- Flow refinement stage (both network designs)
  - After series of conv and pooling layers, the resolution has been reduced
  - Refine the coarse pooled representation by upconvolution layers (unpooling + upconvolution)
  - Skip connections to preserve high-res information from early layers



# Recap: FlowNet 2.0 Improved Design



- Stacked architecture
  - Several instances of FlowNetC and FlowNetS stacked together to estimate large-displacement flow
  - Sub-network specialized on small motions
  - Fusion layer





Image source: Ilg et al., CVPR'17

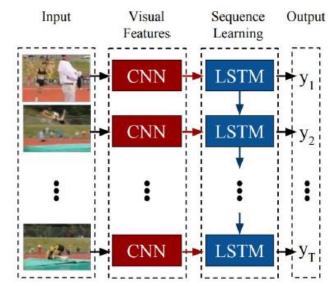
## **Course Outline**

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
  - Online SLAM methods
  - Full SLAM methods

155

- Deep Learning for Video Analysis
  - CNNs for video analysis
  - CNNs for motion estimation
  - Video object segmentation

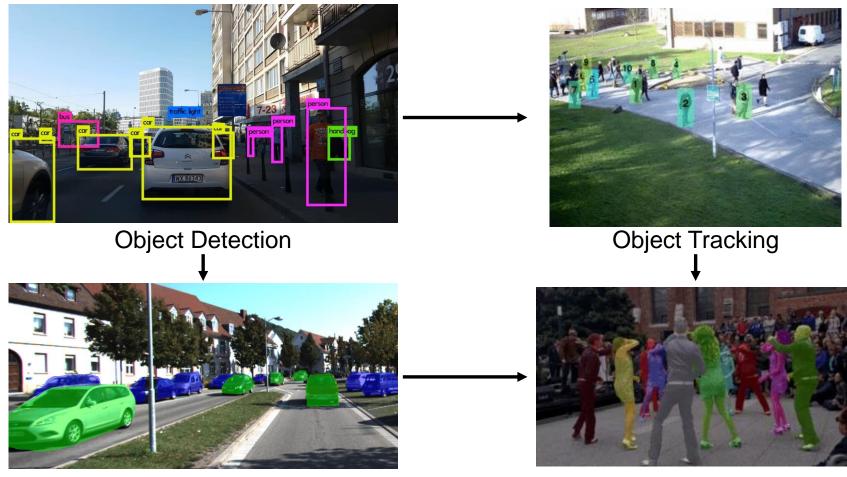
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition







### Recap: Video Object Segmentation



Video Object Segmentation

Visual Computing

Institute

#### Object Segmentation



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

#### Any More Questions?

#### Good luck for the exam!





157