Computer Vision 2 WS 2018/19

Part 20 – Repetition 23.01.2019

Guest Lecture: M.Sc. Jonathon Luiten

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

• Exams

- We are in the process of sending around the exam slot assignments.
- If the assigned date doesn't work for you, please contact us.
- Exam Procedure
 - Oral exams
 - Duration 30min
 - I will give you 4 questions and expect you to answer 3 of them.

- Today, we'll summarize the most important points from the lecture.
 - It is an opportunity for you to ask questions...
 - ... or get additional explanations about certain topics.
 - So, please do ask.
- Today's slides are intended as an index for the lecture.
 - But they are not complete, won't be sufficient as only tool.
 - Also look at the exercises they often explain algorithms in detail.

Content of the Lecture

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

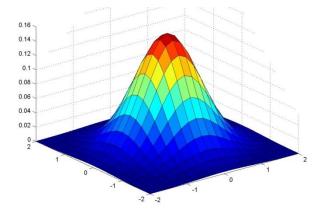
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Image source: Tobias Jaeggli

Recap: Gaussian Background Model

Statistical model

- Value of a pixel represents a measurement of the radiance of the first object intersected by the pixel's optical ray.
- With a static background and static lighting, this value will be a constant affected by i.i.d. Gaussian noise.



Idea

5

 Model the background distribution of each pixel by a single Gaussian centered at the mean pixel value:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

- Test if a newly observed pixel value has a high likelihood under this Gaussian model.
- \Rightarrow Automatic estimation of a sensitivity threshold for each pixel.

Recap: Stauffer-Grimson Background Model

Idea

6

– Model the distribution of each pixel by a mixture of K Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{\kappa} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \text{ where } \boldsymbol{\Sigma}_k = \sigma_k^2 \mathbf{I}$$

- Check every new pixel value against the existing K components until a match is found (pixel value within 2.5 σ_k of μ_k).
- If a match is found, adapt the corresponding component.
- Else, replace the least probable component by a distribution with the new value as its mean and an initially high variance and low prior weight.
- Order the components by the value of w_k/σ_k and select the best B components as the background $B = \arg\min_b \left(\sum_{k=1}^b \frac{w_k}{\sigma_k} > T\right)$

Recap: Stauffer-Grimson Background Model

Online adaptation

- Instead of estimating the MoG using EM, use a simpler online adaptation, assigning each new value only to the matching component.
- Let $M_{k,t} = 1$ iff component k is the model that matched, else 0. $\pi_k^{(t+1)} = (1-\alpha)\pi_k^{(t)} + \alpha M_{k,t}$
- Adapt only the parameters for the matching component

$$\boldsymbol{\mu}_{k}^{(t+1)} = (1-\rho)\boldsymbol{\mu}_{k}^{(t)} + \rho x^{(t+1)}$$
$$\boldsymbol{\Sigma}_{k}^{(t+1)} = (1-\rho)\boldsymbol{\Sigma}_{k}^{(t)} + \rho (x^{(t+1)} - \boldsymbol{\mu}_{k}^{(t+1)})(x^{(t+1)} - \boldsymbol{\mu}_{k}^{(t+1)})^{T}$$

where

$$\rho = \alpha \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

(i.e., the update is weighted by the component likelihood)

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Kernel Background Modeling

- Nonparametric density estimation
 - Estimate a pixel's background distribution using the kernel density estimator $K(\cdot)$ as

$$p(\mathbf{x}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} K(\mathbf{x}^{(t)} - \mathbf{x}^{(i)})$$

– Choose K to be a Gaussian $\mathcal{N}(0, \Sigma)$ with $\Sigma = \text{diag}\{\sigma_i\}$. Then

$$p(\mathbf{x}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{1}{2}\frac{(x_j^{(t)} - x_j^{(i)})^2}{\sigma_j^2}}$$

- A pixel is considered foreground if $p(\mathbf{x}^{(t)}) < \theta$ for a threshold θ .
 - This can be computed very fast using lookup tables for the kernel function values, since all inputs are discrete values.
 - Additional speedup: partial evaluation of the sum usually sufficient

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Content of the Lecture

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry

9

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

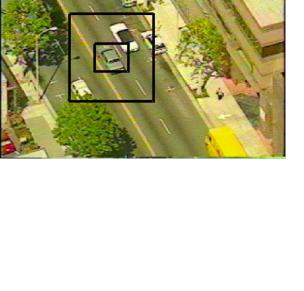
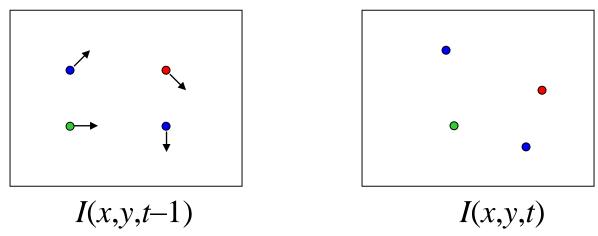


Image source: Robert Collins

Recap: Estimating Optical Flow



Optical Flow

10

- Given two subsequent frames, estimate the apparent motion field u(x,y) and v(x,y) between them.

Key assumptions

- Brightness constancy: projection of the same point looks the same in every frame.
- Small motion: points do not move very far.
- Spatial coherence: points move like their neighbors.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Lucas-Kanade Optical Flow

- Use all pixels in a $K \times K$ window to get more equations.
- Least squares problem:

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix} \xrightarrow{A \ d = b}_{25 \times 2 \ 2 \times 1 \ 25 \times 1}$$

Minimum least squares solution given by solution of

$$\begin{pmatrix} A^{T}A \\ 2 \times 2 \end{pmatrix} \stackrel{d}{}_{2 \times 1} = A^{T}b \\ \begin{array}{c} Recall \text{ the Harris detector!} \\ \end{array} \\ \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_{x}I_{t} \\ \sum I_{y}I_{t} \end{bmatrix} \\ \begin{array}{c} A^{T}A \\ A^{T}b \\ \end{array} \\ \begin{array}{c} \text{Nsual Computing Institute | Prof. Dr. Bastian Leibe \\ Computer Vision 2 \\ Part 20 - Repetition \end{array}$$

Slide credit: Svetlana Lazebnik

Visua

Comp

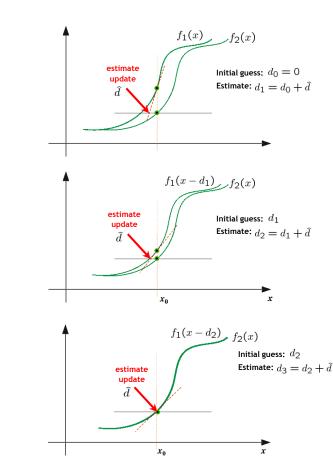
Recap: Iterative LK Refinement

- Estimate velocity at each pixel using one iteration of LK estimation.
- Warp one image toward the other using the estimated flow field.
- Refine estimate by repeating the process.
- Iterative procedure

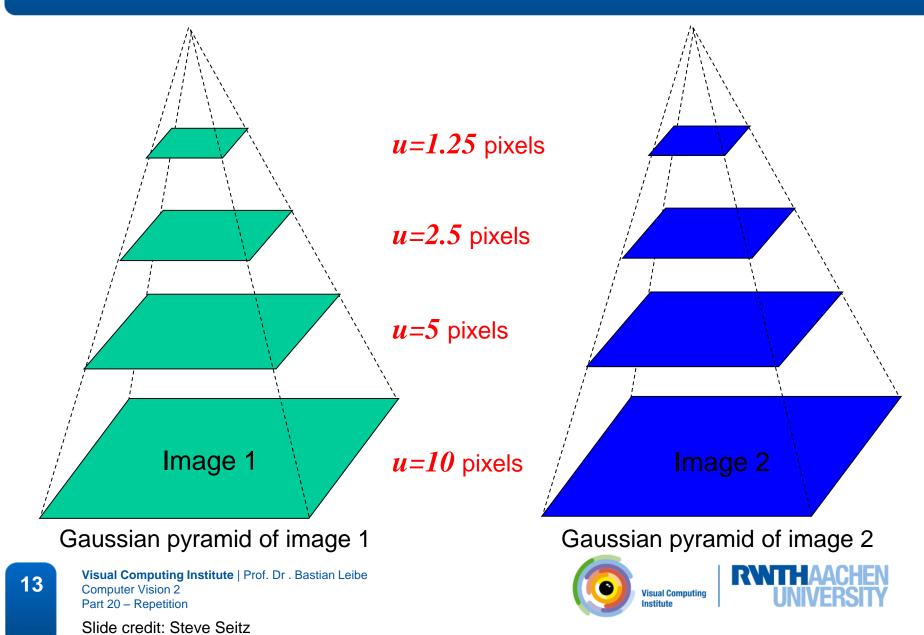
Computer Vision 2

Part 20 - Repetition

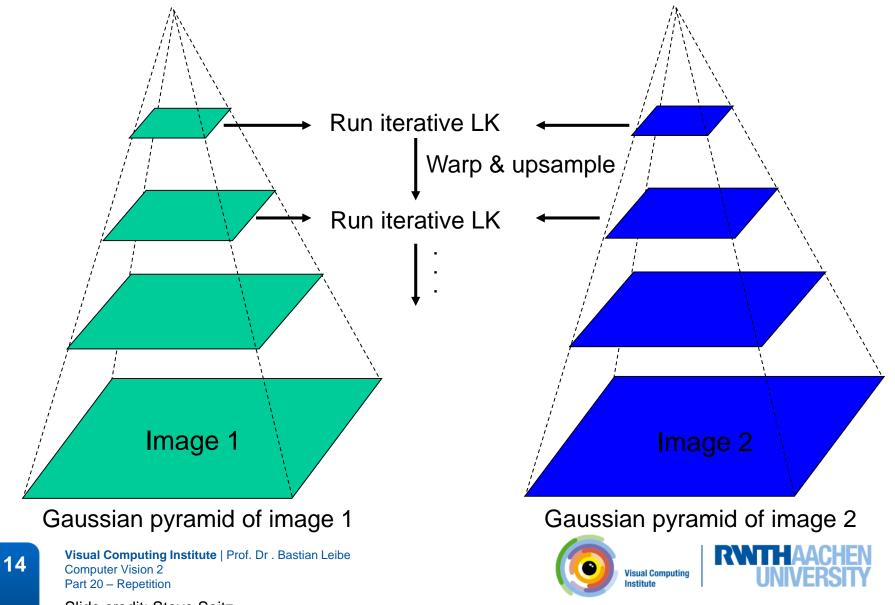
- Results in subpixel accurate localization.
- Converges for small displacements.



Recap: Coarse-to-fine Optical Flow Estimation



Recap: Coarse-to-fine Optical Flow Estimation



Slide credit: Steve Seitz

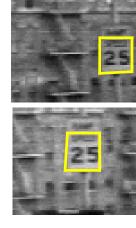
Recap: Shi-Tomasi Feature Tracker (\rightarrow KLT)

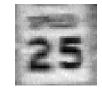
• Idea

15

- Find good features using eigenvalues of second-moment matrix
- Key idea: "good" features to track are the ones that can be tracked reliably.
- Frame-to-frame tracking
 - Track with LK and a pure *translation* motion model.
 - More robust for small displacements, can be estimated from smaller neighborhoods (e.g., 5×5 pixels).
- Checking consistency of tracks
 - Affine registration to the first observed feature instance.
 - Affine model is more accurate for larger displacements.
 - Comparing to the first frame helps to minimize drift.

J. Shi and C. Tomasi. <u>Good Features to Track</u>. CVPR 1994.





Recap: General LK Image Registration

Goal

16

- Find the warping parameters \mathbf{p} that minimize the sum-of-squares intensity difference between the template image $T(\mathbf{x})$ and the warped input image $I(\mathbf{W}(\mathbf{x};\mathbf{p}))$.

LK formulation

- Formulate this as an optimization problem

$$\arg\min_{\mathbf{p}}\sum_{\mathbf{x}}\left[I(\mathbf{W}(\mathbf{x};\mathbf{p})) - T(\mathbf{x})\right]^{2}$$

– We assume that an initial estimate of p is known and iteratively solve for increments to the parameters Δp :

$$\arg\min_{\Delta \mathbf{p}} \sum_{\mathbf{x}} \left[I(\mathbf{W}(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) - T(\mathbf{x}) \right]^2$$

Recap: Step-by-Step Derivation

- Key to the derivation
 - Taylor expansion around $\Delta \mathbf{p}$

$$I(\mathbf{W}(\mathbf{x};\mathbf{p}+\Delta\mathbf{p})) \approx I(\mathbf{W}(\mathbf{x};\mathbf{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \Delta \mathbf{p} + \mathcal{O}(\Delta \mathbf{p}^2)$$
$$= I(\mathbf{W}([x,y];p_1,\ldots,p_n))$$

 $+\begin{bmatrix} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial W_x}{\partial p_1} & \frac{\partial W_x}{\partial p_2} & \cdots & \frac{\partial W_x}{\partial p_n} \\ \frac{\partial W_y}{\partial p_1} & \frac{\partial W_y}{\partial p_2} & \cdots & \frac{\partial W_y}{\partial p_n} \end{bmatrix} \begin{bmatrix} \Delta p_1 \\ \Delta p_2 \\ \vdots \\ \Delta p \end{bmatrix}$ Gradient Jacobian Increment parameters to solve for ∇I $\Delta \mathbf{p}$ $\partial \mathbf{p}$ Visual Computing Institute | Prof. Dr . Bastian Leibe Visual Computing Institute

Computer Vision 2

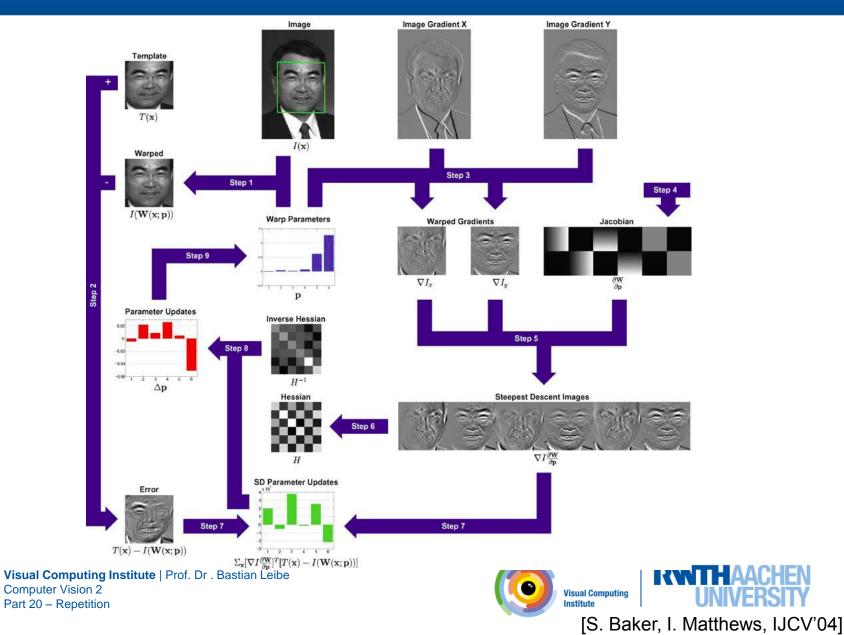
Part 20 - Repetition

Recap: Inverse Compositional LK Algorithm

- Iterate
 - Warp I to obtain $I(\mathbf{W}([x, y]; \mathbf{p}))$
 - Compute the error image $T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p}))$
 - Warp the gradient ∇I with $\mathbf{W}([x, y]; \mathbf{p})$
 - Evaluate $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at $([x, y]; \mathbf{p})$ (Jacobian)
 - Compute steepest descent images
 - Compute Hessian matrix $\mathbf{H} = \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]$ Compute $\sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \mathbf{p}} \right]^T \left[T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p})) \right]$

- $\Delta \mathbf{p} = \mathbf{H}^{-1} \sum_{\mathbf{x}} \left[\nabla I \frac{\partial \mathbf{w}}{\partial \mathbf{p}} \right]^T \left[T([x, y]) I(\mathbf{W}([x, y]; \mathbf{p})) \right]$ - Compute
- Update the parameters $\mathbf{p} \leftarrow \mathbf{\bar{p}} + \Delta \mathbf{p}$
- Until $\Delta \mathbf{p}$ magnitude is negligible

Recap: Inverse Compositional LK Algorithm



Course Outline

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry

20

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

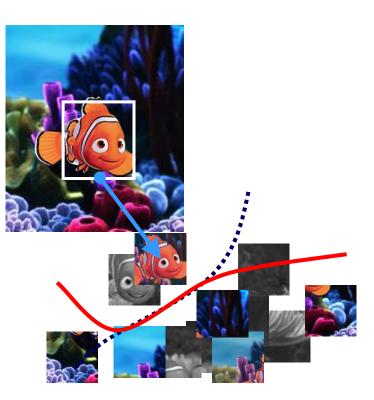
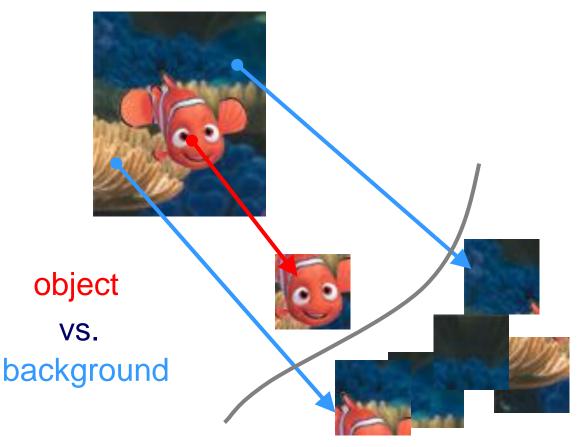


Image source: Robert Collins

Recap: Tracking as Online Classification

Tracking as binary classification problem



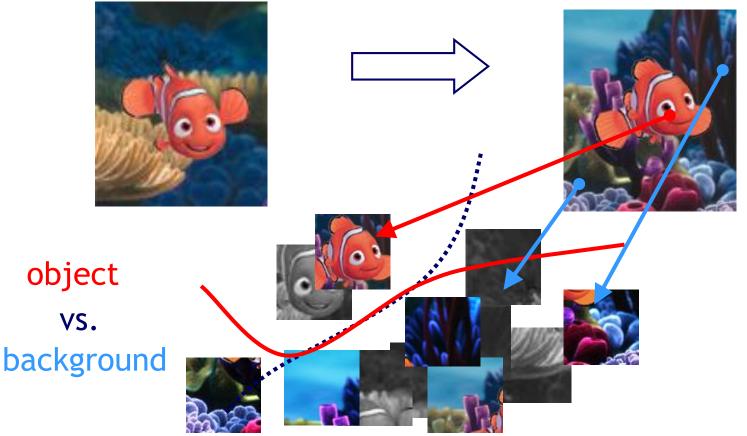
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Helmut Grabner

Image source: Disney/Pixar

Recap: Tracking as Online Classification

Tracking as binary classification problem

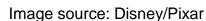


- Handle object and background changes by online updating

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Helmut Grabner

22



Visual Computing

Institute

Recap: AdaBoost - "Adaptive Boosting"

Main idea

[Freund & Schapire, 1996]

- Iteratively select an ensemble of classifiers
- Reweight misclassified training examples after each iteration to focus training on difficult cases.
- Components
 - $-h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
 - $-H(\mathbf{x})$: "strong" or final classifier

• AdaBoost:

23

- Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers: $\bigwedge M$

$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

Recap: AdaBoost – Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N.
- 2. For m = 1, ..., M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on \mathbf{X} :

$$\epsilon_m = \frac{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^N w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = \ln\left\{\frac{1-\epsilon_m}{\epsilon_m}\right\}$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

From Offline to Online Boosting

Main issue

25

- Computing the weight distribution for the samples.
- We do not know a priori the difficulty of a sample!
 (Could already have seen the same sample before...)
- Idea of Online Boosting
 - Estimate the importance of a sample by propagating it through a set of weak classifiers.
 - This can be thought of as modeling the information gain w.r.t. the first n classifiers and code it by the importance weight λ for the n+1 classifier.
 - Proven [Oza]: Given the same training set, Online Boosting converges to the same weak classifiers as Offline Boosting in the limit of $N \to \infty$ iterations.

N. Oza and S. Russell. <u>Online Bagging and Boosting</u>. Artificial Intelligence and Statistics, 2001.

Recap: From Offline to Online Boosting

off-line

Given:

- set of labeled training samples $\mathcal{X} = \{ \langle \mathbf{x_1}, y_1 \rangle, ..., \langle \mathbf{x_L}, y_L \rangle \mid y_i \pm 1 \}$ - weight distribution over them $D_0 = 1/L$

for n = 1 to N

- train a weak classifier using samples and weight dist.

 $h_n^{weak}(\mathbf{x}) = \mathcal{L}(\mathcal{X}, D_{n-1})$

- calculate error e_n
- calculate weight $\alpha_n = f(e_n)$
- update weight dist. D_n

next

26

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Helmut Grabner

on-line

<u>Given</u>:

- ONE labeled training sample $\langle {f x},y
 angle \mid y\pm 1$
- strong classifier to update
- initial importance $\lambda=1$
- for n = 1 to N
 - update the weak classifier using samples and importance

$$h_n^{weak}(\mathbf{x}) = \mathcal{L}(h_n^{weak}, \langle x, y \rangle, \lambda)$$

- update error estimation $\hat{e_n}$
- update weight $lpha_n=f(\widehat{e}_n)$
- update importance weight λ

next

$$h^{strong}(\mathbf{x}) = \operatorname{sign}(\sum_{n=1}^{N} \alpha_n \cdot h_n^{weak}(\mathbf{x}))$$

$$\underbrace{\operatorname{Visual Computing}}_{\text{Institute}} \mid \operatorname{RNTHAACHER}_{\text{UNIVERSITY}}$$

Recap: Online Boosting for Feature Selection

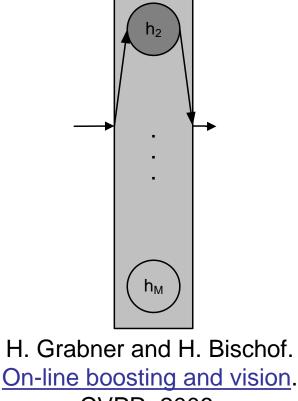
- Introducing "Selector"
 - Selects one feature from its local feature pool

$$\mathcal{H}^{weak} = \{h_1^{weak}, ..., h_M^{weak}\}$$
$$\mathcal{F} = \{f_1, ..., f_M\}$$

$$h^{sel}(\mathbf{x}) = h_m^{weak}(\mathbf{x})$$

 $m = \arg\min_i e_i$

On-line boosting is performed on the Selectors and not on the weak classifiers directly.



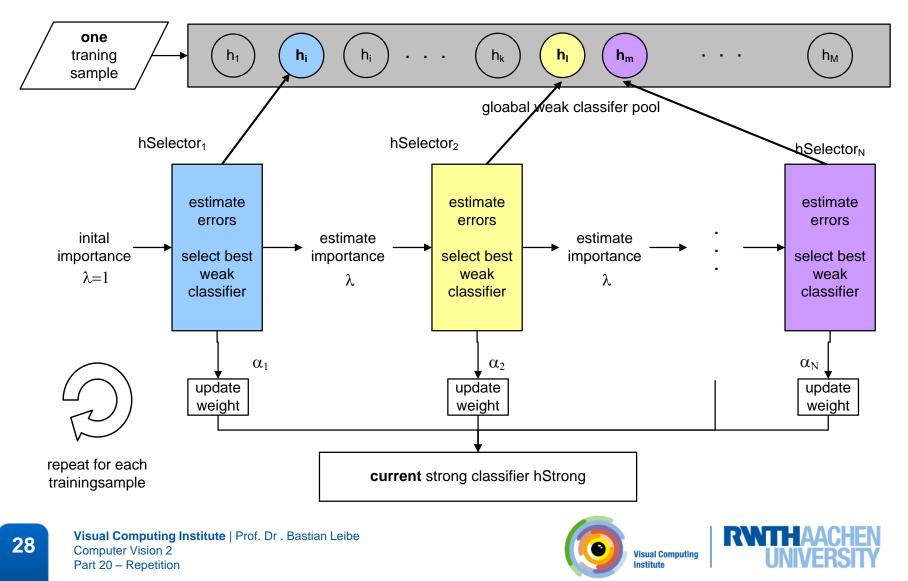
hSelector

h₁

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

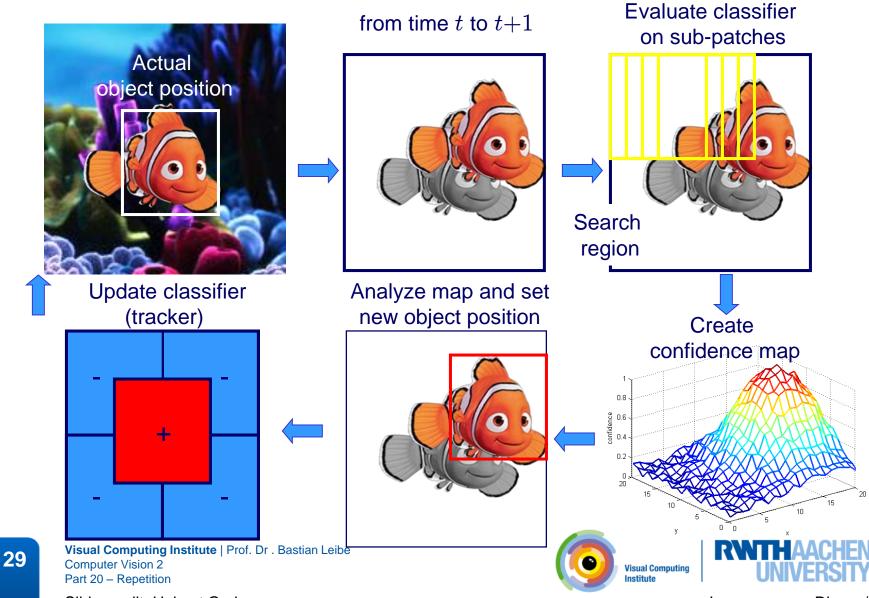
Slide credit: Helmut Grabner

Recap: Direct Feature Selection



Slide credit: Helmut Grabner

Recap: Tracking by Online Classification



Slide credit: Helmut Grabner

Image source: Disney/Pixar

Recap: Drifting Due to Self-Learning Policy

Tracked Patches

0.95 0.9 0.85 0.8 (x| L= 0.75 0.7 0.65 0.6 0.55 0.5 100 200 300 500 600 700 400 frame number

 \Rightarrow Not only does it drift, it also remains confident about it!

30

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Helmut Grabner

Confidence

Image source: Grabner et al., ECCV'08

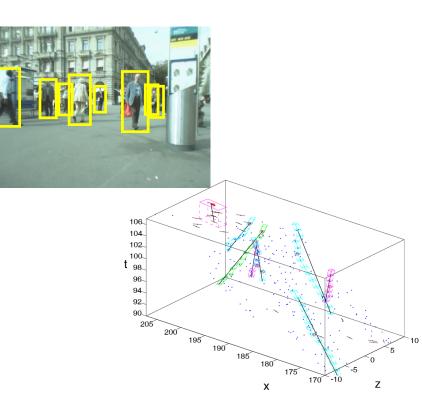
Course Outline

- Single-Object Tracking
 - Background modeling
 - Template based tracking
 - Tracking by online classification
 - Tracking-by-detection
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry

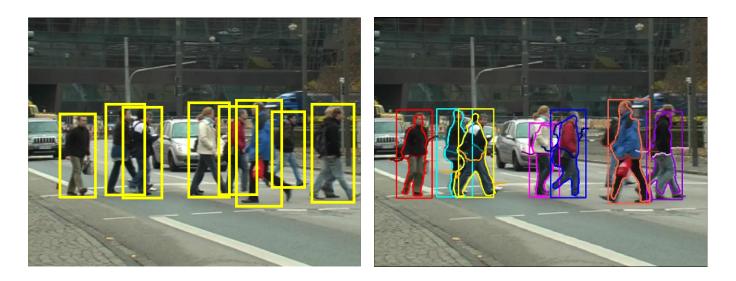
31

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

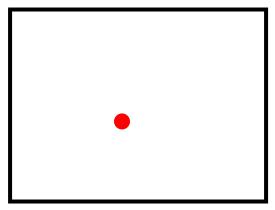


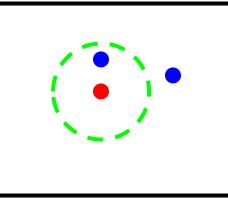
Recap: Tracking-by-Detection

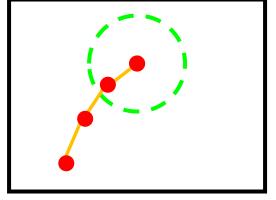


- Main ideas
 - Apply a generic object detector to find objects of a certain class
 - Based on the detections, extract object appearance models
 - Link detections into trajectories

Recap: Elements of Tracking







Detection

Data association

Prediction

- Detection
 - Where are candidate objects?
- Data association
 - Which detection corresponds to which object?
- Prediction

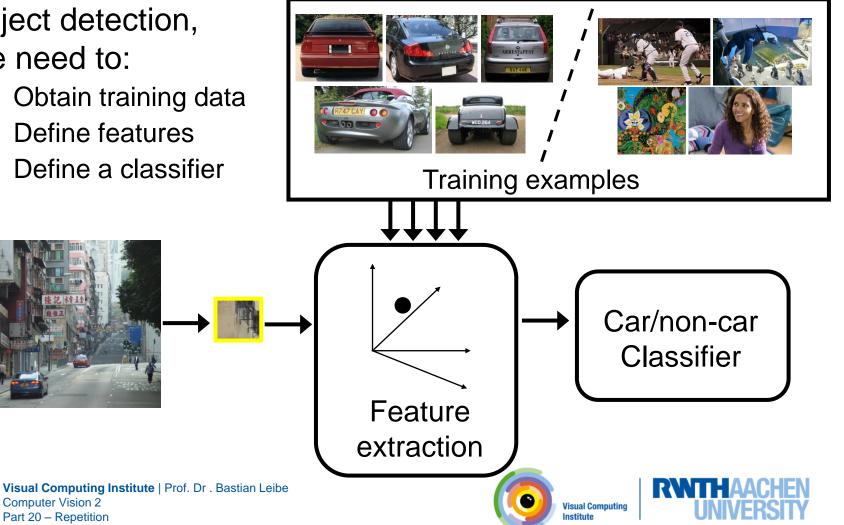
33

- Where will the tracked object be in the next time step?

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Sliding-Window Object Detection

- For sliding-window object detection, we need to:
 - Obtain training data 1.
 - 2. Define features
 - Define a classifier 3.



Slide credit: Kristen Grauman

Computer Vision 2

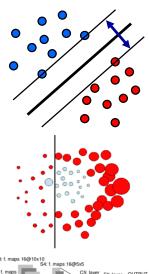
Part 20 - Repetition

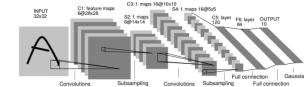
Recap: Object Detector Design

- In practice, the classifier often determines the design.
 - Types of features
 - Speedup strategies
- We looked at 3 state-of-the-art detector designs
 - Based on SVMs

- Based on Boosting

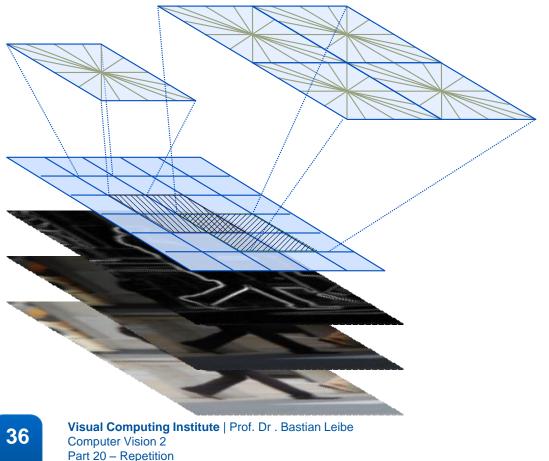
Based on CNNs

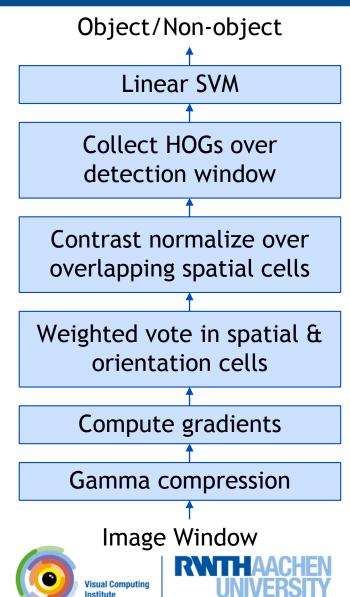




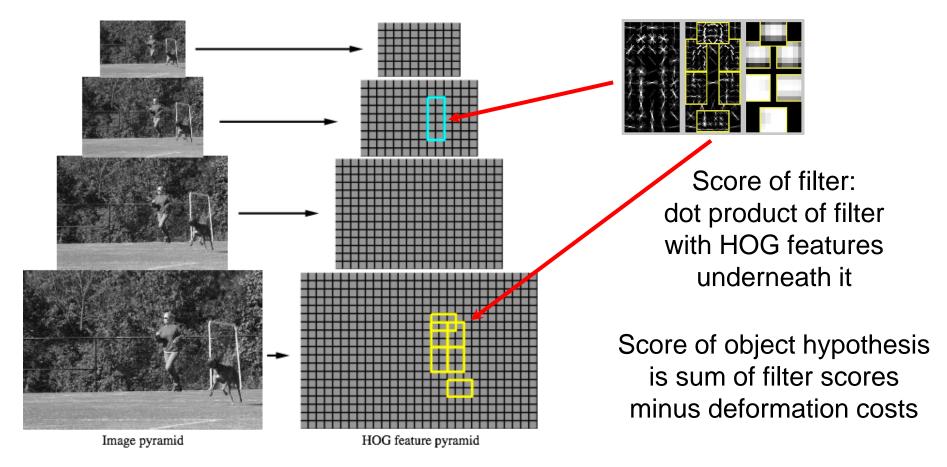
Recap: Histograms of Oriented Gradients (HOG)

- Holistic object representation
 - Localized gradient orientations





Recap: Deformable Part-based Model (DPM)



• Multiscale model captures features at two resolutions

[Felzenszwalb, McAllister, Ramanan, CVPR'08]

Visual Computing

Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Pedro Felzenszwalb

Recap: DPM Hypothesis Score

$$\operatorname{score}(p_0, \dots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$$
filters
$$\operatorname{filters}^{n} d_i \cdot (dx_i^2, dy_i^2)$$
deformation parameters

score(z) = $\beta \cdot \Psi(H, z)$ concatenation filters and concatenation deformation parameters features a

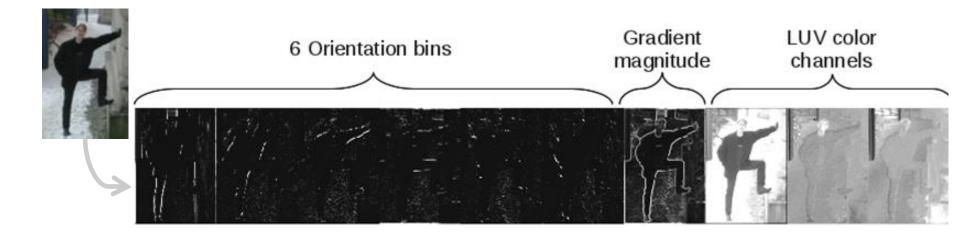
concatenation of HOG features and part displacement features

[Felzenszwalb, McAllister, Ramanan, CVPR'08]

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Pedro Felzenszwalb

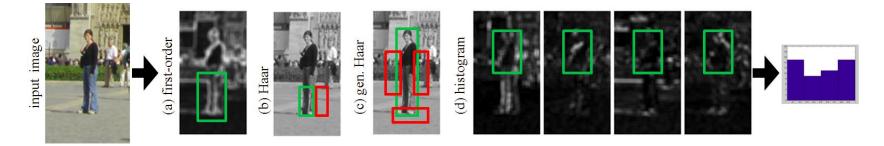
Recap: Integral Channel Features



- Generalization of Haar Wavelet idea from Viola-Jones
 - Instead of only considering intensities, also take into account other feature channels (gradient orientations, color, texture).
 - Still efficiently represented as integral images.

P. Dollar, Z. Tu, P. Perona, S. Belongie. Integral Channel Features, BMVC'09.

Recap: Integral Channel Features



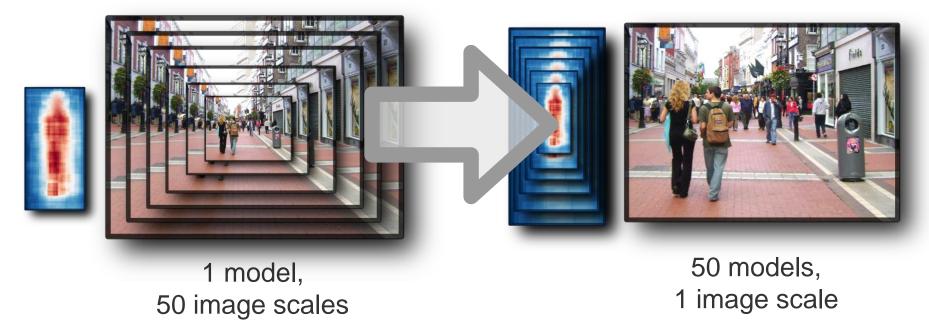
- Generalize also block computation
 - 1st order features:
 - Sum of pixels in rectangular region.
 - 2nd-order features:
 - Haar-like difference of sum-over-blocks
 - Generalized Haar:
 - More complex combinations of weighted rectangles
 - Histograms

40

Computed by evaluating local sums on quantized images.

Recap: VeryFast Detector

• Idea 1: Invert the template scale vs. image scale relation



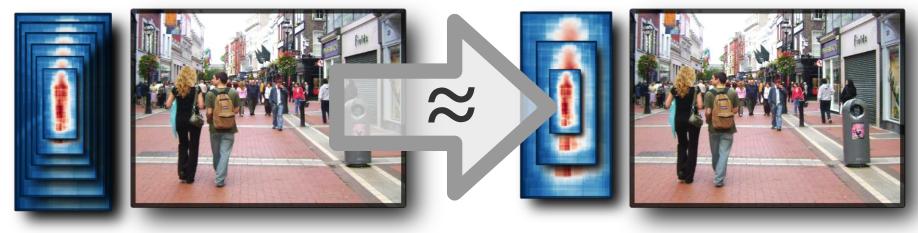
R. Benenson, M. Mathias, R. Timofte, L. Van Gool. <u>Pedestrian Detection at</u> <u>100 Frames per Second</u>, CVPR'12.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Rodrigo Benenson

Recap: VeryFast Detector

Idea 2: Reduce training time by feature interpolation



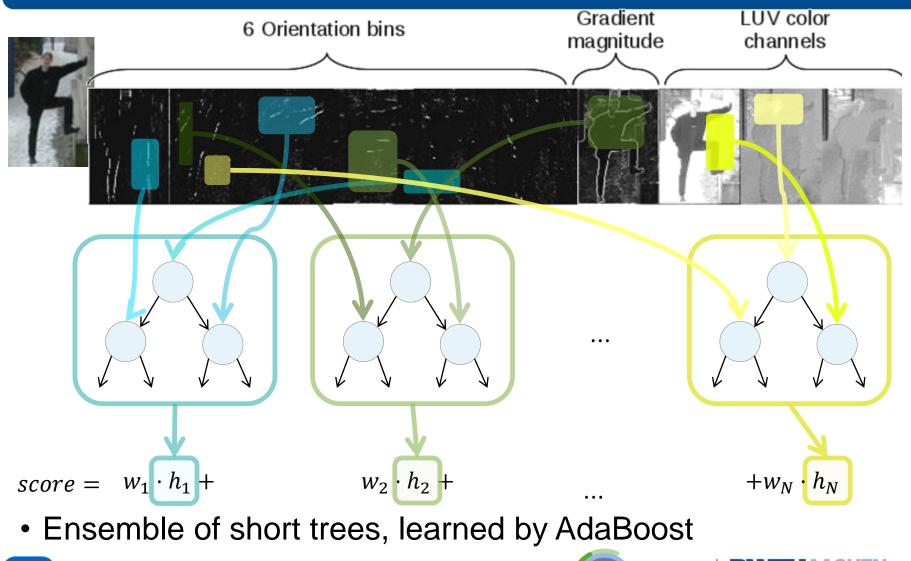
50 models, 1 image scale 5 models, 1 image scale

- Shown to be possible for Integral Channel features
 - P. Dollár, S. Belongie, Perona. <u>The Fastest Pedestrian Detector in the</u> <u>West</u>, BMVC 2010.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Rodrigo Benenson

Recap: VeryFast Classifier Construction



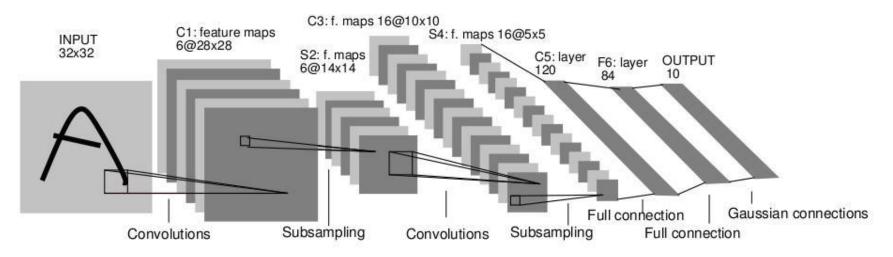
Visual Computing

Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Rodrigo Benenson

Recap: Convolutional Neural Networks

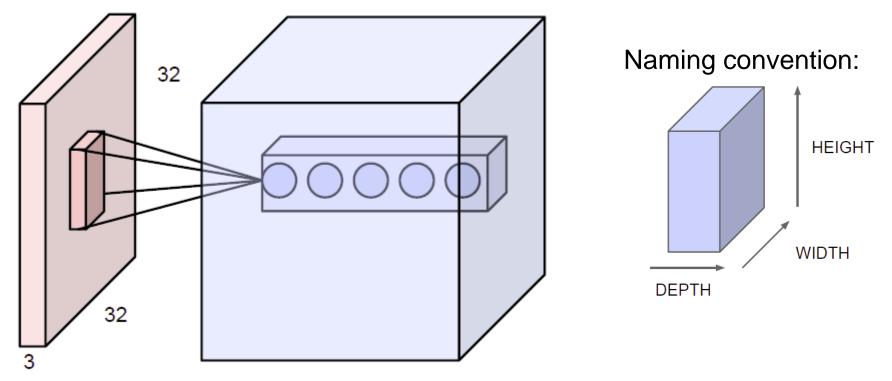


- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to</u> <u>document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Convolution Layers



- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single $[1 \times 1 \times depth]$ depth column in output volume.

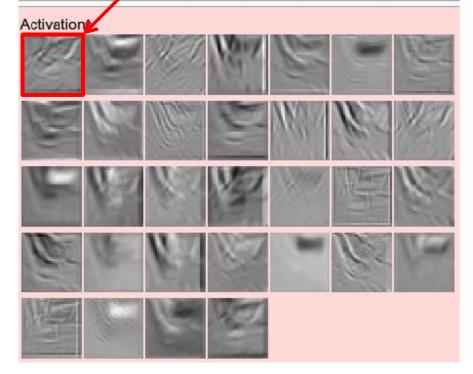
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: FeiFei Li, Andrej Karpathy

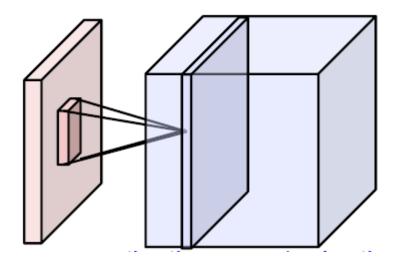
Recap: Activation Maps

Activations:

one filter = one depth slice (or activation map)

 5×5 filters



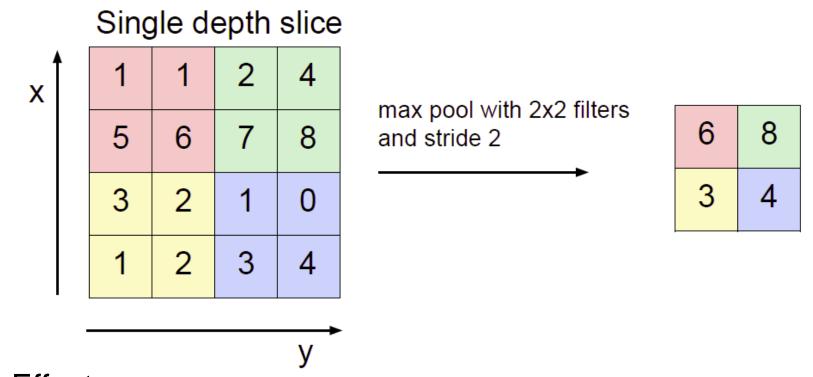


Activation maps

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

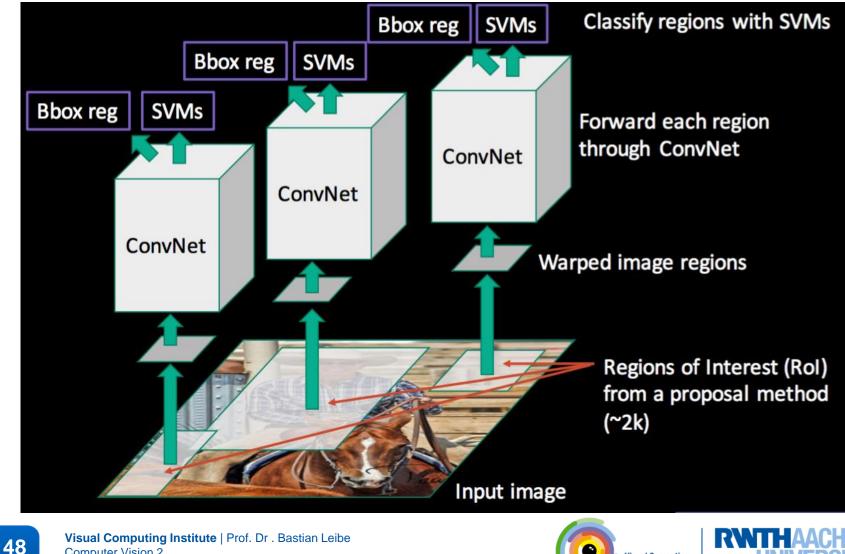
Slide adapted from FeiFei Li, Andrej Karpathy

Recap: Pooling Layers



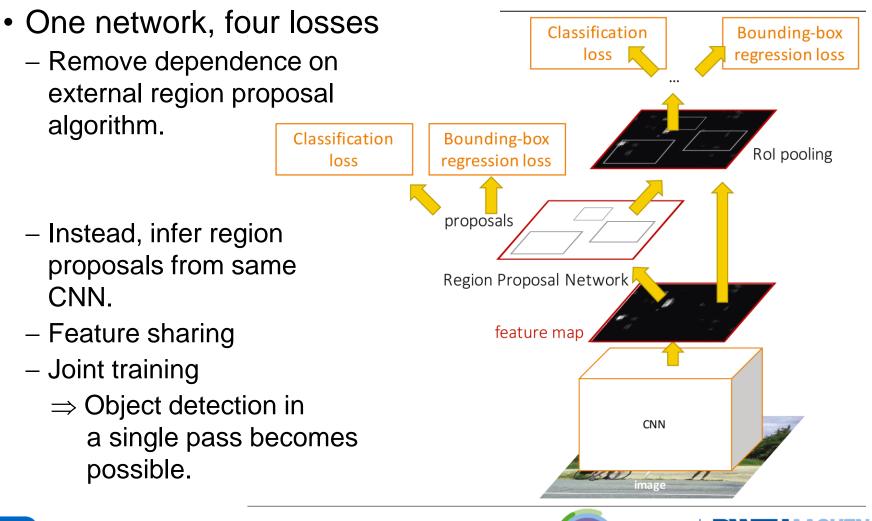
- Effect:
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations

Recap: R-CNN for Object Detection



Computer Vision 2 Part 20 - Repetition Slide credit: Ross Girshick

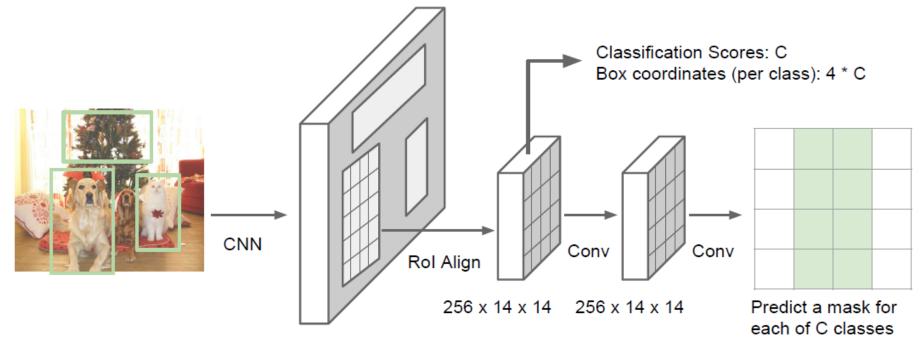
Recap: Faster R-CNN



Visual Computing

Institute

Recap: Mask R-CNN

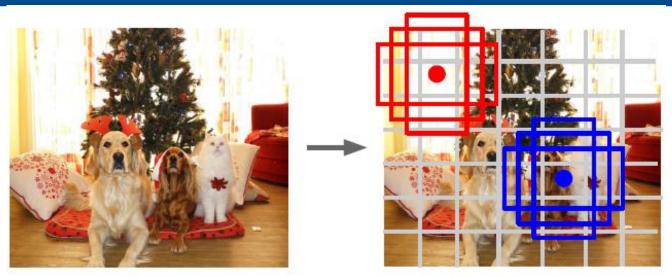


C x 14 x 14

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: FeiFei Li

Recap: YOLO / SSD



Input image 3 x H x W

Divide image into grid 7 x 7

- Idea: Directly go from image to detection scores
- Within each grid cell

51

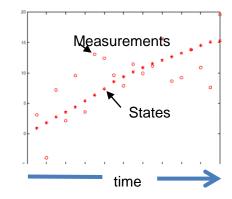
- Start from a set of anchor boxes
- Regress from each of the B anchor boxes to a final box
- Predict scores for each of C classes (including background)

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: FeiFei Li

Course Outline

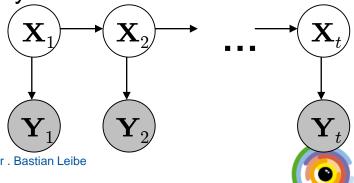
- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
- Visual Odometry

- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



Recap: Tracking as Inference

- Inference problem
 - The hidden state consists of the true parameters we care about, denoted \mathbf{X} .
 - The measurement is our noisy observation that results from the underlying state, denoted ${\bf Y}.$
 - At each time step, state changes (from \mathbf{X}_{t-1} to \mathbf{X}_{t}) and we get a new observation \mathbf{Y}_{t} .
- Our goal: recover most likely state \mathbf{X}_t given
 - All observations seen so far.
 - Knowledge about dynamics of state transitions.



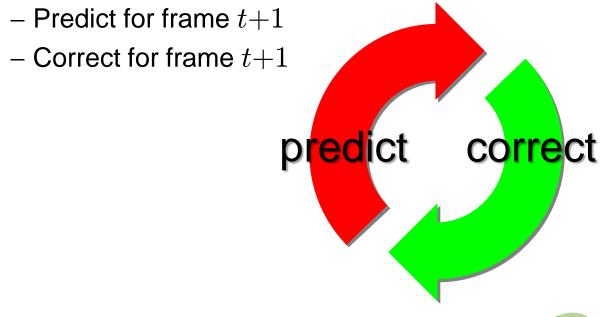
53

Visual Computing

Institute

Recap: Tracking as Induction

- Base case:
 - Assume we have initial prior that predicts state in absence of any evidence: $P(\mathbf{X}_0)$
 - At the first frame, correct this given the value of $\mathbf{Y}_0 = \mathbf{y}_0$
- Given corrected estimate for frame t:



Slide credit: Svetlana Lazebnik

Recap: Prediction and Correction

• Prediction:

55

$$P(X_{t} | y_{0}, ..., y_{t-1}) = \int P(X_{t} | X_{t-1}) P(X_{t-1} | y_{0}, ..., y_{t-1}) dX_{t-1}$$
Dynamics Corrected estimate from previous step
Correction:
$$P(X_{t} | y_{0}, ..., y_{t}) = \frac{P(y_{t} | X_{t}) P(X_{t} | y_{0}, ..., y_{t-1})}{\int P(y_{t} | X_{t}) P(X_{t} | y_{0}, ..., y_{t-1}) dX_{t}}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Svetlana Lazebnik

Recap: Linear Dynamic Models

- Dynamics model
 - State undergoes linear transformation D_t plus Gaussian noise

$$\boldsymbol{x}_{t} \sim N(\boldsymbol{D}_{t}\boldsymbol{x}_{t-1},\boldsymbol{\Sigma}_{d_{t}})$$

- Observation model
 - Measurement is linearly transformed state plus Gaussian noise

$$\boldsymbol{y}_t \sim N(\boldsymbol{M}_t \boldsymbol{x}_t, \boldsymbol{\Sigma}_{m_t})$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Svetlana Lazebnik, Kristen Grauman

Recap: Constant Velocity (1D Points)

- State vector: position \boldsymbol{p} and velocity \boldsymbol{v}

$$\begin{aligned} x_{t} &= \begin{bmatrix} p_{t} \\ v_{t} \end{bmatrix} & p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \mathcal{E} & \text{(greek letters denote noise} \\ v_{t} &= v_{t-1} + \mathcal{E} & \text{terms} \end{aligned}$$

$$x_{t} &= D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \end{bmatrix} + noise$$

Measurement is position only

$$y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} p_t \\ v_t \end{bmatrix} + noise$$

57

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Svetlana Lazebnik, Kristen Grauman

Recap: Constant Acceleration (1D Points)

• State vector: position p, velocity v, and acceleration a.

$$x_{t} = \begin{bmatrix} p_{t} \\ v_{t} \\ a_{t} \end{bmatrix} \qquad \begin{array}{l} p_{t} = p_{t-1} + (\Delta t)v_{t-1} + \frac{1}{2}(\Delta t)^{2}a_{t-1} + \varepsilon & \text{(greek letters)} \\ v_{t} = v_{t-1} + (\Delta t)a_{t-1} + \xi & \text{terms)} \\ a_{t} = a_{t-1} + \zeta & \text{terms)} \\ a_{t} = a_{t-1} + \zeta & \text{terms)} \\ x_{t} = D_{t}x_{t-1} + noise = \begin{bmatrix} 1 & \Delta t & \frac{1}{2}(\Delta t)^{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{t-1} \\ v_{t-1} \\ a_{t-1} \end{bmatrix} + noise \\ \begin{array}{l} p_{t-1} \\ p_{t-1} \\ a_{t-1} \end{bmatrix} + noise \\ \end{array}$$

 a_{\star}

Visual Computing

letters

Measurement is position only •

$$y_t = Mx_t + noise = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} p_t \\ v_t \end{vmatrix} + noise$$

Visual Computing Institute | Prof. Dr . Bastian Leibe **Computer Vision 2** Part 20 - Repetition

58

Slide credit: Svetlana Lazebnik, Kristen Grauman

Recap: General Motion Models

- Assuming we have differential equations for the motion
 - E.g. for (undampened) periodic motion of a linear spring

$$\frac{d^2 p}{dt^2} = -p$$

• Substitute variables to transform this into linear system

$$p_1 = p$$
 $p_2 = \frac{dp}{dt}$ $p_3 = \frac{d^2p}{dt^2}$

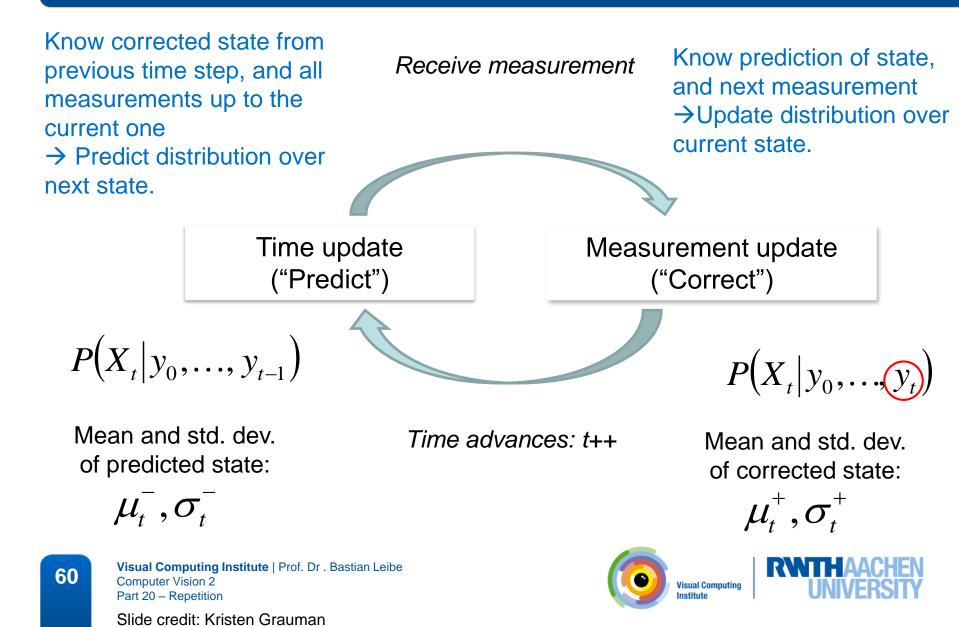
Then we have

59

$$x_{t} = \begin{bmatrix} p_{1,t} \\ p_{2,t} \\ p_{3,t} \end{bmatrix} \qquad \begin{array}{l} p_{1,t} = p_{1,t-1} + (\Delta t) p_{2,t-1} + \frac{1}{2} (\Delta t)^{2} p_{3,t-1} + \mathcal{E} \\ p_{2,t} = p_{2,t-1} + (\Delta t) p_{3,t-1} + \mathcal{E} \\ p_{3,t} = -p_{1,t-1} + \mathcal{E} \\ \end{array} \qquad \begin{array}{l} D_{t} = \begin{bmatrix} 1 & \Delta t & \frac{1}{2} (\Delta t)^{2} \\ 0 & 1 & \Delta t \\ -1 & 0 & 0 \\ \end{array}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: The Kalman Filter



Recap: General Kalman Filter (>1dim)

PREDICT

$$x_t^- = D_t x_{t-1}^+$$
$$\Sigma_t^- = D_t \Sigma_{t-1}^+ D_t^T + \Sigma_{d_t}$$

More weight on residual when measurement error covariance approaches 0.

CORRECT

Less weight on residual as a priori estimate error covariance approaches 0.

Visual Computing

$$\begin{split} K_t &= \Sigma_t^- M_t^T \left(M_t \Sigma_t^- M_t^T + \Sigma_{m_t} \right)^{-1} \\ x_t^+ &= x_t^- + K_t \left(y_t - M_t x_t^- \right) \text{``residual''} \\ \Sigma_t^+ &= \left(I - K_t M_t \right) \Sigma_t^- \end{split}$$

for derivations, see F&P Chapter 17.3

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Kristen Grauman

Recap: Kalman Filter – Detailed Algorithm

- Algorithm summary
 - Assumption: linear model

$$\mathbf{x}_t = \mathbf{D}_t \mathbf{x}_{t-1} + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{M}_t \mathbf{x}_t + \delta_t$$

- Prediction step

$$egin{array}{rcl} \mathbf{x}_t^- &=& \mathbf{D}_t \mathbf{x}_{t-1}^+ \ \mathbf{\Sigma}_t^- &=& \mathbf{D}_t \mathbf{\Sigma}_{t-1}^+ \mathbf{D}_t^T + \mathbf{\Sigma}_{d_t} \end{array}$$

- Correction step

$$egin{array}{rcl} \mathbf{K}_t &= \mathbf{\Sigma}_t^- \mathbf{M}_t^T \left(\mathbf{M}_t \mathbf{\Sigma}_t^- \mathbf{M}_t^T + \mathbf{\Sigma}_{m_t}
ight)^{-1} \ \mathbf{x}_t^+ &= \mathbf{x}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{M}_t \mathbf{x}_t^-
ight) \ \mathbf{\Sigma}_t^+ &= \left(\mathbf{I} - \mathbf{K}_t \mathbf{M}_t
ight) \mathbf{\Sigma}_t^- \end{array}$$

Extended Kalman Filter (EKF)

- Algorithm summary
 - Nonlinear model

$$\mathbf{x}_t = \mathbf{g}(\mathbf{x}_{t-1}) + \varepsilon_t$$

$$\mathbf{y}_t = \mathbf{h}(\mathbf{x}_t) + \delta_t$$

- Prediction step

$$\mathbf{x}_{t}^{-} = \mathbf{g} \left(\mathbf{x}_{t-1}^{+} \right)$$
$$\mathbf{\Sigma}_{t}^{-} = \mathbf{G}_{t} \mathbf{\Sigma}_{t-1}^{+} \mathbf{G}_{t}^{T} + \mathbf{\Sigma}_{d_{t}}$$

Correction step

$$egin{array}{rcl} \mathbf{K}_t &=& \mathbf{\Sigma}_t^- \mathbf{H}_t^T \left(\mathbf{H}_t \mathbf{\Sigma}_t^- \mathbf{H}_t^T + \mathbf{\Sigma}_{m_t}
ight)^{-1} \ \mathbf{x}_t^+ &=& \mathbf{x}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{h} \left(\mathbf{x}_t^-
ight)
ight) \ \mathbf{\Sigma}_t^+ &=& \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t
ight) \mathbf{\Sigma}_t^- \end{array}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

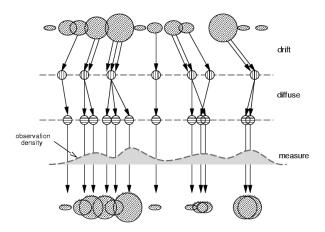
with the Jacobians

$$\begin{aligned} \mathbf{G}_t &= \left. \frac{\partial \mathbf{g}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_{t-}^+} \\ \mathbf{H}_t &= \left. \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mathbf{x}_t^-} \end{aligned}$$

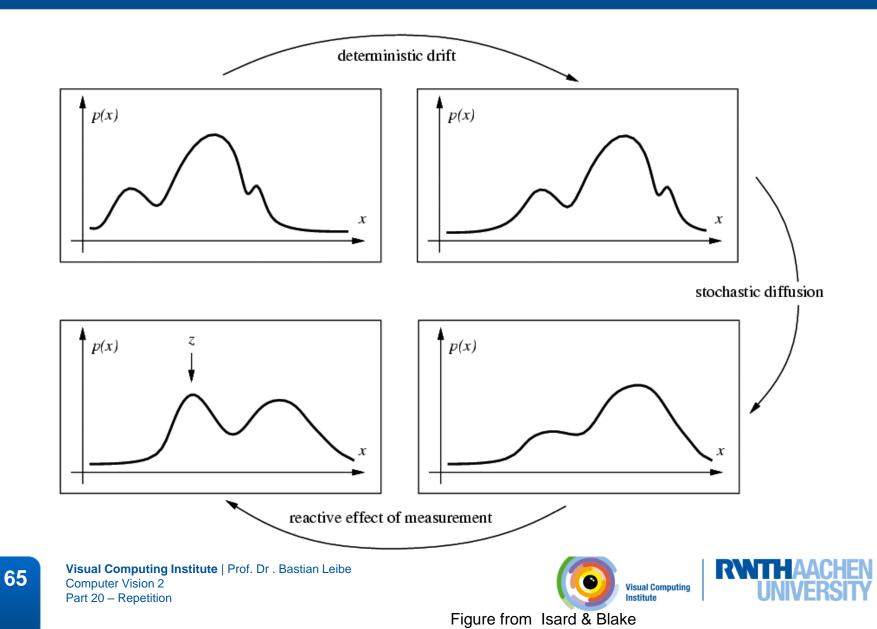
Course Outline

- Single-Object Tracking
- Bayesian Filtering

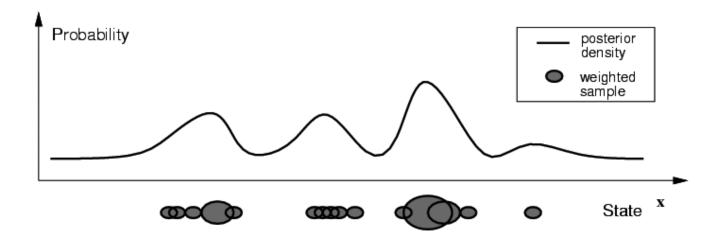
 Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



Recap: Propagation of General Densities



Recap: Factored Sampling



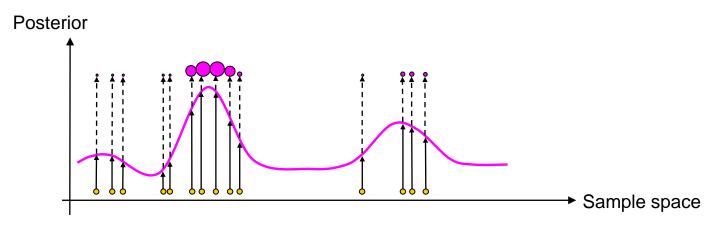
- Idea: Represent state distribution non-parametrically
 - Prediction: Sample points from prior density for the state, P(X)
 - Correction: Weight the samples according to P(Y|X)

$$P(X_{t} | y_{0},..., y_{t}) = \frac{P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})}{\int P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})dX_{t}}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Particle Filtering

- Many variations, one general concept:
 - Represent the posterior pdf by a set of randomly chosen weighted samples (particles)



- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Background: Monte-Carlo Sampling

• Objective:

68

- Evaluate expectation of a function $f(\mathbf{z})$ w.r.t. a probability distribution $p(\mathbf{z})$.

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

- Monte Carlo Sampling idea
 - Draw L independent samples $z^{(l)}$ with l = 1, ..., L from p(z).
 - This allows the expectation to be approximated by a finite sum

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^l)$$

- As long as the samples $z^{(l)}$ are drawn independently from p(z), then

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f]$$

 \Rightarrow Unbiased estimate, independent of the dimension of z!

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Bernt Schiele

p(z)

Image source: C.M. Bishop, 2006

f(z)

Background: Importance Sampling

Idea

69

- Use a proposal distribution $q(\mathbf{z})$ from which it is easy to draw samples and which is close in shape to f.
- Express expectations in the form of a finite sum over samples $\{z^{(l)}\}\$ drawn from q(z).

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d\mathbf{z}$$
$$\simeq \frac{1}{L} \sum_{l=1}^{L} \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})} f(\mathbf{z}^{(l)}) p(z) \int_{p(z)}^{p(z)} q(z)$$

- with importance weights

$$r_l = \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Bernt Schiele

Image source: C.M. Bishop, 2006

Visual Computing

Institute

f(z)

Recap: Sequential Importance Sampling

$$\begin{aligned} \mathbf{function} & \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ \eta &= 0 \\ \text{Initialize} \\ \mathbf{for} & i = 1:N \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) \end{aligned}$$

$$w_t^i = w_{t-1}^i \frac{p(\mathbf{y}_t | \mathbf{x}_t^i) p(\mathbf{x}_t^i | \mathbf{x}_{t-1}^i)}{q(\mathbf{x}_t | \mathbf{x}_{t-1}^i, \mathbf{y}_t)}$$
$$\eta = \eta + w_t^i$$

end for i = 1:N $w_t^i = w_t^i/\eta$

end

70

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein

Sample from proposal pdf

Update weights

Update norm. factor

Normalize weights

Recap: Sequential Importance Sampling

$$\begin{aligned} & \text{function } \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \text{for } i = 1:N & \\ & \mathbf{x}_{t}^{i} \sim q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} \frac{p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) p(\mathbf{x}_{t}^{i} | \mathbf{x}_{t-1}^{i})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}, \mathbf{y}_{t})} & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \text{end} & \\ & \text{for } i = 1:N & \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{For a concrete algorithm,} \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \end{aligned}$$

end

71

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein

Recap: SIS Algorithm with Transitional Prior

$$\begin{aligned} & \text{function } \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = SIS \left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ & \eta = 0 & \text{Initialize} \\ & \text{for } i = 1:N & \\ & \mathbf{x}_{t}^{i} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{i}) & \text{Sample from proposal pdf} \\ & w_{t}^{i} = w_{t-1}^{i} p(\mathbf{y}_{t} | \mathbf{x}_{t}^{i}) & \text{Update weights} \\ & \eta = \eta + w_{t}^{i} & \text{Update norm. factor} \\ & \text{end} & \\ & \text{for } i = 1:N & \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \\ & w_{t}^{i} = w_{t}^{i} / \eta & \text{Normalize weights} \end{aligned}$$

72

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein

Recap: Resampling

- Degeneracy problem with SIS
 - After a few iterations, most particles have negligible weights.
 - Large computational effort for updating particles with very small contribution to $p(\mathbf{x}_t | \mathbf{y}_{1:t})$.
- Idea: Resampling
 - Eliminate particles with low importance weights and increase the number of particles with high importance weight.

$$\left\{\mathbf{x}_{t}^{i}, w_{t}^{i}\right\}_{i=1}^{N} \rightarrow \left\{\mathbf{x}_{t}^{i*}, \frac{1}{N}\right\}_{i=1}^{N}$$

– The new set is generated by sampling with replacement from the discrete representation of $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ such that

$$\Pr\left\{\mathbf{x}_t^{i*} = \mathbf{x}_t^j\right\} = w_t^j$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

73

Slide adapted from Michael Rubinstein

isual Computing

Recap: Efficient Resampling Approach

• From Arulampalam paper:

Algorithm 2: Resampling Algorithm $[\{\mathbf{x}_{k}^{j*}, w_{k}^{j}, i^{j}\}_{i=1}^{N_{s}}] = \text{RESAMPLE} [\{\mathbf{x}_{k}^{i}, w_{k}^{i}\}_{i=1}^{N_{s}}]$ • Initialize the CDF: $c_1 = 0$ • FOR $i = 2: N_*$ - Construct CDF: $c_i = c_{i-1} + w_k^i$ END FOR Start at the bottom of the CDF: i = 1 Draw a starting point: u₁ ~ U[0, N_s⁻¹] • For $j = 1: N_s$ - Move along the CDF: $u_j = u_1 + N_s^{-1}(j-1)$ - WHILE $u_i > c_i$ * i = i + 1- END WHILE - Assign sample: $\mathbf{x}_k^{j*} = \mathbf{x}_k^i$ - Assign weight: $w_k^j = N_s^{-1}$ - Assign parent: $i^{j} = i$

END FOR

74

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Robert Collins

Basic idea: choose one initial small random number; deterministically sample the rest by "crawling" up the cdf. This is $\mathcal{O}(N)$!

Recap: Generic Particle Filter

$$\begin{aligned} \mathbf{function} \ \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] &= PF\left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Apply SIS \ filtering \ \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] &= SIS\left[\left\{ \mathbf{x}_{t-1}^{i}, w_{t-1}^{i} \right\}_{i=1}^{N}, \mathbf{y}_{t} \right] \\ Calculate \ N_{eff} \end{aligned}$$

$$\begin{array}{ll} \mathbf{if} & N_{eff} < N_{thr} \\ & \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] = RESAMPLE \left[\left\{ \mathbf{x}_{t}^{i}, w_{t}^{i} \right\}_{i=1}^{N} \right] \\ \mathbf{end} \end{array}$$

- We can also apply resampling selectively
 - Only resample when it is needed, i.e., $N_{\it eff}$ is too low.
 - \Rightarrow Avoids drift when the tracked state is stationary.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide adapted from Michael Rubinstein

Recap: Sampling-Importance-Resampling (SIR)

function $[\mathcal{X}_t] = SIR[\mathcal{X}_{t-1}, \mathbf{y}_t]$ $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ for i = 1:NSample $\mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$ $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$ end for i = 1:NDraw i with probability $\propto w_t^i$ Add \mathbf{x}_{t}^{i} to \mathcal{X}_{t}

end

76

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide adapted from Michael Rubinstein

Initialize

Generate new samples

Update weights

Resample

Recap: Sampling-Importance-Resampling (SIR)

function
$$[\mathcal{X}_t] = SIR [\mathcal{X}_{t-1}, \mathbf{y}_t]$$

 $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$
for $i = 1:N$
 $Sample \ \mathbf{x}_t^i \sim p(\mathbf{x}_t | \mathbf{x}_{t-1}^i)$
 $w_t^i = p(\mathbf{y}_t | \mathbf{x}_t^i)$
end
for $i = 1:N$

Draw i with probability $\propto w_t^i$ Add \mathbf{x}_t^i to \mathcal{X}_t

end

77

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

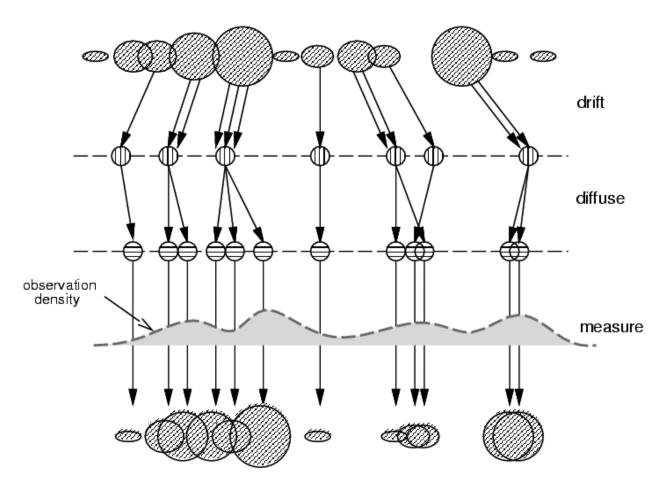
Slide adapted from Michael Rubinstein

Important property:

Particles are distributed according to pdf from previous time step.

Particles are distributed according to posterior from this time step.

Recap: Condensation Algorithm



Start with weighted samples from previous time step

Sample and shift according to dynamics model

Spread due to randomness; this is predicted density $P(X_t|Y_{t-1})$

Weight the samples according to observation density

Arrive at corrected density estimate $P(X_t|Y_t)$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for</u> <u>visual tracking</u>, IJCV 29(1):5-28, 1998

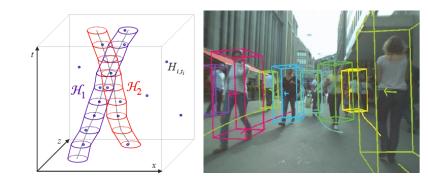
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Svetlana Lazebnik

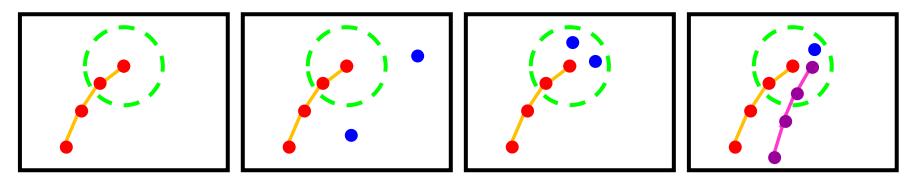
Course Outline

- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
 - Introduction
 - MHT

- Network Flow Optimization
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis



Recap: Motion Correspondence Ambiguities



- 1. Predictions may not be supported by measurements
 - Have the objects ceased to exist, or are they simply occluded?
- 2. There may be unexpected measurements
 - Newly visible objects, or just noise?
- 3. More than one measurement may match a prediction
 - Which measurement is the correct one (what about the others)?
- 4. A measurement may match to multiple predictions
 - Which object shall the measurement be assigned to?

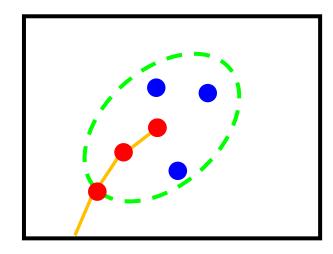
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Mahalanobis Distance

- Gating / Validation volume
 - Our KF state of track \mathbf{x}_l is given by

the prediction $\hat{\mathbf{x}}_{l}^{(k)}$ and covariance $\boldsymbol{\Sigma}_{p,l}^{(k)}$.

- We define the innovation that measurement \mathbf{y}_j brings to track \mathbf{x}_l at time k as $\mathbf{v}_{j,l}^{(k)} = (\mathbf{y}_j^{(k)} - \mathbf{x}_{p,l}^{(k)})$



- With this, we can write the observation likelihood shortly as

$$p(\mathbf{y}_{j}^{(k)}|\mathbf{x}_{l}^{(k)}) \sim \exp\left\{-\frac{1}{2}\mathbf{v}_{j,l}^{(k)^{T}}\boldsymbol{\Sigma}_{p,l}^{(k)^{-1}}\mathbf{v}_{j,l}^{(k)}\right\}$$

- We define the ellipsoidal gating or validation volume as

$$V^{(k)}(\gamma) = \left\{ \mathbf{y} | (\mathbf{y} - \mathbf{x}_{p,l}^{(k)})^T \mathbf{\Sigma}_{p,l}^{(k)^{-1}} (\mathbf{y} - \mathbf{x}_{p,l}^{(k)}) \le \gamma \right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

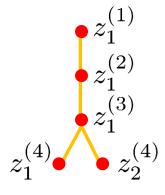
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

82

Recap: Track-Splitting Filter

Idea

- Instead of assigning the measurement that is currently closest, as in the NN algorithm, select the sequence of measurements that minimizes the *total* Mahalanobis distance over some interval!
- Form a track tree for the different association decisions
- Modified log-likelihood provides the merit of a particular node in the track tree.
- Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.
- Problem
 - The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.



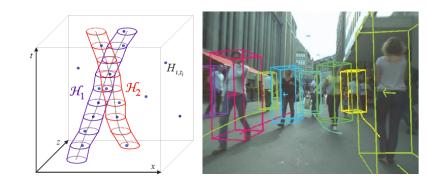
Recap: Pruning Strategies

- In order to keep this feasible, need to apply pruning
 - Deleting unlikely tracks
 - May be accomplished by comparing the modified log-likelihood $\lambda(k)$, which has a χ^2 distribution with kn_z degrees of freedom, with a threshold α (set according to χ^2 distribution tables).
 - Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
 - \Rightarrow Use sliding window or exponential decay term.
 - Merging track nodes
 - If the state estimates of two track nodes are similar, merge them.
 - E.g., if both tracks validate identical subsequent measurements.
 - Only keeping the most likely $N \, {\rm tracks}$
 - Rank tracks based on their modified log-likelihood.

Course Outline

- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
 - Introduction
 - MHT

- Network Flow Optimization
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

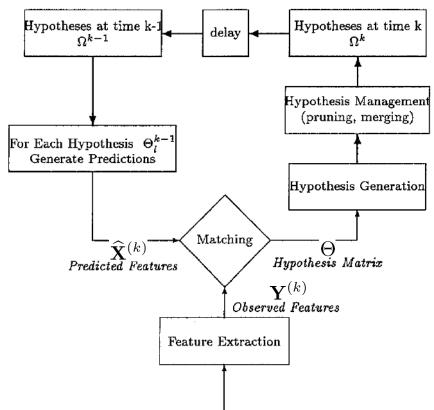


Recap: Multi-Hypothesis Tracking (MHT)

Ideas

85

- Instead of forming a track tree, keep a set of hypotheses that generate child hypotheses based on the associations.
- Enforce exclusion constraints between tracks and measurements in the assignment.
- Integrate track generation into the assignment process.
- After hypothesis generation, merge and prune the current hypothesis set.



Raw Sensor Data

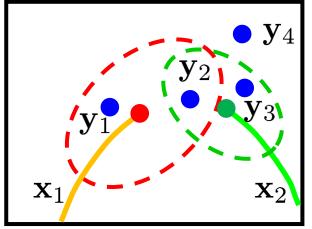
D. Reid, <u>An Algorithm for Tracking Multiple Targets</u>, IEEE Trans. Automatic Control, Vol. 24(6), pp. 843-854, 1979.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Hypothesis Generation

Create hypothesis matrix of the feasible associations

 $\Theta = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \mathbf{x}_{fa} \mathbf{x}_{nt} \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \mathbf{y}_4 \end{bmatrix}$



• Interpretation

86

- Columns represent tracked objects, rows encode measurements
- A non-zero element at matrix position (i,j) denotes that measurement \mathbf{y}_i is contained in the validation region of track \mathbf{x}_j .
- Extra column \mathbf{x}_{fa} for association as false alarm.
- Extra column \mathbf{x}_{nt} for association as *new track*.
- Enumerate all assignments that are consistent with this matrix.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Assignments

Z_{j}	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_{fa}	\mathbf{x}_{nt}
\mathbf{y}_1	0	0	1	0
\mathbf{y}_2	1	0	0	0
\mathbf{y}_3	0	1	0	0
\mathbf{y}_4	0	0	0	1

- Impose constraints
 - A measurement can originate from only one object.
 - \Rightarrow Any row has only a single non-zero value.
 - An object can have at most one associated measurement per time step.
 - \Rightarrow Any column has only a single non-zero value, except for \mathbf{x}_{fa} , \mathbf{x}_{nt}

Recap: Calculating Hypothesis Probabilities

- Probabilistic formulation
 - It is straightforward to enumerate all possible assignments.
 - However, we also need to calculate the probability of each child hypothesis.
 - This is done recursively:

Recap: Measurement Likelihood

Use KF prediction

- Assume that a measurement $\mathbf{y}_i^{(k)}$ associated to a track \mathbf{x}_j has a Gaussian pdf centered around the measurement prediction $\hat{\mathbf{x}}_j^{(k)}$ with innovation covariance $\widehat{\boldsymbol{\Sigma}}_j^{(k)}$.
- Further assume that the pdf of a measurement belonging to a new track or false alarm is uniform in the observation volume W (the sensor's field-of-view) with probability W^{-1} .
- Thus, the measurement likelihood can be expressed as

$$p\left(\mathbf{Y}^{(k)}|Z_{j}^{(k)},\Omega_{p(j)}^{(k-1)}\right) = \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)};\hat{\mathbf{x}}_{j},\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}} W^{-(1-\delta_{i})}$$
$$= W^{-(N_{fal}+N_{new})} \prod_{i=1}^{M_{k}} \mathcal{N}\left(\mathbf{y}_{i}^{(k)};\hat{\mathbf{x}}_{j},\widehat{\boldsymbol{\Sigma}}_{j}^{(k)}\right)^{\delta_{i}}$$
$$\underbrace{V_{isual Computing Institute | Prof. Dr. Bastian Leibe}_{Computer Vision 2} \mathbb{P}_{art 20 - Repetition} \mathbb{P}_{isual Computing Institute} | \mathbb{P}_{isual Computing Institute | Prof. Dr. Bastian Leibe}$$

Recap: Probability of an Assignment Set

$$p(Z_j^{(k)}|\Omega_{p(j)}^{(k-1)})$$

- Composed of three terms
 - 1. Probability of the number of tracks $N_{det},\,N_{fal},\,N_{new}$
 - Assumption 1: N_{det} follows a Binomial distribution

$$p(N_{det}|\Omega_{p(j)}^{(k-1)}) = \binom{N}{N_{det}} p_{det}^{N_{det}} (1 - p_{det})^{(N-N_{det})}$$

where N is the number of tracks in the parent hypothesis

- Assumption 2: N_{fal} and N_{new} both follow a Poisson distribution with expected number of events $\lambda_{fal}W$ and $\lambda_{new}W$

$$p(N_{det}, N_{fal}, N_{new} | \Omega_{p(j)}^{(k-1)}) = \binom{N}{N_{det}} p_{det}^{N_{det}} (1 - p_{det})^{(N-N_{det})}$$

 $\cdot \mu(N_{fal}; \lambda_{fal}W) \cdot \mu(N_{new}; \lambda_{new}W)$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Probability of an Assignment Set

- 2. Probability of a specific assignment of measurements
 - Such that $M_k = N_{det} + N_{fal} + N_{new}$ holds.
 - This is determined as $1 \ \mathrm{over}$ the number of combinations

$$\begin{pmatrix} M_k \\ N_{det} \end{pmatrix} \begin{pmatrix} M_k - N_{det} \\ N_{fal} \end{pmatrix} \begin{pmatrix} M_k - N_{det} - N_{fal} \\ N_{new} \end{pmatrix}$$

- 3. Probability of a specific assignment of tracks
 - Given that a track can be either detected or not detected.
 - This is determined as $1 \ {\rm over}$ the number of assignments

$$\frac{N!}{(N-N_{det})!} \left(\begin{array}{c} N-N_{det} \\ N_{det} \end{array} \right)$$

 \Rightarrow When combining the different parts, many terms cancel out!

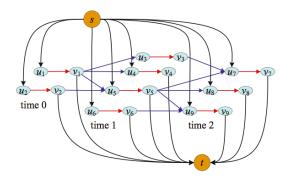
Course Outline

- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
 - Introduction
 - MHT

92

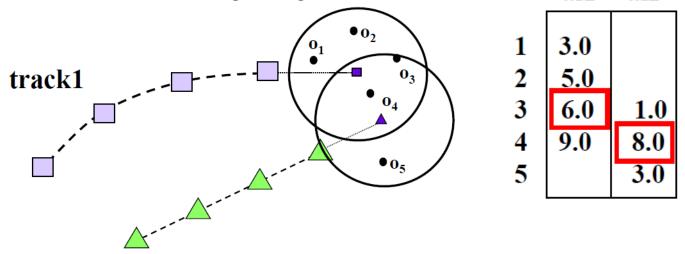
- Network Flow Optimization
- Visual Odometry
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



Recap: Linear Assignment Formulation

- Form a matrix of pairwise similarity scores
- Example: Similarity based on motion prediction
 - Predict motion for each trajectory and assign scores for each measurement based on inverse (Mahalanobis) distance, such that closer measurements get higher scores.
 ai1 ai2



track2

- Choose at most one match in each row and column to maximize sum of

scores

93

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Linear Assignment Problem

7

- Formal definition
 - Maximize

$$\sum_{i=1}^{N}\sum_{j=1}^{M}w_{ij}z_{ij}$$

subject to

94

$$\sum_{j=1}^{j} z_{ij} = 1; \ i = 1, 2, \dots, N$$

$$\sum_{i=1}^{j} z_{ij} = 1; \ j = 1, 2, \dots, M$$

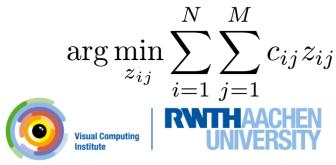
$$z_{ij} \in \{0, 1\}$$

Those constraints ensure that Z is a permutation matrix

- The permutation matrix constraint ensures that we can only match up one object from each row and column.
- Note: Alternatively, we can minimize cost rather than maximizing weights.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

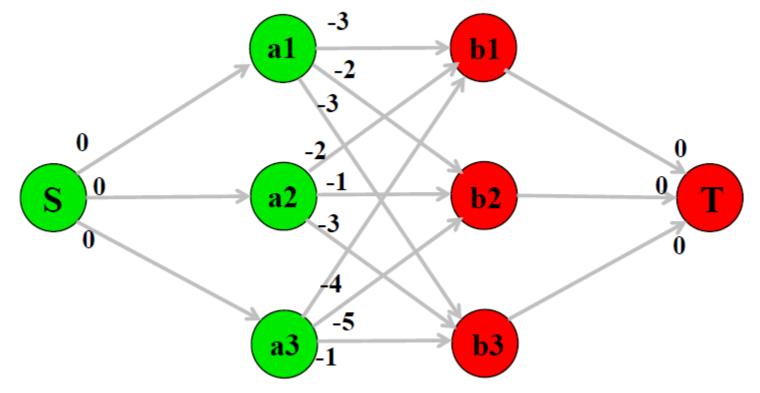
Slide adapted from Robert Collins



Recap: Optimal Solution

- Greedy Algorithm
 - Easy to program, quick to run, and yields "pretty good" solutions in practice.
 - But it often does not yield the optimal solution
- Hungarian Algorithm
 - There is an algorithm called Kuhn-Munkres or "Hungarian" algorithm specifically developed to efficiently solve the linear assignment problem.
 - Reduces assignment problem to bipartite graph matching.
 - When starting from an $N \times N$ matrix, it runs in $\mathcal{O}(N^3)$.
 - \Rightarrow If you need LAP, you should use it.

Recap: Min-Cost Flow

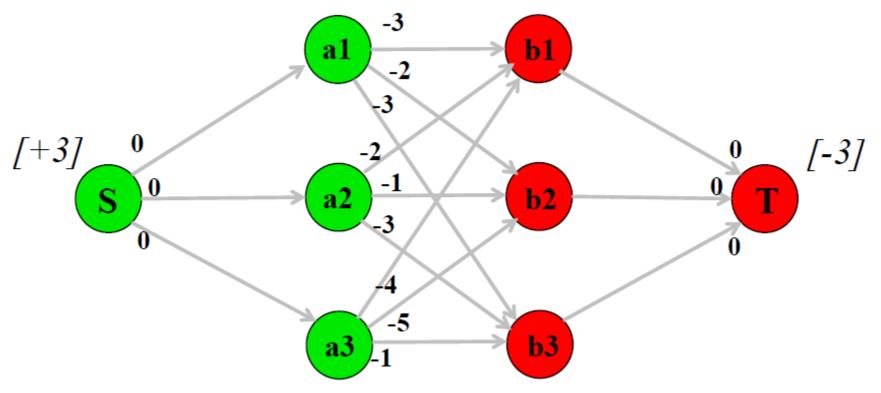


- Conversion into flow graph
 - Transform weights into costs $c_{ij} = \alpha w_{ij}$
 - Add source/sink nodes with 0 cost.
 - Directed edges with a capacity of 1.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Robert Collins

Recap: Min-Cost Flow

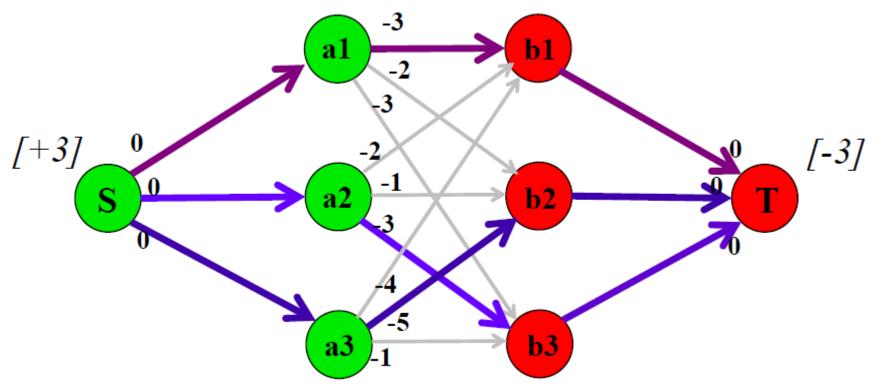


- Conversion into flow graph
 - Pump N units of flow from source to sink.
 - Internal nodes pass on flow (Σ flow in = Σ flow out).

 \Rightarrow Find the optimal paths along which to ship the flow.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Min-Cost Flow

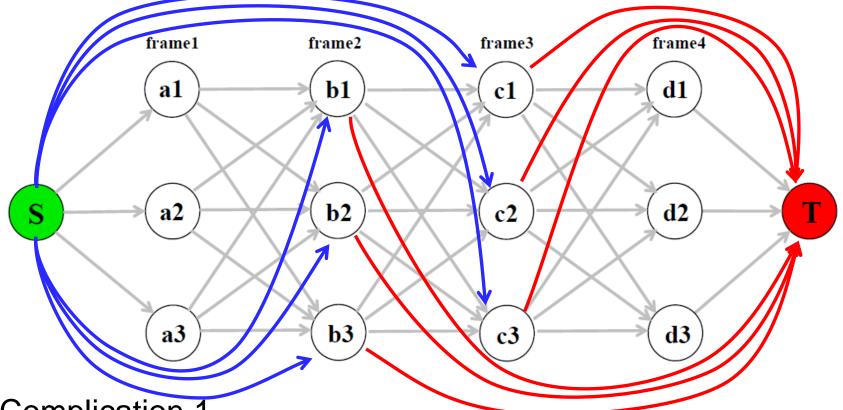


- Conversion into flow graph
 - Pump N units of flow from source to sink.
 - Internal nodes pass on flow (Σ flow in = Σ flow out).

 \Rightarrow Find the optimal paths along which to ship the flow.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

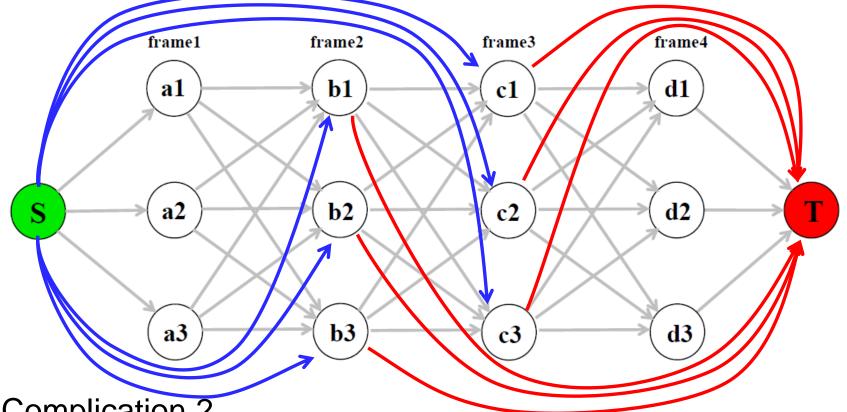
Recap: Using Network Flow for Tracking



- Complication 1
 - Tracks can start later than frame1 (and end earlier than frame4)
 - \Rightarrow Connect the source and sink nodes to all intermediate nodes.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Robert Collins

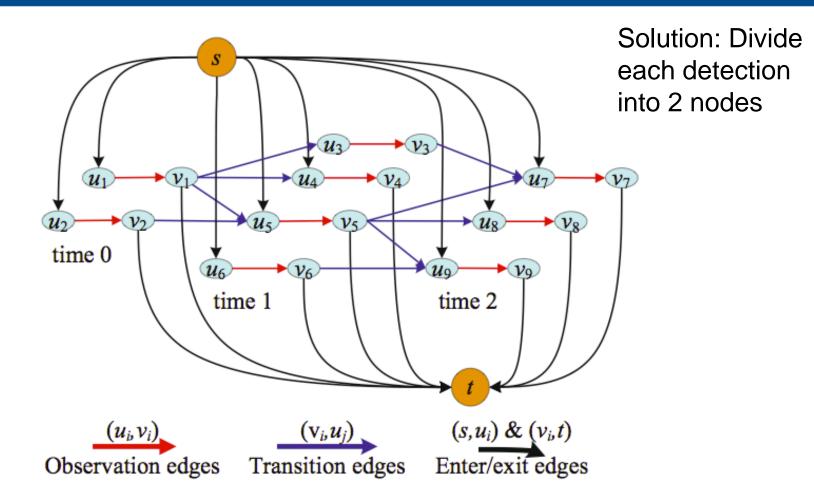


- Complication 2
 - Trivial solution: zero cost flow!

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Robert Collins

Recap: Network Flow Approach



Zhang, Li, Nevatia, <u>Global Data Association for Multi-Object Tracking</u> using Network Flows, CVPR'08.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

101

image source: [Zhang, Li, Nevatia, CVPR'08]

Recap: Min-Cost Formulation

Objective Function

$$\mathcal{T}^* = \underset{\mathcal{T}}{\operatorname{argmin}} \sum_{i} C_{in,i} f_{in,i} + \sum_{i} C_{i,out} f_{i,out}$$
$$+ \sum_{i,j} C_{i,j} f_{i,j} + \sum_{i} C_{i} f_{i}$$

• subject to

102

- Flow conservation at all nodes

$$f_{in,i} + \sum_{j} f_{j,i} = f_i = f_{out,i} + \sum_{j} f_{i,j} \ \forall i$$

- Edge capacities

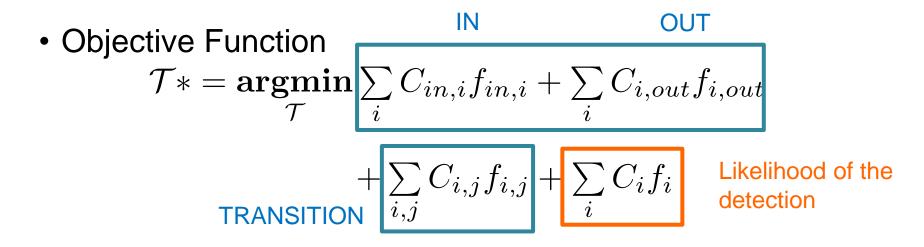
$$f_i \leq 1$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Laura Leal

Min-Cost Formulation

10



Equivalent to Maximum A-Posteriori formulation

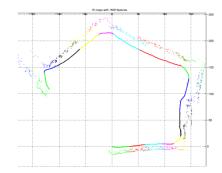
Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
 - Introduction
 - MHT

104

- Network Flow Optimization
- Visual Odometry
 - Sparse interest-point based methods
 - Dense direct methods
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

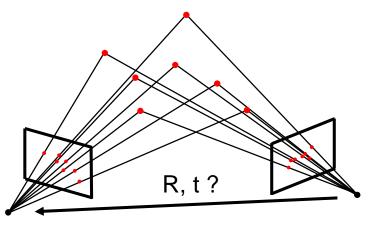
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



Recap: What is Visual Odometry ?

Visual odometry (VO)...

- ... is a variant of tracking
 - Track motion (position and orientation) of the camera from its images
 - Only considers a limited set of recent images for real-time constraints
- ... also involves a data association problem
 - Motion is estimated from corresponding interest points or pixels in images, or by correspondences towards a local 3D reconstruction



Slide credit: Jörg Stückler

Recap: Direct vs. Indirect Methods

Direct methods

 formulate alignment objective in terms of photometric error (e.g., intensities)

$$p(\mathbf{I}_2 \mid \mathbf{I}_1, \boldsymbol{\xi}) \longrightarrow E(\boldsymbol{\xi}) = \int_{\mathbf{u} \in \Omega} |\mathbf{I}_1(\mathbf{u}) - \mathbf{I}_2(\omega(\mathbf{u}, \boldsymbol{\xi}))| d\mathbf{u}$$

- Indirect methods
 - formulate alignment objective in terms of reprojection error of geometric primitives (e.g., points, lines)

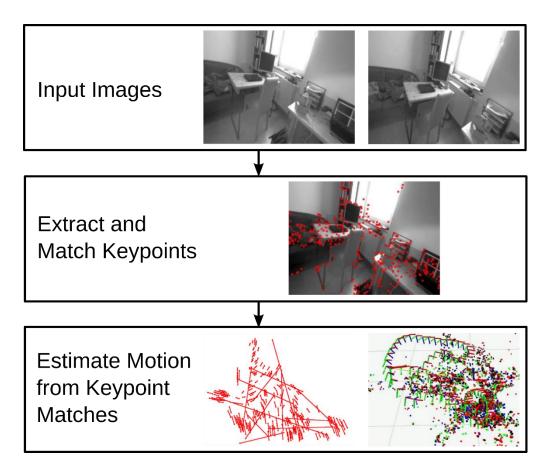
$$p(\mathbf{Y}_2 \mid \mathbf{Y}_1, \boldsymbol{\xi}) \longrightarrow E(\boldsymbol{\xi}) = \sum_i |\mathbf{y}_{1,i} - \omega(\mathbf{y}_{2,i}, \boldsymbol{\xi})|$$

106 Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

Recap: Point-based Visual Odometry Pipeline

- Keypoint detection and local description (CV I)
- Robust keypoint matching (CV I)
- Motion estimation
 - 2D-to-2D: motion from
 2D point correspondences
 - 2D-to-3D: motion from
 2D points to local 3D map
 - 3D-to-3D: motion from
 3D point correspondences
 (e.g., stereo, RGB-D)

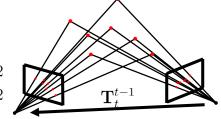


Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Images from Jakob Engel

Recap: Motion Estimation from Point Correspondences

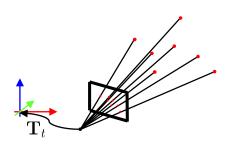
- 2D-to-2D
 - Reproj. error: $E\left(\mathbf{T}_{t}^{t-1}, X\right) = \sum \left\| \left\| \bar{\mathbf{y}}_{t,i} - \pi\left(\bar{\mathbf{x}}_{i} \right) \right\|_{2}^{2} + \left\| \left\| \bar{\mathbf{y}}_{t-1,i} - \pi\left(\mathbf{T}_{t}^{t-1} \bar{\mathbf{x}}_{i} \right) \right\|_{2}^{2} \right\|_{2}^{2}$



- Introduced linear algorithm: 8-point

• 2D-to-3D – Reprojection error:

$$E(\mathbf{T}_t) = \sum_{i=1}^N \|\mathbf{y}_{t,i} - \pi(\mathbf{T}_t \bar{\mathbf{x}}_i)\|_2^2$$

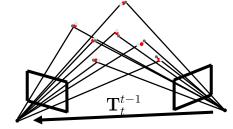


- Introduced linear algorithm: DLT PnP
- 3D-to-3D

108

- Reprojection error: $E\left(\mathbf{T}_{t}^{t-1}\right) = \sum_{i=1}^{N} \left\|\overline{\mathbf{x}}_{t-1,i} \mathbf{T}_{t}^{t-1}\overline{\mathbf{x}}_{t,i}\right\|_{2}^{2}$
- Introduced linear algorithm: Arun's method

Visual Computing Institute | Prof. Dr . Bastian Leibe **Computer Vision 2** Part 20 - Repetition Slide credit: Jörg Stückler



Visual Computing

Recap: Eight-Point Algorithm for Essential Matrix Est.

- First proposed by Longuet and Higgins, 1981
- Algorithm:
 - 1. Rewrite epipolar constraints as a linear system of equations

 $\tilde{\mathbf{y}}_i \mathbf{E} \tilde{\mathbf{y}}'_i = \mathbf{a}_i \mathbf{E}_s = 0 \quad \longrightarrow \quad \mathbf{A} \mathbf{E}_s = 0 \quad \mathbf{A} = (\mathbf{a}_1^\top, \dots, \mathbf{a}_N^\top)^\top$

using Kronecker product $\mathbf{a}_i = \tilde{\mathbf{y}}_i \otimes \tilde{\mathbf{y}}'_i$ and $\mathbf{E}_s = (e_{11}, e_{12}, e_{13}, \dots, e_{33})^{\mathsf{T}}$

- 2. Apply singular value decomposition (SVD) on $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \mathbf{S}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}^{\mathsf{T}}$ and unstack the 9th column of $\mathbf{V}_{\mathbf{A}}$ into $\tilde{\mathbf{E}}$.
- 3. Project the approximate $\tilde{\mathbf{E}}$ into the (normalized) essential space: Determine the SVD of $\tilde{\mathbf{E}} = \mathbf{U} \operatorname{diag}(\sigma_1, \sigma_2, \sigma_3) \mathbf{V}^{\mathsf{T}}$ with $\mathbf{U}, \mathbf{V} \in \mathbf{SO}(3)$ and replace the singular values $\sigma_1 \ge \sigma_2 \ge \sigma_3$ with 1,1,0 to find

$\mathbf{E} = \mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{\mathsf{T}}$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Eight-Point Algorithm cont.

- Algorithm (cont.):
 - Determine one of the following 2 possible solutions that intersects the points in front of both cameras:

$$\mathbf{R} = \mathbf{U}\mathbf{R}_{Z}^{\top}\left(\pm\frac{\pi}{2}\right)\mathbf{V}^{\top} \qquad \widehat{\mathbf{t}} = \mathbf{U}\mathbf{R}_{Z}\left(\pm\frac{\pi}{2}\right)\operatorname{diag}(1,1,0)\mathbf{U}^{\top}$$

- A derivation can be found in the MASKS textbook, Ch. 5
- Remarks
 - Algebraic solution does not minimize geometric error
 - Refine using non-linear least-squares of reprojection error
 - Alternative: formulate epipolar constraints as "distance from epipolar line" and minimize this non-linear least-squares problem

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

Recap: Eight-Point Algorithm cont.

- Normalized essential matrix: $\|\mathbf{E}\| = \|\widehat{\mathbf{t}}\| = 1$
- Linear algorithms exist that require only 6 points for general motion
- Non-linear 5-point algorithm with up to 10 (possibly complex) solutions
- Points need to be in "general position": certain degenerate configurations exists (e.g., all points on a plane)
- No translation, ideally: $\left\| \widehat{\mathbf{t}} \right\| = 0 \Rightarrow \| \mathbf{E} \| = 0$
- But: for small translations, signal-to-noise ratio of image parallax may be problematic: "spurious" pose estimate

Recap: Relative Scale Recovery

- Problem:
 - Each subsequent frame-pair gives another solution for the reconstruction scale
- Solution:
 - Triangulate overlapping points Y_{t-2}, Y_{t-1}, Y_t for current and last frame pair

 $\Rightarrow X_{t-2,t-1}, X_{t-1,t}$

 Rescale translation of current relative pose estimate to match the reconstruction scale with the distance ratio between corresponding point pairs

$$r_{i,j} = \frac{\|\mathbf{x}_{t-2,t-1,i} - \mathbf{x}_{t-2,t-1,j}\|_2}{\|\mathbf{x}_{t-1,t,i} - \mathbf{x}_{t-1,t,j}\|_2}$$

- Use mean or robust median over available pair ratios

Input: image sequence $I_{0:t}$

Output: aggregated camera poses $T_{0:t}$

Algorithm:

For each current image I_k :

- 1. Extract and match keypoints between I_{k-1} and I_k
- 2. Compute relative pose \mathbf{T}_k^{k-1} from essential matrix between I_{k-1} , I_k
- 3. Compute relative scale and rescale translation of \mathbf{T}_{k}^{k-1} accordingly
- 4. Aggregate camera pose by $T_k = T_{k-1}T_k^{k-1}$

Recap: Triangulation

- Goal: Reconstruct 3D point $\tilde{\mathbf{x}} = (x, y, z, w)^{\top} \in \mathbb{P}^3$ from 2D image observations $\{\mathbf{y}_1, \dots, \mathbf{y}_N\}$ for known camera poses $\{\mathbf{T}_1, \dots, \mathbf{T}_N\}$
- Linear solution: Find 3D point such that reprojections equal its projections $\mathbf{v}'_{\cdot} = \pi(\mathbf{T}_{\cdot}\widetilde{\mathbf{x}}) = \begin{pmatrix} \frac{r_{11}x + r_{12}y + r_{13}z + t_xw}{r_{31}x + r_{32}y + r_{33}z + t_zw} \end{pmatrix}$

$$\mathbf{y}_{i}' = \pi(\mathbf{T}_{i}\widetilde{\mathbf{x}}) = \begin{pmatrix} \frac{110 + 129 + 130 + 12w}{r_{31}x + r_{32}y + r_{33}z + t_{z}w} \\ \frac{r_{21}x + r_{22}y + r_{23}z + t_{y}w}{r_{31}x + r_{32}y + r_{33}z + t_{z}w} \end{pmatrix}$$

- Each image provides one constraint $\mathbf{y}_i \mathbf{y}'_i = 0$
- Leads to system of linear equations $\mathbf{A}\widetilde{\mathbf{x}} = 0$, two approaches:
 - Set w = 1 and solve nonhomogeneous system
 - Find nullspace of ${\bf A}$ using SVD (this is what we did in CV I)
- Non-linear solution: Minimize least squares reprojection error (more accurate)

$$\min_{\mathbf{x}} \left\{ \sum_{i=1}^{N} \|\mathbf{y}_{i} - \mathbf{y}_{i}'\|_{2}^{2} \right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

114

Recap: Direct Linear Transform for PnP

- Goal: determine projection matrix $\mathbf{P} = (\mathbf{R} \ \mathbf{t}) \in \mathbb{R}^{3 \times 4} = \begin{pmatrix} \mathbf{F}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_2 \end{pmatrix}$
- Each 2D-to-3D point correspondence 3D: $\widetilde{\mathbf{x}}_i = (x_i, y_i, z_i, w_i)^\top \in \mathbb{P}^3$ 2D: $\widetilde{\mathbf{y}}_i = (x'_i, y'_i, w'_i)^\top \in \mathbb{P}^2$ gives two constraints

$$\begin{pmatrix} \mathbf{0} & -w_i' \widetilde{\mathbf{x}}_i^\top & y_i' \widetilde{\mathbf{x}}_i^\top \\ w_i' \widetilde{\mathbf{x}}_i^\top & \mathbf{0} & -x_i' \widetilde{\mathbf{x}}_i^\top \end{pmatrix} \begin{pmatrix} \mathbf{P}_1^\top \\ \mathbf{P}_2^\top \\ \mathbf{P}_3^\top \end{pmatrix} = \mathbf{0}$$

through $\widetilde{\mathbf{y}}_i \times (\mathbf{P}\widetilde{\mathbf{x}}_i) = 0$

- Form linear system of equation Ap = 0 with $p := \begin{pmatrix} P_1^\top \\ P_2^\top \\ P_3^\top \end{pmatrix} \in \mathbb{R}^9$ from $N \ge 6$ correspondences
- Solve for p: determine unit singular vector of A corresponding to its smallest eigenvalue

115 Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

Input: image sequence $I_{0:t}$

Output: aggregated camera poses $T_{0:t}$

Algorithm:

Initialize:

- 1. Extract and match keypoints between I_0 and I_1
- 2. Determine camera pose (Essential matrix) and triangulate 3D keypoints X_1

For each current image I_k :

- 1. Extract and match keypoints between I_{k-1} and I_k
- 2. Compute camera pose T_k using PnP from 2D-to-3D matches
- 3. Triangulate all new keypoint matches between I_{k-1} and I_k and add them to the local map X_k

Recap: 3D Rigid-Body Motion from 3D-to-3D Matches

- [Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 1987]
- Corresponding 3D points, $N \ge 3$

$$X_{t-1} = \{ \mathbf{x}_{t-1,1}, \dots, \mathbf{x}_{t-1,N} \} \qquad X_t = \{ \mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,N} \}$$

• Determine means of 3D point sets

$$\boldsymbol{\mu}_{t-1} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t-1,i} \qquad \boldsymbol{\mu}_t = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t,i}$$

• Determine rotation from

$$\mathbf{A} = \sum_{i=1}^{N} \left(\mathbf{x}_{t-1} - \boldsymbol{\mu}_{t-1} \right) \left(\mathbf{x}_{t} - \boldsymbol{\mu}_{t} \right)^{\top} \qquad \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^{\top} \qquad \mathbf{R}_{t-1}^{t} = \mathbf{V} \mathbf{U}^{\top}$$

• Determine translation as $\mathbf{t}_{t-1}^t = \boldsymbol{\mu}_t - \mathbf{R}_{t-1}^t \boldsymbol{\mu}_{t-1}$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

117

Input: stereo image sequence $I_{0:t}^{l}, I_{0:t}^{r}$

Output: aggregated camera poses $T_{0:t}$

Algorithm:

For each current stereo image I_k^l, I_k^r :

- 1. Extract and match keypoints between I_k^l and I_{k-1}^l
- 2. Triangulate 3D points X_k between I_k^l and I_k^r
- 3. Compute camera pose \mathbf{T}_{k}^{k-1} from 3D-to-3D point matches X_k to X_{k-1}
- 4. Aggregate camera poses by $T_k = T_{k-1}T_k^{k-1}$

Recap: Keypoint Detectors

- Corners
 - Image locations with locally prominent intensity variation
 - Intersections of edges
- Examples: Harris, FAST
- Scale-selection: Harris-Laplace

Harris Corners

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

119

- Blobs
 - Image regions that stick out from their surrounding in intensity/texture
 - Circular high-contrast regions
- E.g.: LoG, DoG (SIFT), SURF
- Scale-space extrema in LoG/DoG

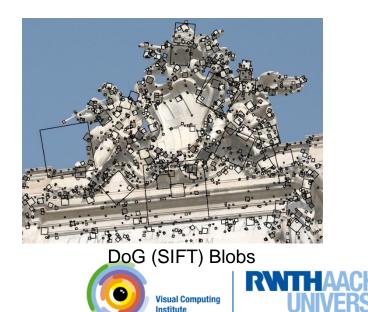


Image source: Svetlana Lazebnik

Recap: RANSAC

RANdom SAmple Consensus algorithm for robust estimation

• Algorithm:

120

Input: data D , s required data points for fitting, success probability p , outlier ratio $|\epsilon|$

Output: inlier set

- 1. Compute required number of iterations $N = \frac{\log (1-p)}{\log (1-(1-\epsilon)^s)}$
- 2. For N iterations do:
 - 1. Randomly select a subset of s data points
 - 2. Fit model on the subset
 - 3. Count inliers and keep model/subset with largest number of inliers
- 3. Refit model using found inlier set

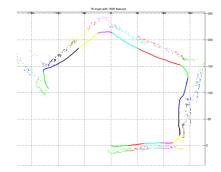
Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
 - Introduction

121

- MHT, (JPDAF)
- Network Flow Optimization
- Visual Odometry
 - Sparse interest-point based methods
 - Dense direct methods
- Visual SLAM & 3D Reconstruction
- Deep Learning for Video Analysis

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

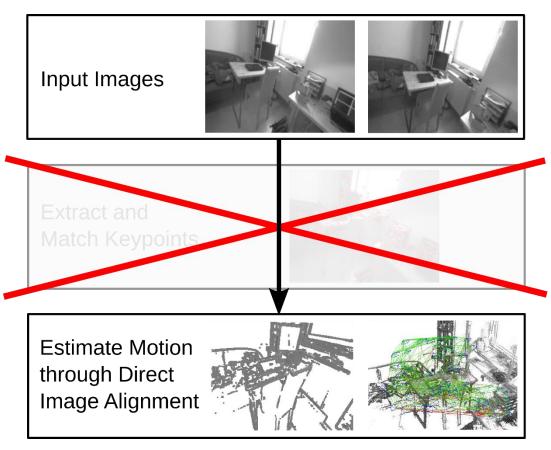


Recap: Direct Visual Odometry Pipeline

- Avoid manually designed keypoint detection and matching
- Instead: direct image alignment

 $E(\boldsymbol{\xi}) = \int_{\mathbf{u}\in\Omega} |\mathbf{I}_1(\mathbf{u}) - \mathbf{I}_2(\omega(\mathbf{u}, \boldsymbol{\xi}))| \, d\mathbf{u}$

- Warping requires depth
 - RGB-D
 - Fixed-baseline stereo
 - Temporal stereo, tracking and (local) mapping

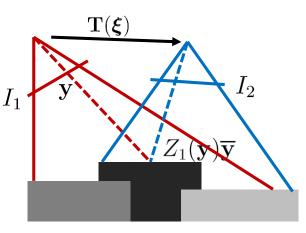


Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Recap: Direct Image Alignment Principle

- Idea
 - If we know the pixel depth, we can "simulate" an image from a different viewpoint
 - Ideally, the warped image is the same as the image taken from that pose:

$$I_1(\mathbf{y}) = I_2(\pi(\mathbf{T}(\boldsymbol{\xi})Z_1(\mathbf{y})\overline{\mathbf{y}}))$$

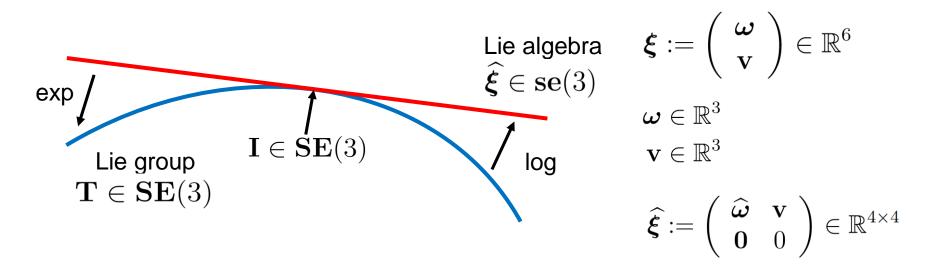


- Estimate the warp by minimizing the residuals (similar to LK alignment)

$$E(\boldsymbol{\xi}) = \sum_{\mathbf{y}\in\Omega} \frac{r(\mathbf{y},\boldsymbol{\xi})^2}{\sigma_I^2} \qquad r(\mathbf{y},\boldsymbol{\xi}) = I_1(\mathbf{y}) - I_2(\pi(\mathbf{T}(\boldsymbol{\xi})Z_1(\mathbf{y})\overline{\mathbf{y}}))$$

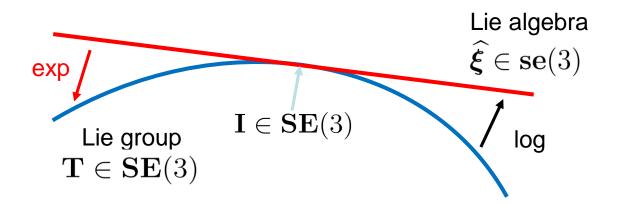
- \Rightarrow Non-linear least-squares problem (use second-order tools)
- Important issue in practice: How to parametrize the poses?

Recap: Representing Motion using Lie Algebra se(3)



- $\mathbf{SE}(3)$ is a smooth manifold, i.e. a Lie group
- Its Lie algebra se(3) provides an elegant way to parametrize poses for optimization
- Its elements $\widehat{\boldsymbol{\xi}} \in \mathbf{se}(3)$ form the tangent space of $\mathbf{SE}(3)$ at identity
- The se(3) elements can be interpreted as rotational and translational velocities (twists)

Recap: Exponential Map of SE(3)



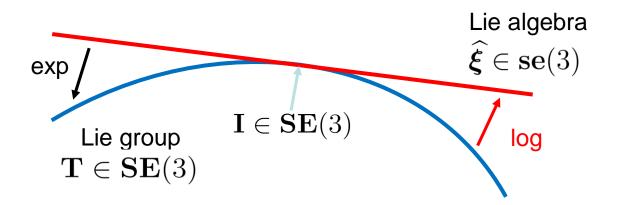
• The exponential map finds the transformation matrix for a twist:

$$\exp\left(\widehat{\boldsymbol{\xi}}\right) = \left(\begin{array}{cc} \exp\left(\widehat{\boldsymbol{\omega}}\right) & \mathbf{Av} \\ \mathbf{0} & 1 \end{array}\right)$$

$$\exp\left(\widehat{\boldsymbol{\omega}}\right) = \mathbf{I} + \frac{\sin\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|}\widehat{\boldsymbol{\omega}} + \frac{1 - \cos\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|^{2}}\widehat{\boldsymbol{\omega}}^{2} \qquad \mathbf{A} = \mathbf{I} + \frac{1 - \cos\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|^{2}}\widehat{\boldsymbol{\omega}} + \frac{\left|\boldsymbol{\omega}\right| - \sin\left|\boldsymbol{\omega}\right|}{\left|\boldsymbol{\omega}\right|^{3}}\widehat{\boldsymbol{\omega}}^{2}$$

125 Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

Recap: Logarithm Map of SE(3)



• The logarithm maps twists to transformation matrices:

$$\log \left(\mathbf{T} \right) = \begin{pmatrix} \log \left(\mathbf{R} \right) & \mathbf{A}^{-1} \mathbf{t} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$
$$\log \left(\mathbf{R} \right) = \frac{|\omega|}{2\sin |\omega|} \left(\mathbf{R} - \mathbf{R}^T \right) \qquad |\omega| = \cos^{-1} \left(\frac{\operatorname{tr} \left(\mathbf{R} \right) - 1}{2} \right)$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

126

Recap: Working with Twist Coordinates

- Let's define the following notation:
 - $-\text{Inversion of hat operator:} \begin{pmatrix} 0 & -\omega_3 & \omega_2 & v_1 \\ \omega_3 & 0 & -\omega_1 & v_2 \\ -\omega_2 & \omega_1 & 0 & v_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}^{\vee} = (\omega_1 \ \omega_2 \ \omega_3 \ v_1 \ v_2 \ v_3)^{\top}$
 - Conversion: $\boldsymbol{\xi}(\mathbf{T}) = (\log(\mathbf{T}))^{\vee}, \quad \mathbf{T}(\boldsymbol{\xi}) = \exp(\widehat{\boldsymbol{\xi}})$
 - Pose inversion: $\boldsymbol{\xi}^{-1} = \log(\mathbf{T}(\boldsymbol{\xi})^{-1}) = -\boldsymbol{\xi}$
 - Pose concatenation: $\boldsymbol{\xi}_1 \oplus \boldsymbol{\xi}_2 = (\log \left(\mathbf{T} \left(\boldsymbol{\xi}_2 \right) \mathbf{T} \left(\boldsymbol{\xi}_1 \right) \right))^{\vee}$
 - Pose difference: $\boldsymbol{\xi}_1 \ominus \boldsymbol{\xi}_2 = \left(\log \left(\mathbf{T} \left(\boldsymbol{\xi}_2 \right)^{-1} \mathbf{T} \left(\boldsymbol{\xi}_1 \right) \right) \right)^{\vee}$

Recap: Optimization with Twist Coordinates

- Twists provide a minimal local representation without singularities
- Since SE(3) is a smooth manifold, we can decompose transformations in each optimization step into the transformation itself and an infinitesimal increment

$$\mathbf{T}(\boldsymbol{\xi}) = \mathbf{T}(\boldsymbol{\xi}) \exp\left(\widehat{\delta \boldsymbol{\xi}}\right) = \mathbf{T}\left(\delta \boldsymbol{\xi} \oplus \boldsymbol{\xi}\right)$$

• We can then optimize an energy function $E(\xi_i, \delta\xi)$ in order to estimate the pose increment $\delta\xi$, e.g., using Gradient descent

$$\delta \boldsymbol{\xi}^* = \mathbf{0} - \eta \nabla_{\delta \boldsymbol{\xi}} E(\boldsymbol{\xi}_i, \delta \boldsymbol{\xi})$$
$$\Gamma\left(\boldsymbol{\xi}_{i+1}\right) = \mathbf{T}\left(\boldsymbol{\xi}_i\right) \exp\left(\widehat{\delta \boldsymbol{\xi}^*}\right)$$

128

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

Γ

Input: RGB-D image sequence $I_{0:t}, Z_{0:t}$ **Output:** aggregated camera poses $T_{0:t}$

Algorithm:

For each current RGB-D image I_k, Z_k :

- 1. Estimate relative camera motion \mathbf{T}_k^{k-1} towards the previous RGB-D frame using direct image alignment
- 2. Concatenate estimated camera motion with previous frame camera pose to obtain current camera pose estimate $T_k = T_{k-1}T_k^{k-1}$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Course Outline

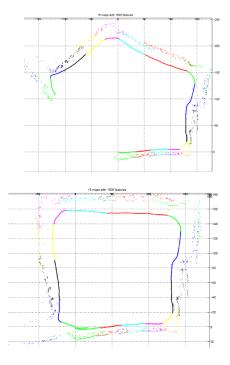
- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
 - Sparse interest-point based methods
 - Dense direct methods
- Visual SLAM & 3D Reconstruction
 - Online SLAM methods
 - Full SLAM methods

Computer Vision 2

Part 20 - Repetition

130

Deep Learning for Video Analysis



Visual Computing

Institute

Recap: Definition of Visual SLAM

- Visual SLAM
 - The process of simultaneously estimating the egomotion of an object and the environment map using only inputs from visual sensors on the object
- Inputs: images at discrete time steps t,
 - Monocular case: Set of images
 - Stereo case: Left/right images

$$I_{0:t}^{l} = \{I_{0}^{l}, \dots, I_{t}^{l}\}, I_{0:t}^{r} = \{I_{0}^{r}, \dots, I_{t}^{r}\}$$

- RGB-D case: Color/depth images $I_{0:t} = \{I_0, \ldots, I_t\}$, $Z_{0:t} = \{Z_0, \ldots, Z_t\}$

 $I_{0,t} = \{I_{0,1}, \dots, I_{t}\}$

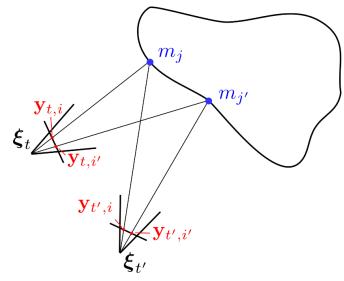
– Robotics: **control inputs** $U_{1:t}$

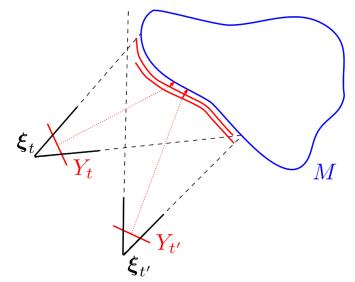
• Output:

- Camera pose estimates $T_t \in SE(3)$ in world reference frame. For convenience, we also write $\xi_t = \xi(T_t)$
- Environment map M

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler

Recap: Map Observations in Visual SLAM



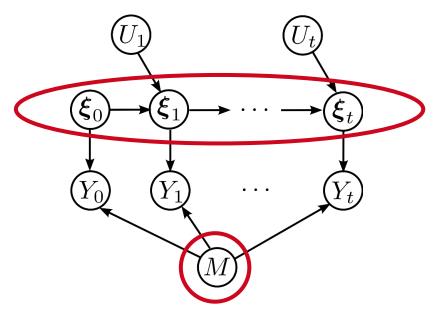


With Y_t we denote observations of the environment map in image I_t , e.g.,

- Indirect point-based method: $Y_t = \{\mathbf{y}_{t,1}, \dots, \mathbf{y}_{t,N}\}$ (2D or 3D image points)
- Direct RGB-D method:

- $Y_t = \{\mathbf{y}_{t,1}, \dots, \mathbf{y}_{t,N}\}$ $Y_t = \{I_t, Z_t\}$
- (all image pixels)
- Involves data association to map elements $M = \{m_1, \dots, m_S\}$
 - We denote correspondences by $c_{t,i} = j$, $1 \le i \le N$, $1 \le j \le S$

Recap: Probabilistic Formulation of Visual SLAM



- SLAM posterior probability: $p(\boldsymbol{\xi}_{0:t}, M \mid Y_{0:t}, U_{1:t})$
- Observation likelihood: $p(Y_t | \boldsymbol{\xi}_t, M)$

• State-transition probability: $p(\boldsymbol{\xi}_t \mid \boldsymbol{\xi}_t)$

133

Visual Computing Institute | Prof. Dr . Bastian Leibe **Computer Vision 2** Part 20 - Repetition Slide credit: Jörg Stückler

$$\boldsymbol{\varsigma}_t \mid \boldsymbol{\varsigma}_{t-1}, \boldsymbol{O}_t$$

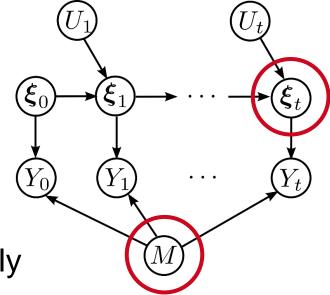
II

Recap: Online SLAM Methods

• Marginalize out previous poses

$$p\left(\boldsymbol{\xi}_{t}, M \mid Y_{0:t}, U_{1:t}\right) = \int \dots \int p\left(\boldsymbol{\xi}_{0:t}, M \mid Y_{0:t}, U_{1:t}\right) d\boldsymbol{\xi}_{t-1} \dots d\boldsymbol{\xi}_{0}$$

- Poses can be marginalized individually in a recursive way
- Variants:
 - Tracking-and-Mapping: Alternating pose and map estimation
 - Probabilistic filters, e.g., EKF-SLAM



Recap: EKF SLAM

- Detected keypoint y_i in an image observes "landmark" position m_j in the map $M = \{m_1, \dots, m_S\}$.
- Idea: Include landmarks into state variable

$$\mathbf{x}_{t} = \begin{pmatrix} \mathbf{\xi}_{t} \\ \mathbf{m}_{t,1} \\ \vdots \\ \mathbf{m}_{t,S} \end{pmatrix} \qquad \mathbf{\Sigma}_{t} = \begin{pmatrix} \mathbf{\Sigma}_{t,\boldsymbol{\xi}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\boldsymbol{\xi}\mathbf{m}_{1}} & \cdots & \mathbf{\Sigma}_{t,\boldsymbol{\xi}\mathbf{m}_{S}} \\ \mathbf{\Sigma}_{t,\mathbf{m}_{1}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\mathbf{m}_{1}\mathbf{m}_{1}} & \cdots & \mathbf{\Sigma}_{t,\mathbf{m}_{1}\mathbf{m}_{S}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{\Sigma}_{t,\mathbf{m}_{S}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\mathbf{m}_{S}\mathbf{m}_{1}} & \cdots & \mathbf{\Sigma}_{t,\mathbf{m}_{S}\mathbf{m}_{S}} \end{pmatrix} \\ = \begin{pmatrix} \mathbf{\Sigma}_{t,\boldsymbol{\xi}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\boldsymbol{\xi}\mathbf{m}} \\ \mathbf{\Sigma}_{t,\mathbf{m}\boldsymbol{\xi}} & \mathbf{\Sigma}_{t,\mathbf{m}\mathbf{m}} \end{pmatrix}$$

Recap: 2D EKF-SLAM State-Transition Model

State/control variables

 $\boldsymbol{\xi}_{t} = (x_{t} \ y_{t} \ \theta_{t})^{\top} \qquad \mathbf{m}_{t,j} = (m_{t,j,x} \ m_{t,j,y})^{\top}$ $\mathbf{u}_{t} = (v_{t} \ \omega_{t})^{\top} = (\|\mathbf{v}\|_{2} \ \|\boldsymbol{\omega}\|_{2})^{\top}$

- State-transition model
 - Pose:

$$\begin{aligned} \boldsymbol{\xi}_{t} &= g_{\boldsymbol{\xi}}(\boldsymbol{\xi}_{t-1}, \mathbf{u}_{t}) + \boldsymbol{\epsilon}_{\boldsymbol{\xi}, t} & \boldsymbol{\epsilon}_{\boldsymbol{\xi}, t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d_{t}, \boldsymbol{\xi}}\right) \\ g_{\boldsymbol{\xi}}(\boldsymbol{\xi}_{t-1}, \mathbf{u}_{t}) &= \begin{pmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{pmatrix} + \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \theta_{t-1} + \frac{v_{t}}{\omega_{t}} \sin (\theta_{t} + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \theta_{t-1} - \frac{v_{t}}{\omega_{t}} \cos (\theta_{t} + \omega_{t} \Delta t) \\ \omega_{t} \Delta t \end{pmatrix} \end{aligned}$$

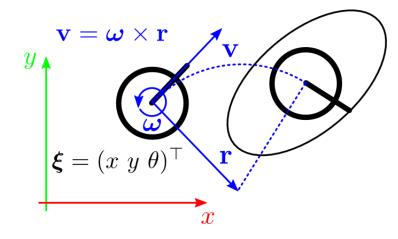
- Landmarks: $\mathbf{m}_t = g_{\mathbf{m}}(\mathbf{m}_{t-1}) = \mathbf{m}_{t-1}$

- Combined:

136

$$\mathbf{x}_{t} = g(\mathbf{x}_{t-1}, \mathbf{u}_{t}) + \boldsymbol{\epsilon}_{t}, \boldsymbol{\epsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d_{t}}\right) \quad g(\mathbf{x}_{t-1}, \mathbf{u}_{t}) = \begin{pmatrix} g_{\boldsymbol{\xi}}(\boldsymbol{\xi}_{t-1}, \mathbf{u}_{t}) \\ g_{\mathbf{m}}(\mathbf{m}_{t-1}) \end{pmatrix} \quad \boldsymbol{\Sigma}_{d_{t}} = \begin{pmatrix} \boldsymbol{\Sigma}_{d_{t}, \boldsymbol{\xi}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Jörg Stückler



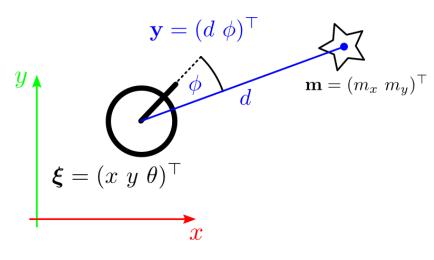
Recap: 2D EKF-SLAM Observation Model

- State/measurement variables $\mathbf{y}_t = (d_t \ \phi_t)^\top$ $\mathbf{m}_{t,j} = (m_{t,j,x} \ m_{t,j,y})^\top$
- Observation model:

$$\mathbf{y}_t = h(\boldsymbol{\xi}_t, \mathbf{m}_{t, c_t}) + \boldsymbol{\delta}_t \qquad \boldsymbol{\delta}_t \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{m_t}\right)$$

$$h(\boldsymbol{\xi}_{t}, \mathbf{m}_{t,c_{t}}) = \begin{pmatrix} \|\mathbf{m}_{t,c_{t}}^{\text{rel}}\|_{2} \\ \operatorname{atan2}\left(\mathbf{m}_{t,c_{t},y}^{\text{rel}}, \mathbf{m}_{t,c_{t},x}^{\text{rel}}\right) \end{pmatrix}$$

$$\mathbf{m}_{t,c_t}^{\text{rel}} := \mathbf{R}(-\theta_t) \left(\mathbf{m}_{t,c_t} - (x_t \ y_t)^\top \right)$$



Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

137

Recap: State Initialization

- First frame:
 - Anchor reference frame at initial pose
 - Set pose covariance to zero

 $\mathbf{x}_0^- = \mathbf{0} \ \mathbf{\Sigma}_{0, \boldsymbol{\xi} \boldsymbol{\xi}}^- = \mathbf{0}$

- New landmark:
 - Initial position unknown
 - Initialize mean at zero
 - Initialize covariance to infinity (large value)

$$\Sigma_{0,\xi\mathbf{m}}^{-} = \Sigma_{0,\mathbf{m}\xi}^{-} = \mathbf{0}$$

$$\mathbf{\Sigma}^{-}_{0,\mathbf{m}\mathbf{m}}=\infty\mathbf{I}$$

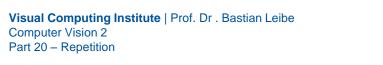
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

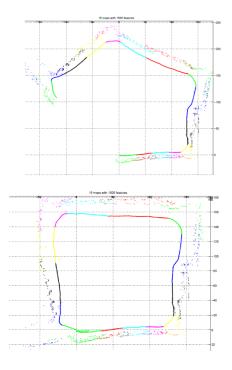
Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
 - Sparse interest-point based methods
 - Dense direct methods
- Visual SLAM & 3D Reconstruction
 - Online SLAM methods
 - Full SLAM methods

139

Deep Learning for Video Analysis





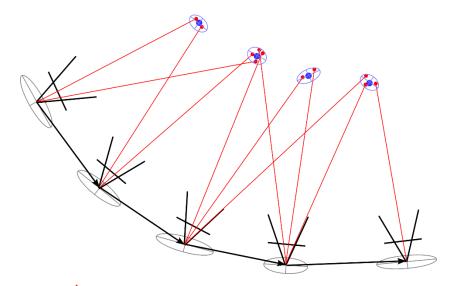
Visual Computing

image source: [Clemente et al., RSS 2007]

Institute

Recap: Full SLAM Approaches

- SLAM graph optimization:
 - Joint optimization for poses and map elements from image observations of map elements and control inputs



- Pose graph optimization:
 - Optimization of poses from relative pose constraints deduced from the image observations
 - Map recovered from the optimized poses

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Slide credit: Jörg Stückler

140

Pose Graph Optimization

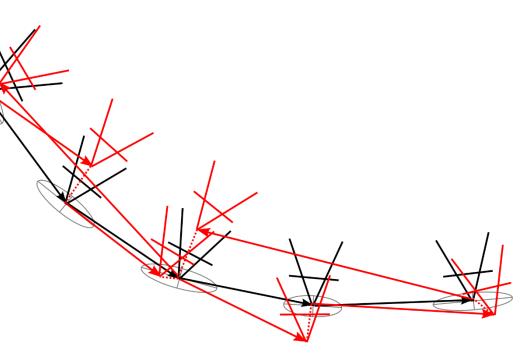
- Optimization of poses
 - From relative pose constraints deduced from the image observations
 - Map recovered from the optimized poses

- Deduce relative constraints between poses from image observations, e.g.,
 - 8-point algorithm

141

Direct image alignment

Slide credit: Jörg Stückler



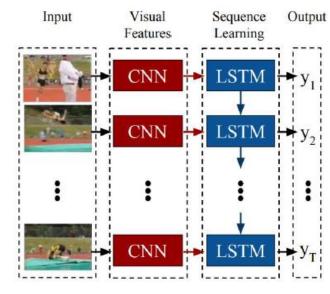
Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
 - Online SLAM methods
 - Full SLAM methods

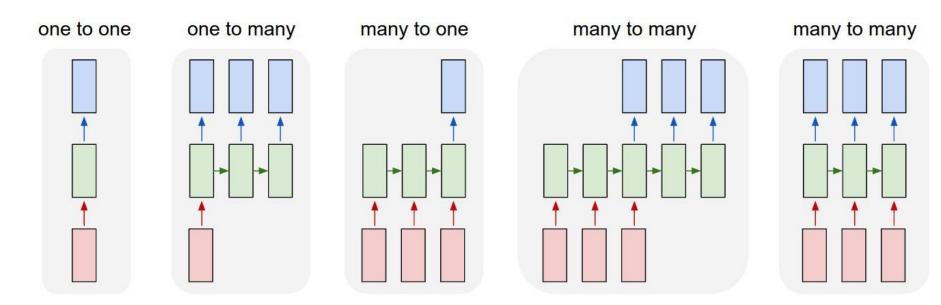
142

- Deep Learning for Video Analysis
 - CNNs for video analysis
 - CNNs for motion estimation
 - Video object segmentation

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

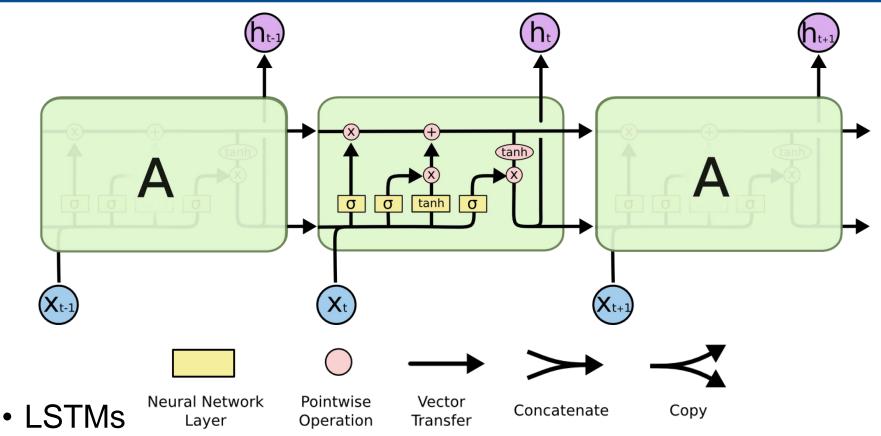


Recap: Recurrent Networks



- Feed-forward networks
 - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- Recurrent Neural Networks
 - Generalize this to arbitrary mappings

Recap: Long Short-Term Memory (LSTM)



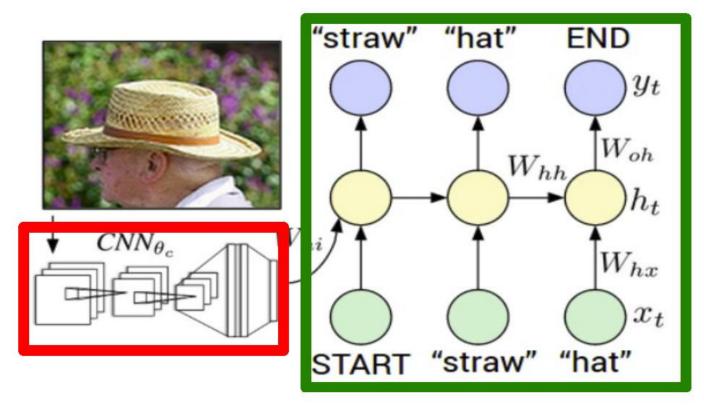
- Inspired by the design of memory cells
- Each module has 4 layers, interacting in a special way.
- Effect: LSTMs can learn longer dependencies (~100 steps) than RNNs

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

144

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Image Tagging

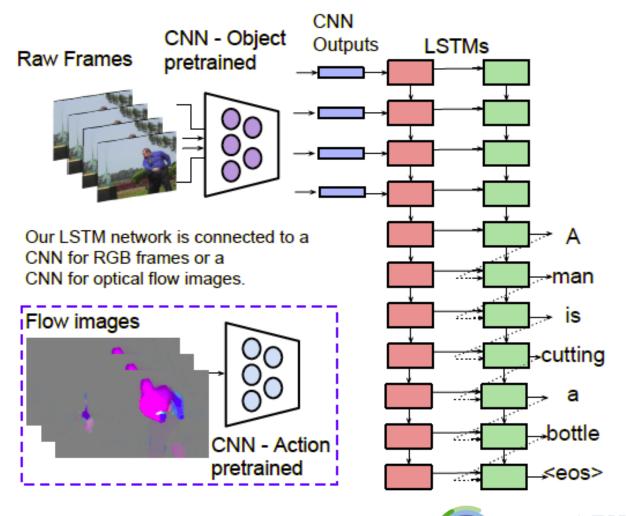


- Simple combination of CNN and RNN
 - Use CNN to define initial state \mathbf{h}_0 of an RNN.
 - Use RNN to produce text description of the image.

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide adapted from Andrej Karpathy

145

Recap: Video to Text Description



146

Visual Computing

Institute

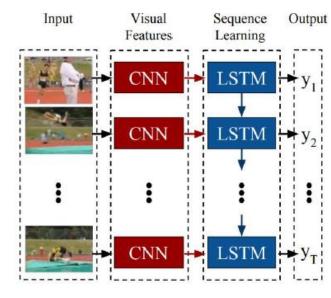
Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
 - Online SLAM methods
 - Full SLAM methods

147

- Deep Learning for Video Analysis
 - CNNs for video analysis
 - CNNs for motion estimation
 - Video object segmentation

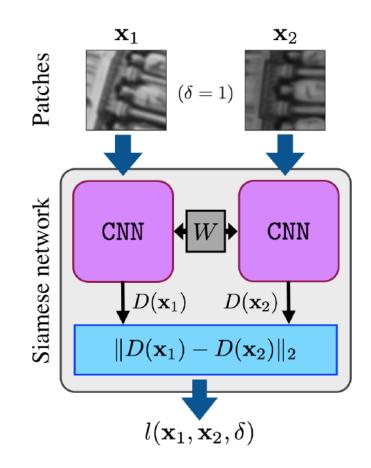
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



Recap: Learning Similarity Functions

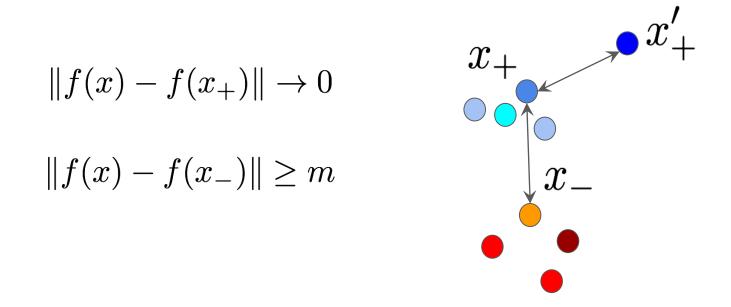
- Siamese Network
 - Present the two stimuli to two identical copies of a network (with shared parameters)
 - Train them to output similar values if the inputs are (semantically) similar.
- Used for many matching tasks
 - Face identification
 - Stereo estimation
 - Optical flow

148



Recap: Metric Learning – Contrastive Loss

- Mapping an image to a metric embedding space
 - Metric space: distance relationship = class membership



Yi et al., LIFT: Learned Invariant Feature Transform, ECCV 16

149

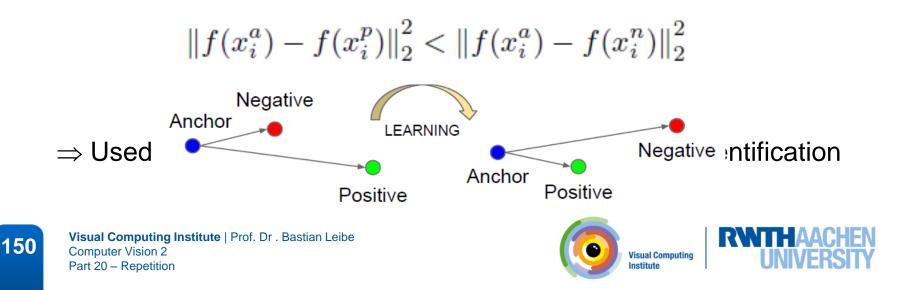
Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition Slide credit: Christopher Choy

Recap: Metric Learning – Triplet Loss

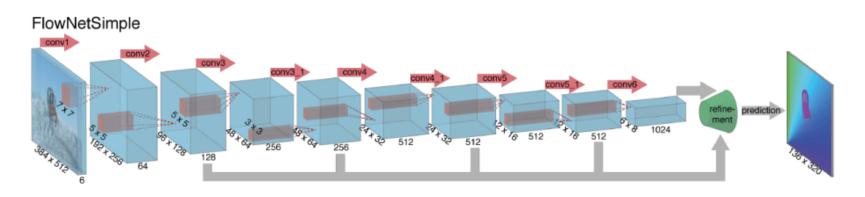
- Learning a discriminative embedding
 - Present the network with triplets of examples
 Negative

Positive

- Apply triplet loss to learn an embedding $f(\cdot)$ that groups the positive example closer to the anchor than the negative one.

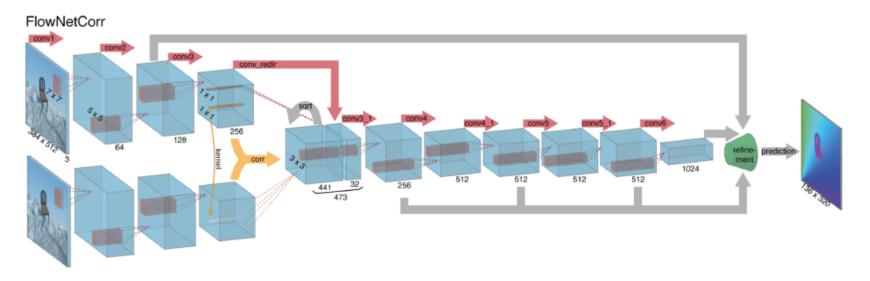


Recap: FlowNet – FlowNetSimple Design



- Simple initial design
 - Simply stack two sequential images together and feed them through the network
 - In order to compute flow, the network has to compare image patches
 - But it has to figure out on its own how to do that...

Recap: FlowNet – FlowNetCorr Design

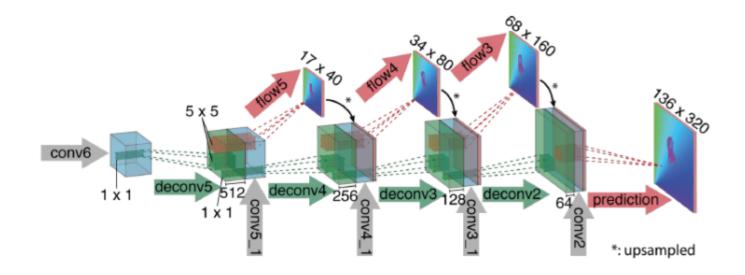


- Correlation network
 - Central idea: compute a correlation score between two feature maps

$$c(\mathbf{x}_1, \mathbf{x}_2) = \sum_{\mathbf{o} \in [-k,k] \times [-k,k]} \langle \mathbf{f}_1(\mathbf{x}_1 + \mathbf{o}), \mathbf{f}_2(\mathbf{x}_2 + \mathbf{o}) \rangle$$

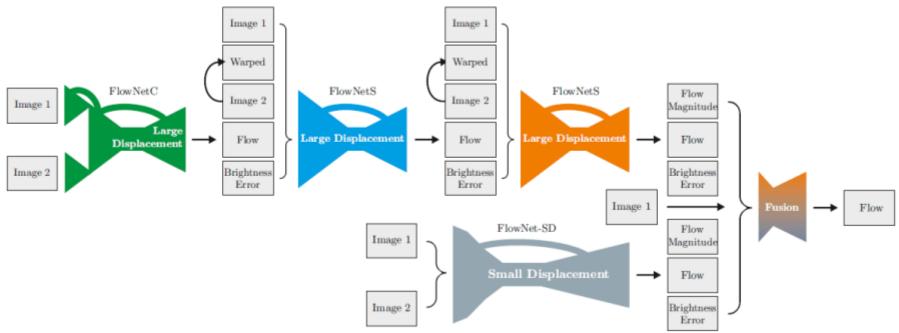
- Then refine the correlation scores and turn them into flow predictions

Recap: FlowNet – Flow Refinement



- Flow refinement stage (both network designs)
 - After series of conv and pooling layers, the resolution has been reduced
 - Refine the coarse pooled representation by upconvolution layers (unpooling + upconvolution)
 - Skip connections to preserve high-res information from early layers

Recap: FlowNet 2.0 Improved Design



- Stacked architecture
 - Several instances of FlowNetC and FlowNetS stacked together to estimate large-displacement flow
 - Sub-network specialized on small motions
 - Fusion layer

Image source: Ilg et al., CVPR'17

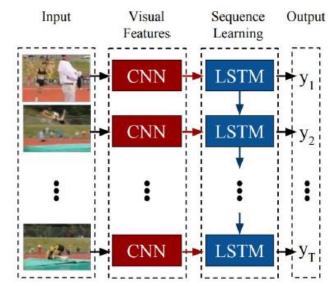
Course Outline

- Single-Object Tracking
- Bayesian Filtering
- Multi-Object Tracking
- Visual Odometry
- Visual SLAM & 3D Reconstruction
 - Online SLAM methods
 - Full SLAM methods

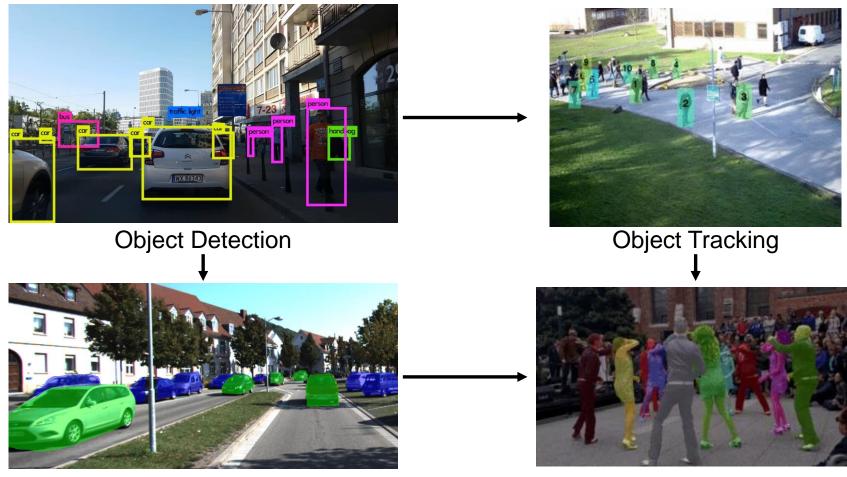
155

- Deep Learning for Video Analysis
 - CNNs for video analysis
 - CNNs for motion estimation
 - Video object segmentation

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition



Recap: Video Object Segmentation



Video Object Segmentation

Visual Computing

Institute

Object Segmentation

Visual Computing Institute | Prof. Dr . Bastian Leibe Computer Vision 2 Part 20 – Repetition

Any More Questions?

Good luck for the exam!

157