
1

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Machine Learning – Lecture 9

AdaBoost

19.11.2017

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Randomized Trees, Forests & Ferns

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

2
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• Recap: Nonlinear Support Vector Machines

• Analysis
 Error function

• Applications

• Ensembles of classifiers
 Bagging

 Bayesian Model Averaging

• AdaBoost
 Intuition

 Algorithm

 Analysis

 Extensions

3
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Support Vector Machine (SVM)

• Basic idea

 The SVM tries to find a classifier which

maximizes the margin between pos. and

neg. data points.

 Up to now: consider linear classifiers

• Formulation as a convex optimization problem

 Find the hyperplane satisfying

under the constraints

based on training data points xn and target values .
4

B. Leibe

Margin

wTx+ b = 0

argmin
w;b

1

2
kwk2

tn(w
Txn + b) ¸ 1 8n

tn 2 f¡1;1g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: SVM – Dual Formulation

• Maximize

under the conditions

• Comparison

 Ld is equivalent to the primal form Lp, but only depends on an.

 Lp scales with O(D3).

 Ld scales with O(N3) – in practice between O(N) and O(N2).
5

B. Leibe

Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

an ¸ 0 8n

Slide adapted from Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

»1

»2

»3

»4

Recap: SVM for Non-Separable Data

• Slack variables

 One slack variable »n ¸ 0 for each training data point.

• Interpretation

 »n = 0 for points that are on the correct side of the margin.

 »n = |tn – y(xn)| for all other points.

 We do not have to set the slack variables ourselves!

 They are jointly optimized together with w.
6

B. Leibe

w
Point on decision

boundary: »n = 1

Misclassified point:

»n > 1

2

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: SVM – New Dual Formulation

• New SVM Dual: Maximize

under the conditions

• This is again a quadratic programming problem

 Solve as before…

7
B. Leibe

Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

0 · an · C

Slide adapted from Bernt Schiele

This is all

that changed!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Nonlinear SVMs

• General idea: The original input space can be mapped to

some higher-dimensional feature space where the training

set is separable:

8

©: x→ Á(x)

Slide credit: Raymond Mooney

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: The Kernel Trick

• Important observation

 Á(x) only appears in the form of dot products Á(x)TÁ(y):

 Define a so-called kernel function k(x,y) = Á(x)TÁ(y).

 Now, in place of the dot product, use the kernel instead:

 The kernel function implicitly maps the data to the higher-

dimensional space (without having to compute Á(x) explicitly)!

9
B. Leibe

y(x) = wTÁ(x) + b

=

NX

n=1

antnÁ(xn)TÁ(x) + b

y(x) =

NX

n=1

antnk(xn;x) + b

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Nonlinear SVM – Dual Formulation

• SVM Dual: Maximize

under the conditions

• Classify new data points using

10
B. Leibe

NX

n=1

antn = 0

0 · an · C

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• Recap: Nonlinear Support Vector Machines

• Analysis
 Error function

• Applications

• Ensembles of classifiers
 Bagging

 Bayesian Model Averaging

• AdaBoost
 Intuition

 Algorithm

 Analysis

 Extensions

11
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

SVM – Analysis

• Traditional soft-margin formulation

subject to the constraints

• Different way of looking at it

 We can reformulate the constraints into the objective function.

where [x]+ := max{0,x}.
12

B. Leibe

“Hinge loss”L2 regularizer

“Most points should

be on the correct

side of the margin”

“Maximize

the margin”
min

w2RD; »n2R+
1

2
kwk2 + C

NX

n=1

»n

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Slide adapted from Christoph Lampert

3

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• Ideal misclassification error function (black)

 This is what we want to approximate,

 Unfortunately, it is not differentiable.

 The gradient is zero for misclassified points.

 We cannot minimize it by gradient descent. 13
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• Squared error used in Least-Squares Classification

 Very popular, leads to closed-form solutions.

 However, sensitive to outliers due to squared penalty.

 Penalizes “too correct” data points

 Generally does not lead to good classifiers. 14
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes “too correct”

data points!

Sensitive to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Error Functions (Loss Functions)

• “Hinge error” used in SVMs

 Zero error for points outside the margin (zn > 1) sparsity

 Linear penalty for misclassified points (zn < 1) robustness

 Not differentiable around zn = 1 Cannot be optimized directly.
15

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse

solutions!

Robust to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

SVM – Discussion

• SVM optimization function

• Hinge loss enforces sparsity

 Only a subset of training data points actually influences the decision

boundary.

 This is different from sparsity obtained through the regularizer!

There, only a subset of input dimensions are used.

 Unconstrained optimization, but non-differentiable function.

 Solve, e.g. by subgradient descent

 Currently most efficient: stochastic gradient descent
16

B. Leibe

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Hinge lossL2 regularizer

Slide adapted from Christoph Lampert

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• Recap: Nonlinear Support Vector Machines

• Analysis
 Error function

• Applications

• Ensembles of classifiers
 Bagging

 Bayesian Model Averaging

• AdaBoost
 Intuition

 Algorithm

 Analysis

 Extensions

17
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Example Application: Text Classification

• Problem:

 Classify a document in a number of categories

• Representation:

 “Bag-of-words” approach

 Histogram of word counts (on learned dictionary)

– Very high-dimensional feature space (~10.000 dimensions)

– Few irrelevant features

• This was one of the first applications of SVMs

 T. Joachims (1997)

18
B. Leibe

?

4

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Example Application: Text Classification

• Results:

19
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Example Application: Text Classification

• This is also how you could implement a simple spam filter…

20
B. Leibe

Incoming email Word activations

Dictionary

SVM
Mailbox

Trash

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Example Application: OCR

• Handwritten digit

recognition

 US Postal Service Database

 Standard benchmark task

for many learning algorithms

21
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Historical Importance

• USPS benchmark

 2.5% error: human performance

• Different learning algorithms

 16.2% error: Decision tree (C4.5)

 5.9% error: (best) 2-layer Neural Network

 5.1% error: LeNet 1 – (massively hand-tuned) 5-layer network

• Different SVMs

 4.0% error: Polynomial kernel (p=3, 274 support vectors)

 4.1% error: Gaussian kernel (¾=0.3, 291 support vectors)

22
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Example Application: OCR

• Results

 Almost no overfitting with higher-degree kernels.

23
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Example Application: Object Detection

• Sliding-window approach

• E.g. histogram representation (HOG)

 Map each grid cell in the input window to a

histogram of gradient orientations.

 Train a linear SVM using training set of

pedestrian vs. non-pedestrian windows.
[Dalal & Triggs, CVPR 2005]

Obj./non-obj.

Classifier

5

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

25
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• Recap: Nonlinear Support Vector Machines

• Analysis
 Error function

• Applications

• Ensembles of classifiers
 Bagging

 Bayesian Model Averaging

• AdaBoost
 Intuition

 Algorithm

 Analysis

 Extensions

26
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

So Far…

• We’ve seen already a variety of different classifiers

 k-NN

 Bayes classifiers

 Linear discriminants

 SVMs

• Each of them has their strengths and weaknesses…

 Can we improve performance by combining them?
27

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Ensembles of Classifiers

• Intuition

 Assume we have K classifiers.

 They are independent (i.e., their errors are uncorrelated).

 Each of them has an error probability p < 0.5 on training data.

– Why can we assume that p won’t be larger than 0.5?

 Then a simple majority vote of all classifiers should have a

lower error than each individual classifier…

28
B. LeibeSlide adapted from Bernt Schiele

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Constructing Ensembles

• How do we get different classifiers?

 Simplest case: train same classifier on different data.

 But… where shall we get this additional data from?

– Recall: training data is very expensive!

• Idea: Subsample the training data

 Reuse the same training algorithm several times on different

subsets of the training data.

• Well-suited for “unstable” learning algorithms

 Unstable: small differences in training data can produce very

different classifiers

– E.g., Decision trees, neural networks, rule learning algorithms,…

 Stable learning algorithms

– E.g., Nearest neighbor, linear regression, SVMs,…

29
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Constructing Ensembles

• Bagging = “Bootstrap aggregation” (Breiman 1996)

 In each run of the training algorithm, randomly select M samples

from the full set of N training data points.

 If M = N, then on average, 63.2% of the training points will be

represented. The rest are duplicates.

• Injecting randomness

 Many (iterative) learning algorithms need a random initialization

(e.g. k-means, EM)

 Perform mutliple runs of the learning algorithm with different

random initializations.

30
B. LeibeSlide adapted from Bernt Schiele

http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/

6

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Bayesian Model Averaging

• Model Averaging

 Suppose we have H different models h = 1,…,H with prior

probabilities p(h).

 Construct the marginal distribution over the data set

• Interpretation

 Just one model is responsible for generating the entire data set.

 The probability distribution over h just reflects our uncertainty

which model that is.

 As the size of the data set increases, this uncertainty reduces,

and p(X|h) becomes focused on just one of the models.

31
B. Leibe

p(X) =

HX

h=1

p(Xjh)p(h)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Note the Different Interpretations!

• Model Combination (e.g., Mixtures of Gaussians)

 Different data points generated by different model components.

 Uncertainty is about which component created which data point.

 One latent variable zn for each data point:

• Bayesian Model Averaging

 The whole data set is generated by a single model.

 Uncertainty is about which model was responsible.

 One latent variable z for the entire data set:

32
B. Leibe

p(X) =

NY

n=1

p(xn) =

NY

n=1

X

zn

p(xn; zn)

p(X) =
X

z

p(X; z)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Model Averaging: Expected Error

• Combine M predictors ym(x) for target output h(x).

 E.g. each trained on a different bootstrap data set by bagging.

 The committee prediction is given by

 The output can be written as the true value plus some error.

 Thus, the expected sum-of-squares error takes the form

33
B. Leibe

yCOM (x) =
1

M

MX

m=1

ym(x)

y(x) = h(x) + ²(x)

Ex =
h
fym(x)¡ h(x)g2

i
= Ex

£
²m(x)2

¤

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Model Averaging: Expected Error

• Average error of individual models

• Average error of committee

• Assumptions

 Errors have zero mean:

 Errors are uncorrelated:

• Then:

34
B. Leibe

EAV =
1

M

MX

m=1

Ex
£
²m(x)2

¤

ECOM = Ex

2
4
(

1

M

MX

m=1

ym(x)¡ h(x)

)23
5 = Ex

2
4
(

1

M

MX

m=1

²m(x)

)23
5

Ex [²m(x)] = 0

Ex [²m(x)²j(x)] = 0

ECOM =
1

M
EAV

𝑦𝑚 𝐱 = ℎ 𝐱 + 𝜖𝑚 𝐱

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Model Averaging: Expected Error

• Average error of committee

 This suggests that the average error of a model can be reduced by

a factor of M simply by averaging M versions of the model!

 Spectacular indeed…

 This sounds almost too good to be true…

• And it is… Can you see where the problem is?

 Unfortunately, this result depends on the assumption that the

errors are all uncorrelated.

 In practice, they will typically be highly correlated.

 Still, it can be shown that

35
B. Leibe

ECOM =
1

M
EAV

ECOM · EAV

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – “Adaptive Boosting”

• Main idea [Freund & Schapire, 1996]

 Iteratively select an ensemble of component classifiers

 After each iteration, reweight misclassified training examples.

– Increase the chance of being selected in a sampled training set.

– Or increase the misclassification cost when training on the full set.

• Components

 hm(x): “weak” or base classifier

– Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost:

 Construct a strong classifier as a thresholded linear combination of

the weighted weak classifiers:

36
B. Leibe

H(x) = sign

Ã
MX

m=1

®mhm(x)

!

7

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost: Intuition

37
B. Leibe

Consider a 2D feature space

with positive and negative

examples.

Each weak classifier splits

the training examples with at

least 50% accuracy.

Examples misclassified by a

previous weak learner are

given more emphasis at

future rounds.

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost: Intuition

38
B. LeibeSlide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost: Intuition

39
B. Leibe

The final classifier is a

linear combination of

the weak classifiers

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Formalization

• 2-class classification problem

 Given: training set X = {x1, …, xN}

with target values T = {t1, …, tN }, tn 2 {-1,1}.

 Associated weights W={w1, …, wN} for each training point.

• Basic steps

 In each iteration, AdaBoost trains a new weak classifier hm(x) based

on the current weighting coefficients W(m).

 We then adapt the weighting coefficients for each point

– Increase wn if xn was misclassified by hm(x).

– Decrease wn if xn was classified correctly by hm(x).

 Make predictions using the final combined model

40
B. Leibe

H(x) = sign

Ã
MX

m=1

®mhm(x)

!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Algorithm

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting

coefficients W(m) by minimizing the weighted error function

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

41
B. Leibe

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ?

w(m+1)
n = ?

How should we

do this exactly?

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Historical Development

• Originally motivated by Statistical Learning Theory

 AdaBoost was introduced in 1996 by Freund & Schapire.

 It was empirically observed that AdaBoost often tends not to overfit.

(Breiman 96, Cortes & Drucker 97, etc.)

 As a result, the margin theory (Schapire et al. 98) developed, which

is based on loose generalization bounds.

– Note: margin for boosting is not the same as margin for SVM.

– A bit like retrofitting the theory…

 However, those bounds are too loose to be of practical value.

• Different explanation (Friedman, Hastie, Tibshirani, 2000)

 Interpretation as sequential minimization of an exponential error

function (“Forward Stagewise Additive Modeling”).

 Explains why boosting works well.

 Improvements possible by altering the error function.
42

B. Leibe

8

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Exponential error function

 where fm(x) is a classifier defined as a linear combination of base

classifiers hl(x):

• Goal

 Minimize E with respect to both the weighting coefficients ®l and the

parameters of the base classifiers hl(x).

43
B. Leibe

fm(x) =
1

2

mX

l=1

®lhl(x)

E =

NX

n=1

expf¡tnfm(xn)g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Sequential Minimization

 Suppose that the base classifiers h1(x),…, hm-1(x) and their

coefficients ®1,…,®m-1 are fixed.

 Only minimize with respect to ®m and hm(x).

44
B. Leibe

=

NX

n=1

exp

½
¡tnfm¡1(xn)¡

1

2
tn®mhm(xn)

¾

fm(x) =
1

2

mX

l=1

®lhl(x)E =

NX

n=1

expf¡tnfm(xn)g with

=

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾
= const.

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

 Observation:

– Correctly classified points: tnhm(xn) = +1

– Misclassified points: tnhm(xn) = 1

 Rewrite the error function as

45
B. Leibe

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm

 collect in Fm

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

 Observation:

– Correctly classified points: tnhm(xn) = +1

– Misclassified points: tnhm(xn) = 1

 Rewrite the error function as

46
B. Leibe

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm

 collect in Fm

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Minimize with respect to hm(x):

 This is equivalent to minimizing

(our weighted error function from step 2a) of the algorithm)

 We’re on the right track. Let’s continue…

47
B. Leibe

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

= const.= const.

@E

@hm(xn)

!
= 0

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Minimize with respect to ®m:

 Update for the ® coefficients:

48
B. Leibe

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

µ
1

2
e®m=2 +

1

2
e¡®m=2

¶ NX

n=1

w(m)
n I(hm(xn) 6= tn)

!
=

1

2
e¡®m=2

NX

n=1

w(m)
n

@E

@®m

!
= 0

PN

n=1 w
(m)
n I(hm(xn) 6= tn)
PN

n=1 w
(m)
n

=
e¡®m=2

e®m=2 + e¡®m=2

²m =
1

e®m + 1

®m = ln

½
1¡ ²m

²m

¾

²m :=
weighted

error

9

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Remaining step: update the weights

 Recall that

 Therefore

 Update for the weight coefficients.

49
B. Leibe

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

This becomes

in the next iteration.

w(m+1)
n

w(m+1)
n = w(m)

n exp

½
¡1

2
tn®mhm(xn)

¾

= w(m)
n expf®mI(hm(xn) 6= tn)g

= :::

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Final Algorithm

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting

coefficients W(m) by minimizing the weighted error function

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

50
B. Leibe

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ln

½
1¡ ²m

²m

¾

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Analysis

• Result of this derivation

 We now know that AdaBoost minimizes an exponential error

function in a sequential fashion.

 This allows us to analyze AdaBoost’s behavior in more detail.

 In particular, we can see how robust it is to outlier data points.

51
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• Ideal misclassification error function (black)

 This is what we want to approximate,

 Unfortunately, it is not differentiable.

 The gradient is zero for misclassified points.

 We cannot minimize it by gradient descent. 52
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• Squared error used in Least-Squares Classification

 Very popular, leads to closed-form solutions.

 However, sensitive to outliers due to squared penalty.

 Penalizes “too correct” data points

 Generally does not lead to good classifiers. 53
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes “too correct”

data points!

Sensitive to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• “Hinge error” used in SVMs

 Zero error for points outside the margin (zn > 1) sparsity

 Linear penalty for misclassified points (zn < 1) robustness

 Not differentiable around zn = 1 Cannot be optimized directly.

54
B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse

solutions!

Robust to outliers!

zn = tny(xn)

10

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 Continuous approximation to ideal misclassification function.

 Sequential minimization leads to simple AdaBoost scheme.

 Properties?
55

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 No penalty for too correct data points, fast convergence.

 Disadvantage: exponential penalty for large negative values!

 Less robust to outliers or misclassified data points!
56

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error
Sensitive to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Discussion: Other Possible Error Functions

• “Cross-entropy error” used in Logistic Regression

 Similar to exponential error for z>0.

 Only grows linearly with large negative values of z.

 Make AdaBoost more robust by switching to this error function.

 “GentleBoost”
57

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

Cross-entropy error

E = ¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Summary: AdaBoost

• Properties

 Simple combination of multiple classifiers.

 Easy to implement.

 Can be used with many different types of classifiers.

– None of them needs to be too good on its own.

– In fact, they only have to be slightly better than chance.

 Commonly used in many areas.

 Empirically good generalization capabilities.

• Limitations

 Original AdaBoost sensitive to misclassified training data points.

– Because of exponential error function.

– Improvement by GentleBoost

 Single-class classifier

– Multiclass extensions available
58

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

References and Further Reading

• More information on Classifier Combination and Boosting

can be found in Chapters 14.1-14.3 of Bishop’s book.

• A more in-depth discussion of the statistical interpretation

of AdaBoost is available in the following paper:

 J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a

Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),

pages 337-374, 2000.

59
B. Leibe

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

