

Machine Learning – Lecture 9

AdaBoost

19.11.2017

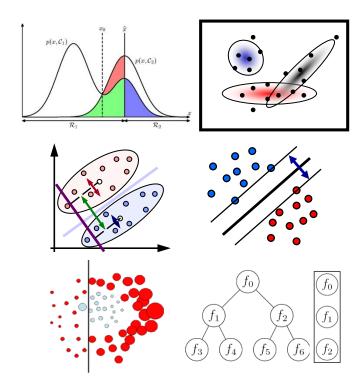
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

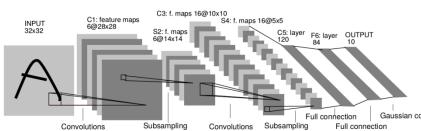
leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





Topics of This Lecture

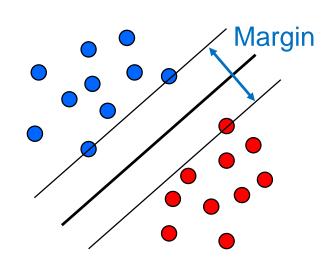
- Recap: Nonlinear Support Vector Machines
- Analysis
 - Error function
- Applications
- Ensembles of classifiers
 - Bagging
 - Bayesian Model Averaging
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

RWTHAACHEN UNIVERSITY

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$



- Formulation as a convex optimization problem
 - Find the hyperplane satisfying

$$\underset{\mathbf{w},b}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{w}\|^2$$

under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b) \ge 1 \quad \forall n$$

based on training data points \mathbf{x}_n and target values

$$t_n \in \{-1, 1\}$$

Recap: SVM - Dual Formulation

Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

$$\sum_{n=1}^{N} a_n t_n = 0$$

- Comparison
 - $ightharpoonup L_d$ is equivalent to the primal form L_p , but only depends on a_n .
 - > L_p scales with $\mathcal{O}(D^3)$.
 - $ightharpoonup L_d$ scales with $\mathcal{O}(N^3)$ in practice between $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$.

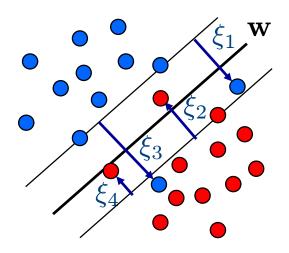
Recap: SVM for Non-Separable Data

Slack variables

> One slack variable $\xi_n \geq 0$ for each training data point.

Interpretation

- $\xi_n = 0$ for points that are on the correct side of the margin.
- > $\xi_n = |t_n y(\mathbf{x}_n)|$ for all other points.



Point on decision boundary: $\xi_n = 1$

Misclassified point:

$$\xi_n > 1$$

- We do not have to set the slack variables ourselves!
- \Rightarrow They are jointly optimized together with w.

Recap: SVM - New Dual Formulation

New SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^T \mathbf{x}_n)$$

under the conditions

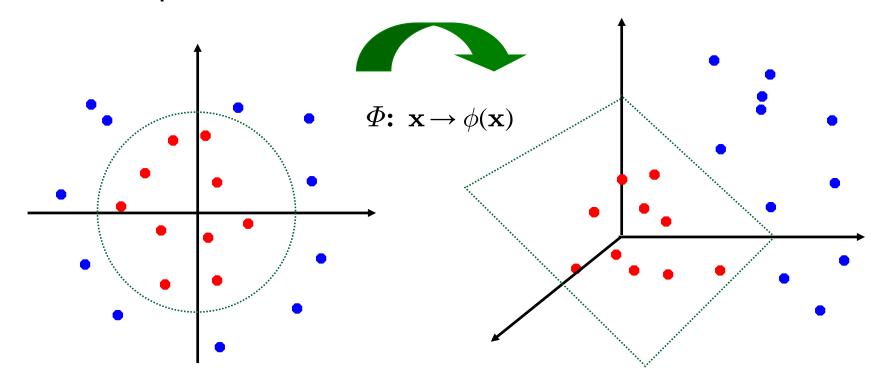
$$\sum_{n=1}^{0} a_n t_n = 0$$

This is all that changed!

- This is again a quadratic programming problem
 - ⇒ Solve as before...

Recap: Nonlinear SVMs

 General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:



Recap: The Kernel Trick

- Important observation
 - $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$:

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$$
$$= \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}) + b$$

- ▶ Define a so-called kernel function $k(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x})^\mathsf{T}\phi(\mathbf{y})$.
- Now, in place of the dot product, use the kernel instead:

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$$

The kernel function *implicitly* maps the data to the higher-dimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Recap: Nonlinear SVM - Dual Formulation

SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^N a_n - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^N a_n a_m t_n t_m \mathbf{k}(\mathbf{x}_m, \mathbf{x}_n)$$

under the conditions

$$\sum_{n=1}^{N} a_n t_n = 0$$

Classify new data points using

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$$

Topics of This Lecture

- Recap: Nonlinear Support Vector Machines
- Analysis
 - Error function
- Applications
- Ensembles of classifiers
 - Bagging
 - Bayesian Model Averaging
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

SVM – Analysis

Traditional soft-margin formulation

$$\min_{\mathbf{w}\in\mathbb{R}^D,\,\boldsymbol{\xi_n}\in\mathbb{R}^+} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \boldsymbol{\xi_n}$$

subject to the constraints

$$t_n y(\mathbf{x}_n) \geq 1 - \xi_n$$

"Most points should be on the correct

side of the margin"

"Maximize

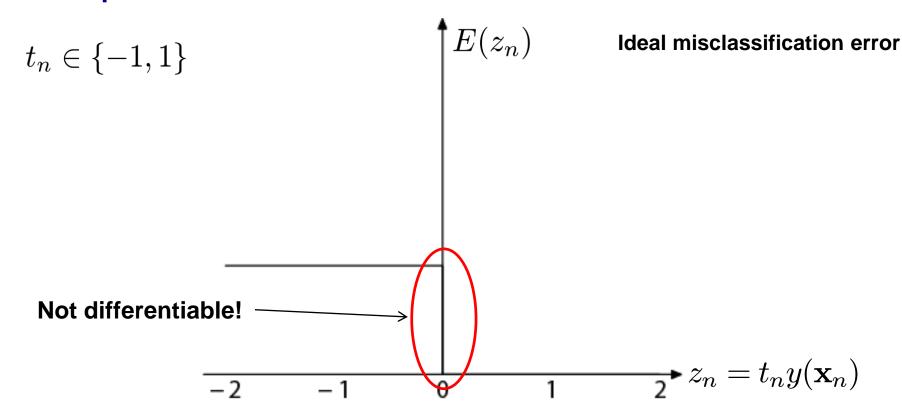
the margin"

- Different way of looking at it
 - We can reformulate the constraints into the objective function.

$$\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N [1 - t_n y(\mathbf{x}_n)]_+$$
L₂ regularizer "Hinge loss"

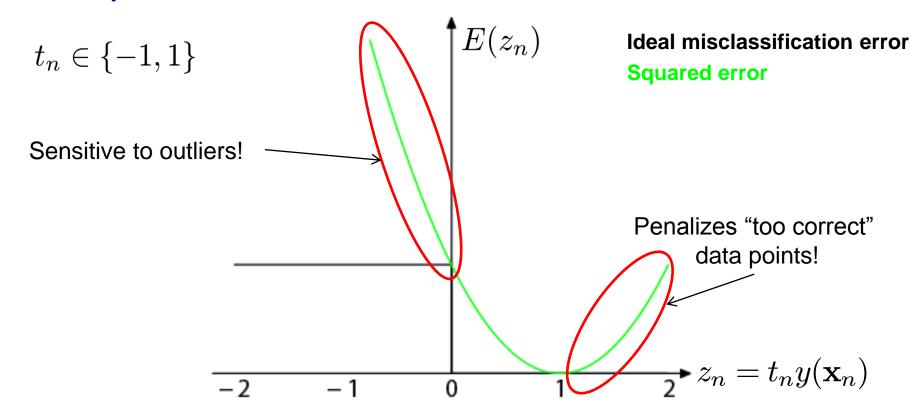
where $[x]_{+} := \max\{0,x\}.$

Recap: Error Functions



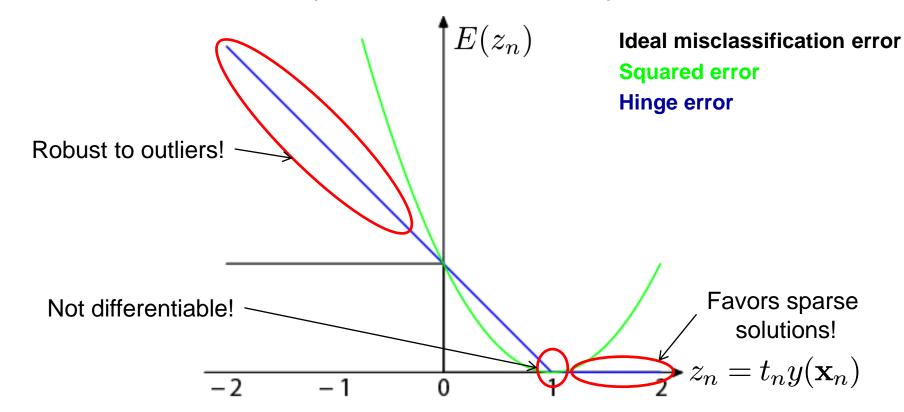
- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

Recap: Error Functions



- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

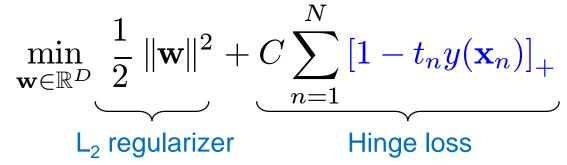
Error Functions (Loss Functions)



- "Hinge error" used in SVMs
 - > Zero error for points outside the margin $(z_n > 1)$ \Rightarrow sparsity
 - Linear penalty for misclassified points $(z_n < 1)$ \Rightarrow robustness
 - Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly.

SVM – Discussion

SVM optimization function



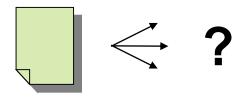
- Hinge loss enforces sparsity
 - Only a subset of training data points actually influences the decision boundary.
 - This is different from sparsity obtained through the regularizer!
 There, only a subset of input dimensions are used.
 - Unconstrained optimization, but non-differentiable function.
 - Solve, e.g. by subgradient descent
 - Currently most efficient: stochastic gradient descent

Topics of This Lecture

- Recap: Nonlinear Support Vector Machines
- Analysis
 - Error function
- Applications
- Ensembles of classifiers
 - Bagging
 - Bayesian Model Averaging
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

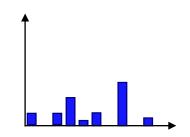
Example Application: Text Classification

- Problem:
 - Classify a document in a number of categories



- Representation:
 - "Bag-of-words" approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10.000 dimensions)
 - Few irrelevant features

T. Joachims (1997)



RWTHAACHEN UNIVERSITY

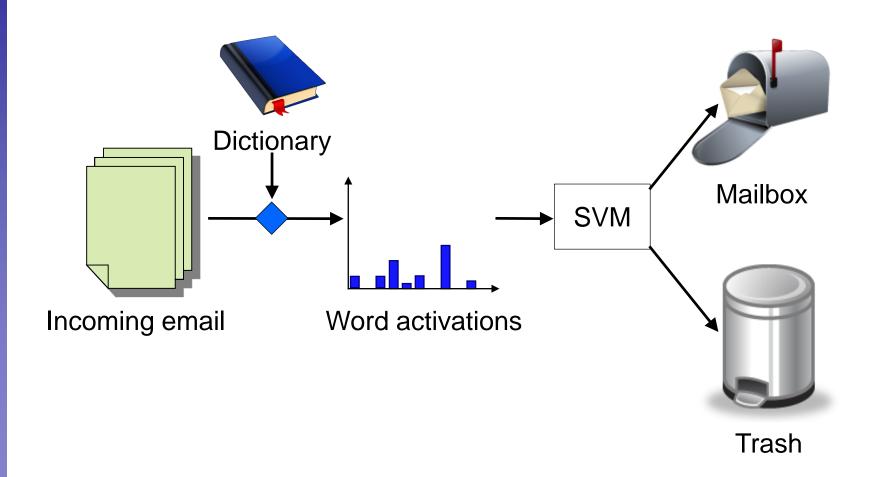
Example Application: Text Classification

Results:

	1				SVM (poly)				SVM (rbf)				
				TT-Streetments	degree $d =$			$\text{width } \gamma =$					
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66,9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2	85.1	85.9	86.2	85.9	86.4	86.5	86.3	86.2
	1 2.0							86.0			, ,	ed: 86	

Example Application: Text Classification

This is also how you could implement a simple spam filter...



Example Application: OCR

- Handwritten digit recognition
 - US Postal Service Database
 - Standard benchmark task for many learning algorithms

Historical Importance

- USPS benchmark
 - 2.5% error: human performance
- Different learning algorithms
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 (massively hand-tuned) 5-layer network
- Different SVMs
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - \rightarrow 4.1% error: Gaussian kernel (σ =0.3, 291 support vectors)

Example Application: OCR

Results

Almost no overfitting with higher-degree kernels.

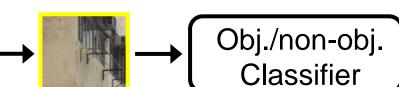
degree of	dimensionality of	support	raw
polynomial	feature space	vectors	error
1	256	282	8.9
2	pprox 33000	227	4.7
3	$\approx 1 \times 10^6$	274	4.0
4	$\approx 1 \times 10^9$	321	4.2
5	$pprox 1 imes 10^{12}$	374	4.3
6	$pprox 1 imes 10^{14}$	377	4.5
7	$\approx 1 \times 10^{16}$	422	4.5

RWTHAACHEN UNIVERSITY

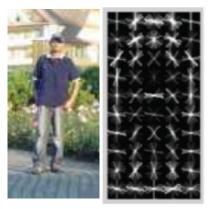
Real-time capable!

Example Application: Object Detection

Sliding-window approach



- E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.



[Dalal & Triggs, CVPR 2005]

RWTHAACHEN UNIVERSITY

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Topics of This Lecture

- Recap: Nonlinear Support Vector Machines
- Analysis
 - Error function
- Applications
- Ensembles of classifiers
 - Bagging
 - Bayesian Model Averaging
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

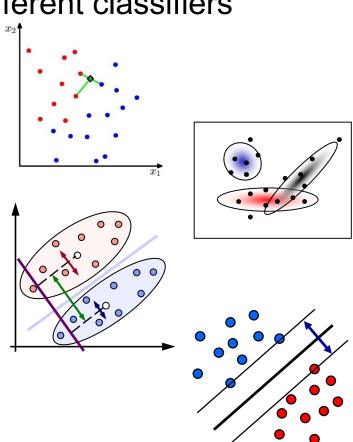
So Far...

- We've seen already a variety of different classifiers
 - ► k-NN

Bayes classifiers

Linear discriminants

SVMs



- Each of them has their strengths and weaknesses…
 - Can we improve performance by combining them?

Ensembles of Classifiers

Intuition

- \succ Assume we have K classifiers.
- They are independent (i.e., their errors are uncorrelated).
- \triangleright Each of them has an error probability p < 0.5 on training data.
 - Why can we assume that p won't be larger than 0.5?
- Then a simple majority vote of all classifiers should have a lower error than each individual classifier...

Constructing Ensembles

- How do we get different classifiers?
 - Simplest case: train same classifier on different data.
 - But... where shall we get this additional data from?
 - Recall: training data is very expensive!
- Idea: Subsample the training data
 - Reuse the same training algorithm several times on different subsets of the training data.
- Well-suited for "unstable" learning algorithms
 - Unstable: small differences in training data can produce very different classifiers
 - E.g., Decision trees, neural networks, rule learning algorithms,...
 - Stable learning algorithms
 - E.g., Nearest neighbor, linear regression, SVMs,...

Constructing Ensembles

- Bagging = "Bootstrap aggregation" (Breiman 1996)
 - In each run of the training algorithm, randomly select M samples from the full set of N training data points.
 - If M = N, then on average, 63.2% of the training points will be represented. The rest are duplicates.

Injecting randomness

- Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM)
- Perform mutliple runs of the learning algorithm with different random initializations.

Bayesian Model Averaging

Model Averaging

- Suppose we have H different models h = 1,...,H with prior probabilities p(h).
- Construct the marginal distribution over the data set

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X}|h)p(h)$$

Interpretation

- Just one model is responsible for generating the entire data set.
- The probability distribution over h just reflects our uncertainty which model that is.
- As the size of the data set increases, this uncertainty reduces, and $p(\mathbf{X}|h)$ becomes focused on just one of the models.

Note the Different Interpretations!

- Model Combination (e.g., Mixtures of Gaussians)
 - Different data points generated by different model components.
 - Uncertainty is about which component created which data point.
 - \Rightarrow One latent variable \mathbf{z}_n for each data point:

$$p(\mathbf{X}) = \prod_{n=1}^{N} p(\mathbf{x}_n) = \prod_{n=1}^{N} \sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n)$$

- Bayesian Model Averaging
 - > The whole data set is *generated by a single model*.
 - Uncertainty is about which model was responsible.
 - \Rightarrow One latent variable **z** for the entire data set:

$$p(\mathbf{X}) = \sum_{\mathbf{z}} p(\mathbf{X}, \mathbf{z})$$

Model Averaging: Expected Error

- Combine M predictors $y_m(\mathbf{x})$ for target output $h(\mathbf{x})$.
 - E.g. each trained on a different bootstrap data set by bagging.
 - The committee prediction is given by

$$y_{COM}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x})$$

The output can be written as the true value plus some error.

$$y(\mathbf{x}) = h(\mathbf{x}) + \epsilon(\mathbf{x})$$

Thus, the expected sum-of-squares error takes the form

$$\mathbb{E}_{\mathbf{x}} = \left[\left\{ y_m(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right]$$

Model Averaging: Expected Error

Average error of individual models

$$\mathbb{E}_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right]$$

Average error of committee

$$y_m(\mathbf{x}) = h(\mathbf{x}) + \epsilon_m(\mathbf{x})$$

$$\mathbb{E}_{COM} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right\}^2 \right]$$

- Assumptions
 - ullet Errors have zero mean: $\mathbb{E}_{\mathbf{x}}\left[\epsilon_m(\mathbf{x})
 ight]=0$
 - From the Errors are uncorrelated: $\mathbb{E}_{\mathbf{x}}\left[\epsilon_m(\mathbf{x})\epsilon_j(\mathbf{x})\right]=0$

$$\mathbb{E}_{COM} = rac{1}{M} \mathbb{E}_{AV}$$

Isn't this spectacular?

Model Averaging: Expected Error

Average error of committee

$$\mathbb{E}_{COM} = \frac{1}{M} \mathbb{E}_{AV}$$

- > This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
- Spectacular indeed...
- This sounds almost too good to be true...
- And it is... Can you see where the problem is?
 - Unfortunately, this result depends on the assumption that the errors are all uncorrelated.
 - In practice, they will typically be highly correlated.
 - Still, it can be shown that

$$\mathbb{E}_{COM} \cdot \mathbb{E}_{AV}$$

AdaBoost - "Adaptive Boosting"

Main idea

[Freund & Schapire, 1996]

- Iteratively select an ensemble of component classifiers
- After each iteration, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

Components

- $h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
- \rightarrow $H(\mathbf{x})$: "strong" or final classifier

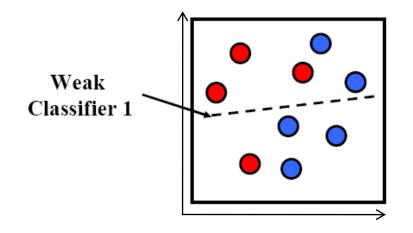
AdaBoost:

Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

B. Leibe

AdaBoost: Intuition

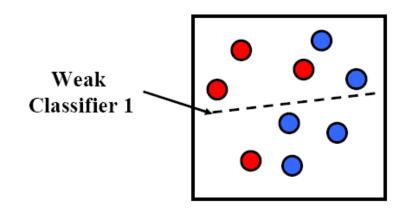


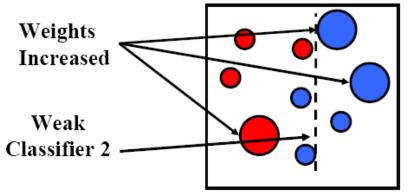
Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

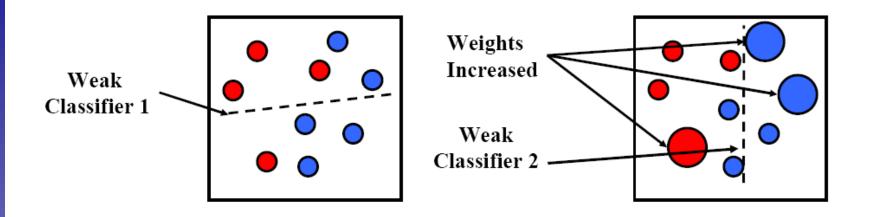
Examples misclassified by a previous weak learner are given more emphasis at future rounds.

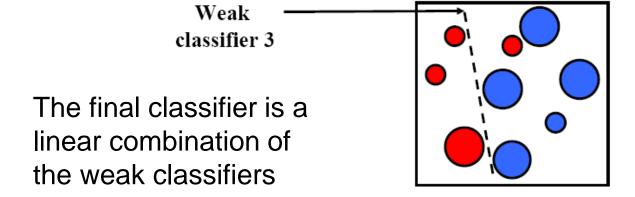
AdaBoost: Intuition





AdaBoost: Intuition





AdaBoost - Formalization

- 2-class classification problem
 - Given: training set $\mathbf{X}=\{\mathbf{x}_1,\,...,\,\mathbf{x}_N\}$ with target values $\mathbf{T}=\{t_1,\,...,\,t_N\,\},\,t_n\in\{\text{-}1,1\}.$
 - Associated weights $\mathbf{W} = \{w_1, ..., w_N\}$ for each training point.

Basic steps

- In each iteration, AdaBoost trains a new weak classifier $h_m(\mathbf{x})$ based on the current weighting coefficients $\mathbf{W}^{(m)}$.
- We then adapt the weighting coefficients for each point
 - Increase w_n if \mathbf{x}_n was misclassified by $h_m(\mathbf{x})$.
 - Decrease w_n if \mathbf{x}_n was classified correctly by $h_m(\mathbf{x})$.
- Make predictions using the final combined model

$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

AdaBoost – Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = ?$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = ?$$

How should we do this exactly?

AdaBoost – Historical Development

- Originally motivated by Statistical Learning Theory
 - AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is not the same as margin for SVM.
 - A bit like retrofitting the theory...
 - However, those bounds are too loose to be of practical value.
- Different explanation (Friedman, Hastie, Tibshirani, 2000)
 - Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
 - Explains why boosting works well.
 - Improvements possible by altering the error function.

AdaBoost - Minimizing Exponential Error

Exponential error function

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\}$$

where $f_m(\mathbf{x})$ is a classifier defined as a linear combination of base classifiers $h_l(\mathbf{x})$:

$$f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$$

- Goal
 - Minimize E with respect to both the weighting coefficients α_l and the parameters of the base classifiers $h_l(\mathbf{x})$.

AdaBoost - Minimizing Exponential Error

- Sequential Minimization
 - Suppose that the base classifiers $h_1(\mathbf{x}), \ldots, h_{m-1}(\mathbf{x})$ and their coefficients $\alpha_1, \ldots, \alpha_{m-1}$ are fixed.
 - \Rightarrow Only minimize with respect to α_m and $h_m(\mathbf{x})$.

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\} \quad \text{with} \quad f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$$

$$= \sum_{n=1}^{N} \exp\left\{-t_n f_{m-1}(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

$$= const.$$

$$= \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2} t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

44

AdaBoost – Minimizing Exponential Error

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1$
 - $t_n h_m(\mathbf{x}_n) = -1$

- \Rightarrow collect in \mathcal{T}_m
- \Rightarrow collect in \mathcal{F}_m

Rewrite the error function as

– Misclassified points:

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$

$$= \left(e^{\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n)$$

AdaBoost – Minimizing Exponential Error

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

- Observation:
 - Correctly classified points: $t_n h_m(\mathbf{x}_n) = +1$

 \Rightarrow collect in \mathcal{T}_m

- Misclassified points:
- $t_n h_m(\mathbf{x}_n) = -1$

 \Rightarrow collect in \mathcal{F}_m

Rewrite the error function as

$$E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)}$$

$$= \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^N w_n^{(m)}$$

AdaBoost - Minimizing Exponential Error

• Minimize with respect to $h_m(\mathbf{x})$: $\frac{\partial E}{\partial h_m(\mathbf{x}_n)} \stackrel{!}{=} 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$= const.$$

⇒ This is equivalent to minimizing

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

(our weighted error function from step 2a) of the algorithm)

⇒ We're on the right track. Let's continue...

AdaBoost – Minimizing Exponential Error

Minimize with respect to α_m : $\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$

$$\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$\left(\frac{1}{2}e^{\alpha_m/2} + \frac{1}{2}e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) \stackrel{!}{=} \frac{1}{2}e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

weighted error
$$\epsilon_m := \underbrace{\left(\frac{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n)}{\sum_{n=1}^N w_n^{(m)}} \right)}_{= \frac{e^{-\alpha_m/2}}{e^{\alpha_m/2} + e^{-\alpha_m/2}}}_{1}$$

 \Rightarrow Update for the α coefficients:

$$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

AdaBoost – Minimizing Exponential Error

- Remaining step: update the weights
 - Recall that

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

This becomes $w_n^{(m+1)}$ in the next iteration.

Therefore

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{-\frac{1}{2}t_n\alpha_m h_m(\mathbf{x}_n)\right\}$$
$$= \dots$$
$$= w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

⇒ Update for the weight coefficients.

AdaBoost – Final Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ or n = 1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = \ln\left\{\frac{1 - \epsilon_m}{\epsilon_m}\right\}$$

d) Update the weighting coefficients:

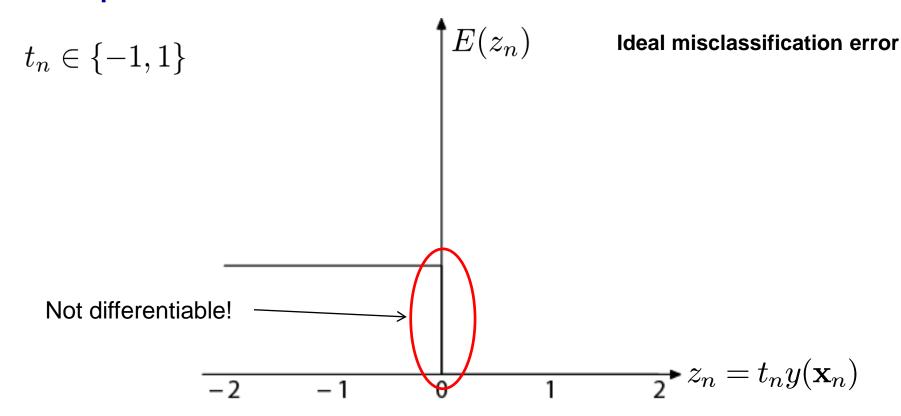
$$w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\}$$

AdaBoost – Analysis

Result of this derivation

- We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
- This allows us to analyze AdaBoost's behavior in more detail.
- In particular, we can see how robust it is to outlier data points.

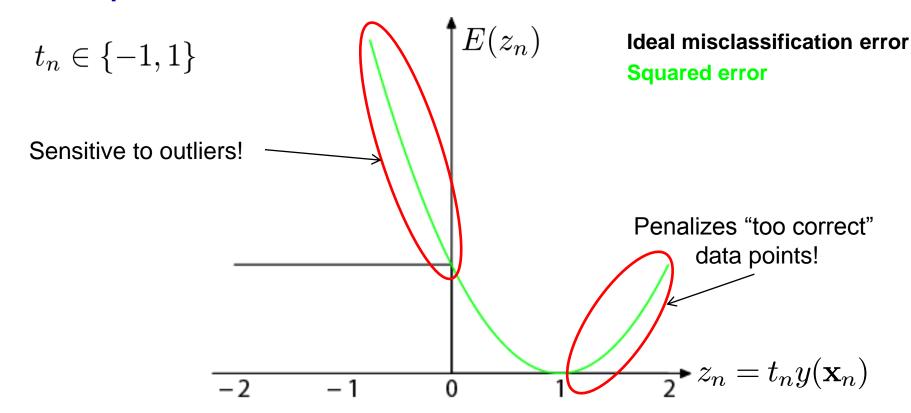
Recap: Error Functions



- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

52

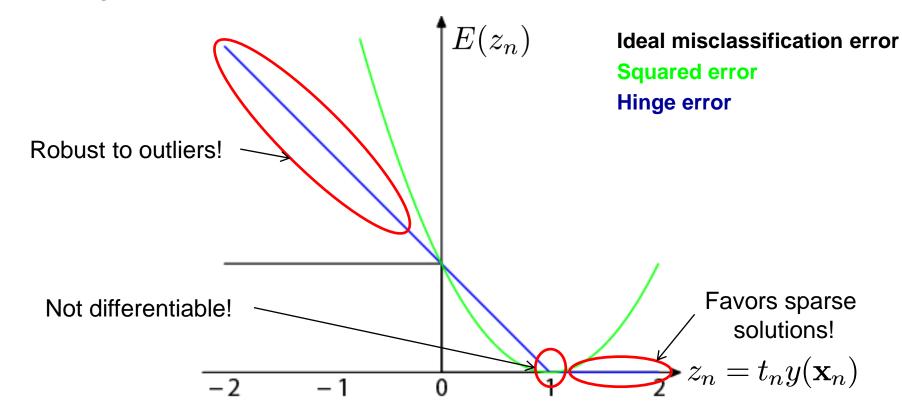
Recap: Error Functions



- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

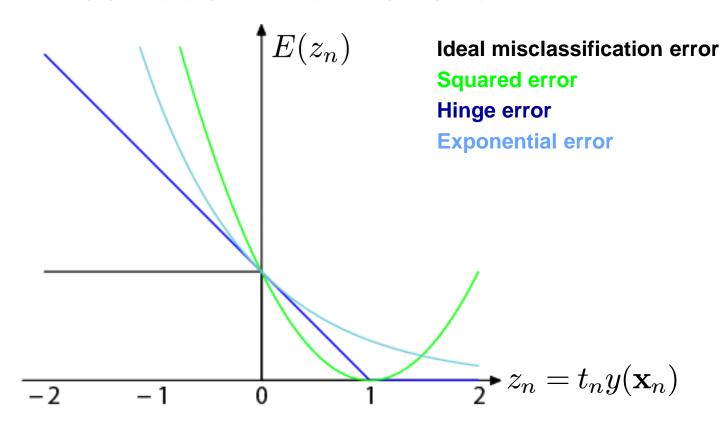
53

Recap: Error Functions



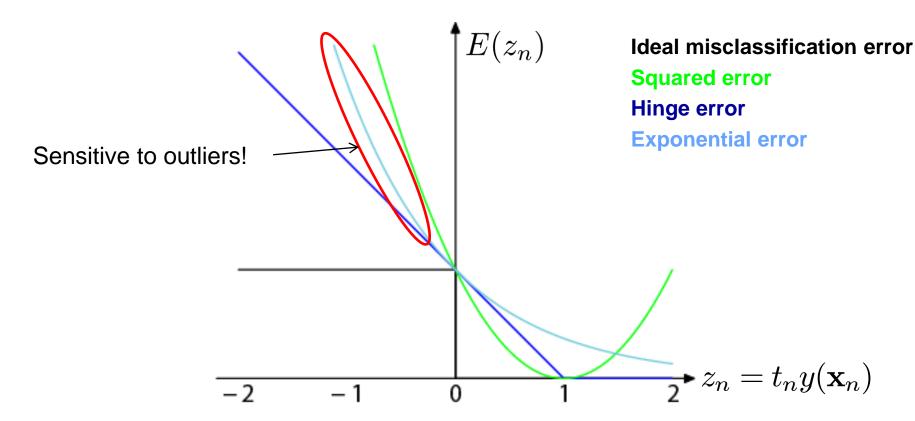
- "Hinge error" used in SVMs
 - > Zero error for points outside the margin $(z_n > 1)$ \Rightarrow sparsity
 - Linear penalty for misclassified points $(z_n < 1)$ \Rightarrow robustness
 - Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly.

Discussion: AdaBoost Error Function



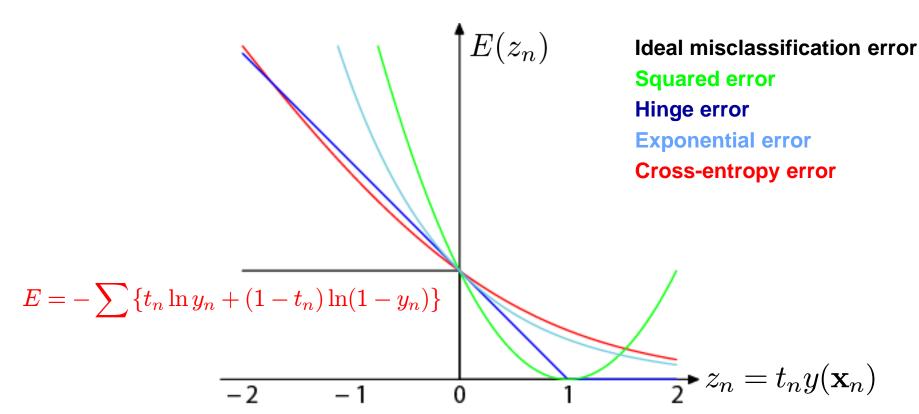
- Exponential error used in AdaBoost
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Properties?

Discussion: AdaBoost Error Function



- Exponential error used in AdaBoost
 - No penalty for too correct data points, fast convergence.
 - Disadvantage: exponential penalty for large negative values!
 - ⇒ Less robust to outliers or misclassified data points!

Discussion: Other Possible Error Functions



- "Cross-entropy error" used in Logistic Regression
 - \rightarrow Similar to exponential error for z>0.
 - > Only grows linearly with large negative values of z.
 - ⇒ Make AdaBoost more robust by switching to this error function.
 - ⇒ "GentleBoost"

Summary: AdaBoost

Properties

- Simple combination of multiple classifiers.
- Easy to implement.
- Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
- Commonly used in many areas.
- Empirically good generalization capabilities.

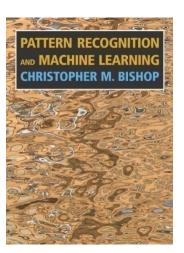
Limitations

- Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
- Single-class classifier
 - Multiclass extensions available

References and Further Reading

 More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop's book.

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006



- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:
 - J. Friedman, T. Hastie, R. Tibshirani, <u>Additive Logistic Regression: a Statistical View of Boosting</u>, *The Annals of Statistics*, Vol. 38(2), pages 337-374, 2000.