
1

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Machine Learning – Lecture 10

Neural Networks

26.11.2018

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Today’s Topic

2
B. Leibe

Deep Learning

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 (Random Forests)

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

3
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: AdaBoost – “Adaptive Boosting”

• Main idea [Freund & Schapire, 1996]

 Iteratively select an ensemble of component classifiers

 After each iteration, reweight misclassified training examples.

– Increase the chance of being selected in a sampled training set.

– Or increase the misclassification cost when training on the full set.

• Components

 hm(x): “weak” or base classifier

– Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost:

 Construct a strong classifier as a thresholded linear combination of

the weighted weak classifiers:

4
B. Leibe

H(x) = sign

Ã
MX

m=1

®mhm(x)

!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

Recap: AdaBoost – Algorithm

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting

coefficients W(m) by minimizing the weighted error function

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

5
B. Leibe

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ?

w(m+1)
n = ?

How should we

do this exactly?

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Minimizing Exponential Error

• The original algorithm used an exponential error function

 where fm(x) is a classifier defined as a linear combination of base

classifiers hl(x):

• Goal

 Minimize E with respect to both the weighting coefficients ®l and the

parameters of the base classifiers hl(x).

6
B. Leibe

fm(x) =
1

2

mX

l=1

®lhl(x)

E =

NX

n=1

expf¡tnfm(xn)g

2

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Minimizing Exponential Error

• Sequential Minimization (continuation from last lecture)

 Only minimize with respect to ®m and hm(x)

7
B. Leibe

=

NX

n=1

exp

½
¡tnfm¡1(xn)¡

1

2
tn®mhm(xn)

¾

fm(x) =
1

2

mX

l=1

®lhl(x)E =

NX

n=1

expf¡tnfm(xn)g with

=

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾
= const.

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

= …

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Minimize with respect to hm(x):

 This is equivalent to minimizing

(our weighted error function from step 2a) of the algorithm)

 We’re on the right track. Let’s continue…

8
B. Leibe

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

= const.= const.

@E

@hm(xn)

!
= 0

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Minimize with respect to ®m:

 Update for the ® coefficients:

9
B. Leibe

E =
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n

µ
1

2
e®m=2 +

1

2
e¡®m=2

¶ NX

n=1

w(m)
n I(hm(xn) 6= tn)

!
=

1

2
e¡®m=2

NX

n=1

w(m)
n

@E

@®m

!
= 0

PN

n=1 w
(m)
n I(hm(xn) 6= tn)PN

n=1 w
(m)
n

=
e¡®m=2

e®m=2 + e¡®m=2

²m =
1

e®m + 1

®m = ln

½
1¡ ²m

²m

¾

²m :=
weighted

error

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Minimizing Exponential Error

• Remaining step: update the weights

 Recall that

 Therefore

 Update for the weight coefficients.

10
B. Leibe

E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

This becomes

in the next iteration.

w(m+1)
n

w(m+1)
n = w(m)

n exp

½
¡1

2
tn®mhm(xn)

¾

= w(m)
n expf®mI(hm(xn) 6= tn)g

= :::

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Final Algorithm

1. Initialization: Set for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting

coefficients W(m) by minimizing the weighted error function

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:

11
B. Leibe

Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ln

½
1¡ ²m

²m

¾

w(m+1)
n = w(m)

n expf®mI(hm(xn) 6= tn)g

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

AdaBoost – Analysis

• Result of this derivation

 We now know that AdaBoost minimizes an exponential error

function in a sequential fashion.

 This allows us to analyze AdaBoost’s behavior in more detail.

 In particular, we can see how robust it is to outlier data points.

12
B. Leibe

3

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• Ideal misclassification error function (black)

 This is what we want to approximate,

 Unfortunately, it is not differentiable.

 The gradient is zero for misclassified points.

 We cannot minimize it by gradient descent. 13
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• Squared error used in Least-Squares Classification

 Very popular, leads to closed-form solutions.

 However, sensitive to outliers due to squared penalty.

 Penalizes “too correct” data points

 Generally does not lead to good classifiers. 14
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes “too correct”

data points!

Sensitive to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Recap: Error Functions

• “Hinge error” used in SVMs

 Zero error for points outside the margin (zn > 1) sparsity

 Linear penalty for misclassified points (zn < 1) robustness

 Not differentiable around zn = 1 Cannot be optimized directly.
15

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse

solutions!

Robust to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 Continuous approximation to ideal misclassification function.

 Sequential minimization leads to simple AdaBoost scheme.

 Properties?
16

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 No penalty for too correct data points, fast convergence.

 Disadvantage: exponential penalty for large negative values!

 Less robust to outliers or misclassified data points!
17

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error
Sensitive to outliers!

zn = tny(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Discussion: Other Possible Error Functions

• “Cross-entropy error” used in Logistic Regression

 Similar to exponential error for z>0.

 Only grows linearly with large negative values of z.

 Make AdaBoost more robust by switching to this error function.

 “GentleBoost”
18

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

Cross-entropy error

E = ¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)

4

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Summary: AdaBoost

• Properties

 Simple combination of multiple classifiers.

 Easy to implement.

 Can be used with many different types of classifiers.

– None of them needs to be too good on its own.

– In fact, they only have to be slightly better than chance.

 Commonly used in many areas.

 Empirically good generalization capabilities.

• Limitations

 Original AdaBoost sensitive to misclassified training data points.

– Because of exponential error function.

– Improvement by GentleBoost

 Single-class classifier

– Multiclass extensions available
19

B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Today’s Topic

20
B. Leibe

Deep Learning

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

21
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

 And a cool learning algorithm: “Perceptron Learning”

 Hardware implementation “Mark I Perceptron”
for 20£20 pixel image analysis

22
B. Leibe Image source: Wikipedia, clipartpanda.com

“The embryo of an electronic computer that

[...] will be able to walk, talk, see, write,

reproduce itself and be conscious of its

existence.”

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

 They showed that (single-layer) Perceptrons cannot solve all

problems.

 This was misunderstood by many that they were worthless.

23
B. Leibe Image source: colourbox.de, thinkstock

Neural Networks

don’t work!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

 Some notable successes with multi-layer perceptrons.

 Backpropagation learning algorithm

24
B. Leibe Image sources: clipartpanda.com, cliparts.co

OMG! They work like

the human brain!

Oh no! Killer robots will

achieve world domination!

5

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

 Some notable successes with multi-layer perceptrons.

 Backpropagation learning algorithm

 But they are hard to train, tend to overfit, and have

unintuitive parameters.

 So, the excitement fades again…

25
B. Leibe Image source: clipartof.com, colourbox.de

sigh!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

 Notably Support Vector Machines

 Machine Learning becomes a discipline of its own.

26
B. Leibe

I can do science, me!

Image source: clipartof.com

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

 Notably Support Vector Machines

 Machine Learning becomes a discipline of its own.

 The general public and the press still love Neural Networks.

27
B. Leibe

So, you’re using Neural Networks?

I’m doing Machine Learning.

Actually...

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

2005+ Gradual progress

 Better understanding how to successfully train deep networks

 Availability of large datasets and powerful GPUs

 Still largely under the radar for many disciplines applying ML

28
B. Leibe

Are you using Neural Networks?

Come on. Get real!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

2005+ Gradual progress

2012 Breakthrough results

 ImageNet Large Scale Visual Recognition Challenge

 A ConvNet halves the error rate of dedicated vision approaches.

 Deep Learning is widely adopted.

29
B. Leibe Image source: clipartpanda.com, clipartof.com

It works!

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

30
B. Leibe

6

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Perceptrons (Rosenblatt 1957)

• Standard Perceptron

• Input Layer

 Hand-designed features based on common sense

• Outputs

 Linear outputs Logistic outputs

• Learning = Determining the weights w
31

B. Leibe

Input layer

Weights

Output layer

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

• One output node per class

• Outputs

 Linear outputs Logistic outputs

 Can be used to do multidimensional linear regression or

multiclass classification.

Extension: Multi-Class Networks

32
B. LeibeSlide adapted from Stefan Roth

Input layer

Weights

Output layer

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

• Straightforward generalization

• Outputs

 Linear outputs Logistic outputs

Extension: Non-Linear Basis Functions

33
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

• Straightforward generalization

• Remarks

 Perceptrons are generalized linear discriminants!

 Everything we know about the latter can also be applied here.

 Note: feature functions Á(x) are kept fixed, not learned!

Extension: Non-Linear Basis Functions

34
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

Wkd’

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Perceptron Learning

• Very simple algorithm

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input vector

to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input vector

from the weight vector.

• This is guaranteed to converge to a correct solution

if such a solution exists.

35
B. LeibeSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input vector to

the weight vector.

 If the output unit incorrectly outputs a one, subtract the input vector

from the weight vector.

• Translation

36
B. LeibeSlide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

7

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input vector to

the weight vector.

 If the output unit incorrectly outputs a one, subtract the input vector

from the weight vector.

• Translation

 This is the Delta rule a.k.a. LMS rule!

 Perceptron Learning corresponds to 1st-order (stochastic) Gradient

Descent (e.g., of a quadratic error function)!

37
B. LeibeSlide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Loss Functions

• We can now also apply other loss functions

 L2 loss

 L1 loss:

 Cross-entropy loss

 Hinge loss

 Softmax loss

38
B. Leibe

 Logistic regression

 Least-squares regression

 Median regression

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification

 Multi-class probabilistic classification

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Regularization

• In addition, we can apply regularizers

 E.g., an L2 regularizer

 This is known as weight decay in Neural Networks.

 We can also apply other regularizers, e.g. L1 sparsity

 Since Neural Networks often have many parameters,

regularization becomes very important in practice.

 We will see more complex regularization techniques later on...

39
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Limitations of Perceptrons

• What makes the task difficult?

 Perceptrons with fixed, hand-coded input features can model any

separable function perfectly...

 ...given the right input features.

 For some tasks this requires an exponential number of input

features.

– E.g., by enumerating all possible binary input vectors as separate

feature units (similar to a look-up table).

– But this approach won’t generalize to unseen test cases!

 It is the feature design that solves the task!

 Once the hand-coded features have been determined, there are very

strong limitations on what a perceptron can learn.

– Classic example: XOR function.

40
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Wait...

• Didn’t we just say that...

 Perceptrons correspond to generalized linear discriminants

 And Perceptrons are very limited...

 Doesn’t this mean that what we have been doing so far in

this lecture has the same problems???

• Yes, this is the case.

 A linear classifier cannot solve certain problems

(e.g., XOR).

 However, with a non-linear classifier based on

the right kind of features, the problem becomes solvable.

 So far, we have solved such problems by hand-designing good

features Á and kernels Á>Á.

 Can we also learn such feature representations?

41
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

42
B. Leibe

8

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Multi-Layer Perceptrons

• Adding more layers

• Output

43
B. Leibe

Hidden layer

Output layer

Input layer

Slide adapted from Stefan Roth

Mapping (learned!)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Multi-Layer Perceptrons

• Activation functions g(k):

 For example: g(2)(a) = ¾(a), g(1)(a) = a

• The hidden layer can have an arbitrary number of nodes

 There can also be multiple hidden layers.

• Universal approximators

 A 2-layer network (1 hidden layer) can approximate any continuous

function of a compact domain arbitrarily well!

(assuming sufficient hidden nodes)

44
B. LeibeSlide credit: Stefan Roth

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Learning with Hidden Units

• Networks without hidden units are very limited in what they

can learn

 More layers of linear units do not help still linear

 Fixed output non-linearities are not enough.

• We need multiple layers of adaptive non-linear hidden units.

But how can we train such nets?

 Need an efficient way of adapting all weights, not just the last layer.

 Learning the weights to the hidden units = learning features

 This is difficult, because nobody tells us what the hidden units

should do.

 Main challenge in deep learning.

45
B. LeibeSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight in the direction of the gradient

46
B. Leibe

L2 loss

L2 regularizer

(“weight decay”)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

47
B. Leibe

today

next lecture

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

48
B. Leibe

9

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

49
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Excursion: Chain Rule of Differentiation

• One-dimensional case: Scalar functions

50
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Excursion: Chain Rule of Differentiation

• Multi-dimensional case: Total derivative

 Need to sum over all paths that lead to the target variable x.

51
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

 With increasing depth, there will be exponentially many paths!

 Infeasible to compute this way.

52
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

53
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Obtaining the Gradients

• Approach 2: Numerical Differentiation

 Given the current state W(¿), we can evaluate E(W(¿)).

 Idea: Make small changes to W(¿) and accept those that improve

E(W(¿)).

 Horribly inefficient! Need several forward passes for each weight.

Each forward pass is one run over the entire dataset!
54

B. Leibe

10

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

55
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Obtaining the Gradients

• Approach 3: Incremental Analytical Differentiation

 Idea: Compute the gradients layer by layer.

 Each layer below builds upon the results of the layer above.

 The gradient is propagated backwards through the layers.

 Backpropagation algorithm

56
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

58
B. LeibeSlide adapted from Geoff Hinton

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑤𝑗𝑖
(𝑘−1)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm

63
B. LeibeSlide adapted from Geoff Hinton

𝑧𝑗
(𝑘)

=

𝑖

𝑤𝑗𝑖
(𝑘−1)

𝑦𝑖
(𝑘−1)

𝑦𝑗
(𝑘)

= 𝑔 𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=
𝜕𝑦𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝑦𝑗
(𝑘)

𝑧𝑗
(𝑘)

𝑦𝑖
(𝑘−1)

=
𝜕𝑔 𝑧𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm

64
B. LeibeSlide adapted from Geoff Hinton

𝑧𝑗
(𝑘)

=

𝑖

𝑤𝑗𝑖
(𝑘−1)

𝑦𝑖
(𝑘−1)

𝑦𝑗
(𝑘)

= 𝑔 𝑧𝑗
(𝑘)

=
𝜕𝑔 𝑧𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=
𝜕𝑦𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑖
(𝑘−1)

=

𝑗

𝜕𝑧𝑗
(𝑘)

𝜕𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=

𝑗

𝑤𝑗𝑖
(𝑘−1) 𝜕𝐸

𝜕𝑧𝑗
(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝑦𝑖
(𝑘−1)

= 𝑤𝑗𝑖
(𝑘−1)

𝑦𝑗
(𝑘)

𝑧𝑗
(𝑘)

𝑦𝑖
(𝑘−1)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm

65
B. LeibeSlide adapted from Geoff Hinton

𝑧𝑗
(𝑘)

=

𝑖

𝑤𝑗𝑖
(𝑘−1)

𝑦𝑖
(𝑘−1)

𝑦𝑗
(𝑘)

= 𝑔 𝑧𝑗
(𝑘)

=
𝜕𝑔 𝑧𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=
𝜕𝑦𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑖
(𝑘−1)

=

𝑗

𝜕𝑧𝑗
(𝑘)

𝜕𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=

𝑗

𝑤𝑗𝑖
(𝑘−1) 𝜕𝐸

𝜕𝑧𝑗
(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝑤𝑗𝑖
(𝑘−1)

= 𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑤𝑗𝑖
(𝑘−1)

=
𝜕𝑧𝑗

(𝑘)

𝜕𝑤𝑗𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

= 𝑦𝑖
(𝑘−1) 𝜕𝐸

𝜕𝑧𝑗
(𝑘)

𝑦𝑗
(𝑘)

𝑧𝑗
(𝑘)

𝑦𝑖
(𝑘−1)

11

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

• Efficient propagation scheme

 𝑦𝑖
(𝑘−1)

is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer k and multiply with 𝑦𝑖
(𝑘−1)

.

Backpropagation Algorithm

66
B. LeibeSlide adapted from Geoff Hinton

=
𝜕𝑔 𝑧𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=
𝜕𝑦𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑖
(𝑘−1)

=

𝑗

𝜕𝑧𝑗
(𝑘)

𝜕𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=

𝑗

𝑤𝑗𝑖
(𝑘−1) 𝜕𝐸

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑤𝑗𝑖
(𝑘−1)

=
𝜕𝑧𝑗

(𝑘)

𝜕𝑤𝑗𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

= 𝑦𝑖
(𝑘−1) 𝜕𝐸

𝜕𝑧𝑗
(𝑘)

𝑦𝑗
(𝑘)

𝑧𝑗
(𝑘)

𝑦𝑖
(𝑘−1)

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Summary: MLP Backpropagation

• Forward Pass

for k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

67
B. Leibe

• Backward Pass

for k = l, l-1, ...,1 do

endfor

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

Analysis: Backpropagation

• Backpropagation is the key to make deep NNs tractable

 However...

• The Backprop algorithm given here is specific to MLPs

 It does not work with more complex architectures,

e.g. skip connections or recurrent networks!

 Whenever a new connection function induces a

different functional form of the chain rule, you

have to derive a new Backprop algorithm for it.

 Tedious...

• Let’s analyze Backprop in more detail

 This will lead us to a more flexible algorithm formulation

 Next lecture…

68
B. Leibe

P
e

rc
e

p
tu

a
l

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
8

References and Further Reading

• More information on Neural Networks can be found in

Chapters 6 and 7 of the Goodfellow & Bengio book

69
B. Leibe

https://goodfeli.github.io/dlbook/

I. Goodfellow, Y. Bengio, A. Courville

Deep Learning

MIT Press, 2016

https://goodfeli.github.io/dlbook/

