

Machine Learning – Lecture 10

Neural Networks

26.11.2018

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

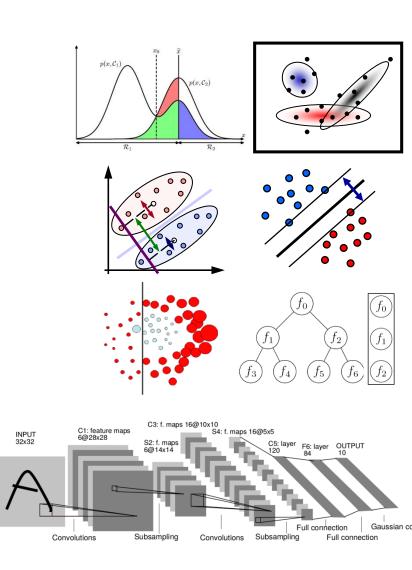
leibe@vision.rwth-aachen.de

Today's Topic

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - (Random Forests)
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks



RWTHAACHEN UNIVERSITY

Recap: AdaBoost - "Adaptive Boosting"

Main idea

[Freund & Schapire, 1996]

- Iteratively select an ensemble of component classifiers
- After each iteration, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

Components

- $h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
- \rightarrow $H(\mathbf{x})$: "strong" or final classifier

AdaBoost:

Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$H(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})\right)$$

Recap: AdaBoost - Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = ?$$

d) Update the weighting coefficients:

$$w_n^{(m+1)} = ?$$

How should we do this exactly?

Recap: Minimizing Exponential Error

The original algorithm used an exponential error function

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\}$$

where $f_m(\mathbf{x})$ is a classifier defined as a linear combination of base classifiers $h_l(\mathbf{x})$:

$$f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$$

- Goal
 - Minimize E with respect to both the weighting coefficients α_l and the parameters of the base classifiers $h_l(\mathbf{x})$.

Recap: Minimizing Exponential Error

- Sequential Minimization (continuation from last lecture)
 - > Only minimize with respect to α_m and $h_m(\mathbf{x})$

$$E = \sum_{n=1}^{N} \exp\left\{-t_n f_m(\mathbf{x}_n)\right\} \qquad \text{with} \quad f_m(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(\mathbf{x})$$

$$= \sum_{n=1}^{N} \exp\left\{-t_n f_{m-1}(\mathbf{x}_n) - \frac{1}{2} t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

= const.

$$= \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\} = \dots$$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

1

AdaBoost - Minimizing Exponential Error

• Minimize with respect to $h_m(\mathbf{x})$: $\frac{\partial E}{\partial h_m(\mathbf{x}_n)} \stackrel{!}{=} 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$= const.$$

⇒ This is equivalent to minimizing

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

(our weighted error function from step 2a) of the algorithm)

⇒ We're on the right track. Let's continue...

AdaBoost – Minimizing Exponential Error

Minimize with respect to α_m : $\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$

$$\frac{\partial E}{\partial \alpha_m} \stackrel{!}{=} 0$$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2}\right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w_n^{(m)}$$

$$\left(\frac{1}{2}e^{\alpha_{m}/2} + \frac{1}{2}e^{-\alpha_{m}/2}\right) \sum_{n=1}^{N} w_{n}^{(m)} I(h_{m}(\mathbf{x}_{n}) \neq t_{n}) \stackrel{!}{=} \frac{1}{2}e^{-\alpha_{m}/2} \sum_{n=1}^{N} w_{n}^{(m)}$$

weighted error
$$\epsilon_m := \underbrace{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}_n) \neq t_n)}_{\sum_{n=1}^N w_n^{(m)}} = \underbrace{\frac{e^{-\alpha_m/2}}{e^{\alpha_m/2} + e^{-\alpha_m/2}}}_{}$$

$$\epsilon_m = \frac{1}{e^{\alpha_m} + 1}$$

 \Rightarrow Update for the α coefficients:

$$\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$$

AdaBoost – Minimizing Exponential Error

- Remaining step: update the weights
 - Recall that

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\left\{-\frac{1}{2}t_n \alpha_m h_m(\mathbf{x}_n)\right\}$$

This becomes $w_n^{(m+1)}$ in the next iteration.

Therefore

$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{-\frac{1}{2}t_n\alpha_m h_m(\mathbf{x}_n)\right\}$$
$$= \dots$$
$$= w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

⇒ Update for the weight coefficients.

AdaBoost - Final Algorithm

- 1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ or n = 1,...,N.
- **2.** For m = 1,...,M iterations
 - a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)$$

b) Estimate the weighted error of this classifier on X:

$$\epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}$$

c) Calculate a weighting coefficient for $h_m(\mathbf{x})$:

$$\alpha_m = \ln\left\{\frac{1 - \epsilon_m}{\epsilon_m}\right\}$$

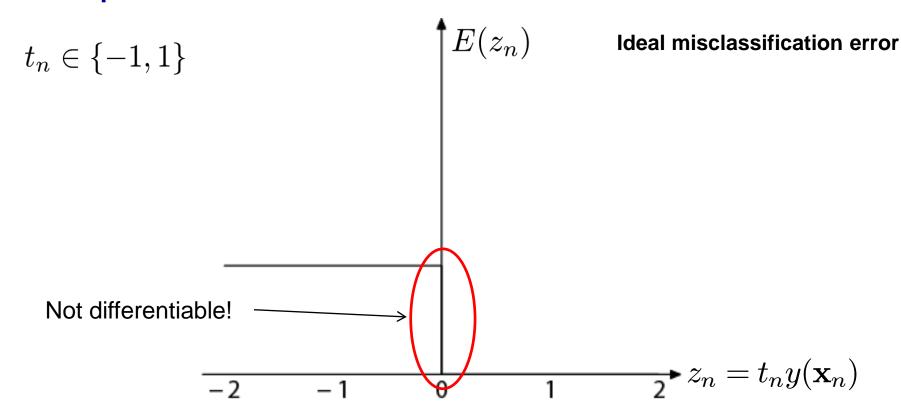
d) Update the weighting coefficients:

$$w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\}$$

AdaBoost – Analysis

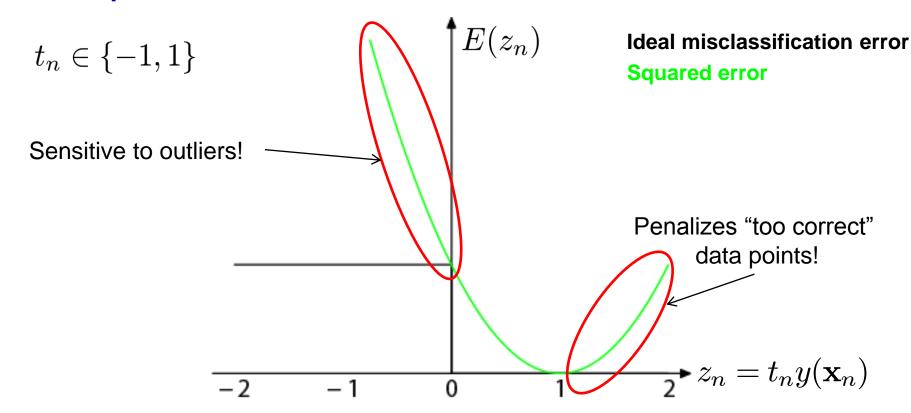
- Result of this derivation
 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - This allows us to analyze AdaBoost's behavior in more detail.
 - In particular, we can see how robust it is to outlier data points.

Recap: Error Functions



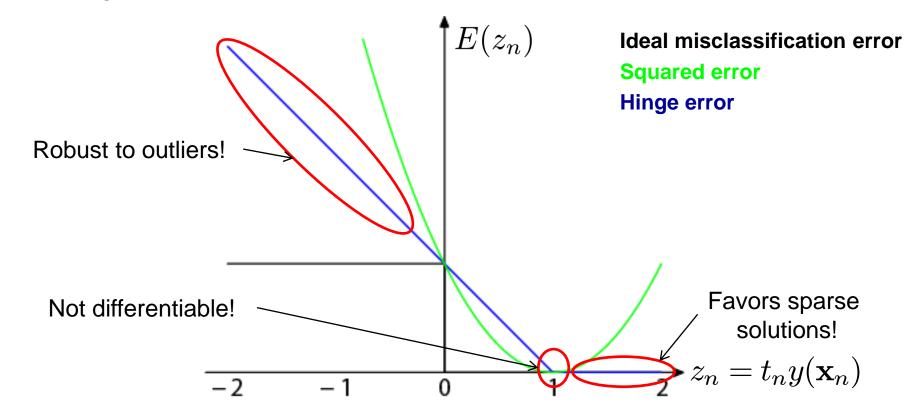
- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

Recap: Error Functions



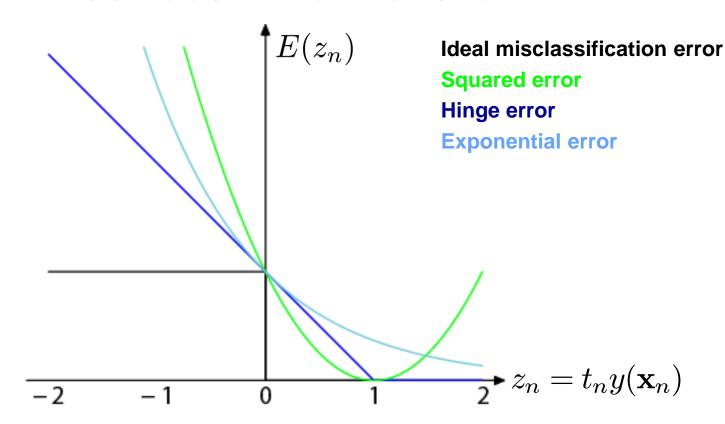
- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

Recap: Error Functions



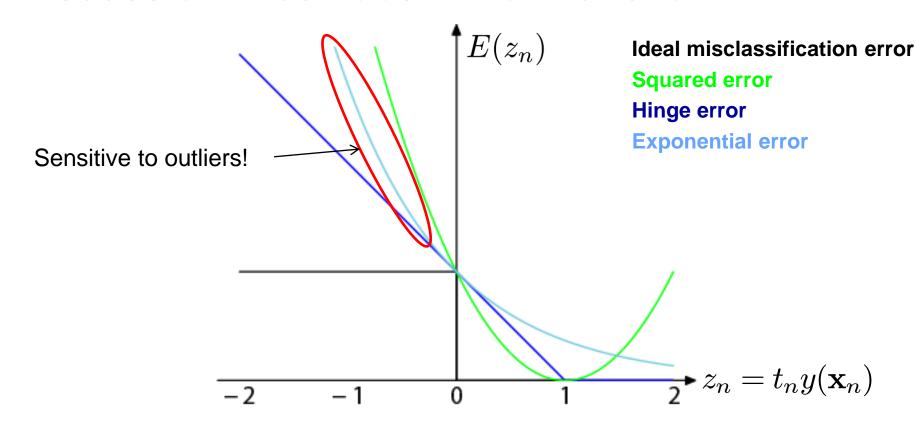
- "Hinge error" used in SVMs
 - > Zero error for points outside the margin $(z_n > 1)$ \Rightarrow sparsity
 - Linear penalty for misclassified points $(z_n < 1)$ \Rightarrow robustness
 - Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly.

Discussion: AdaBoost Error Function



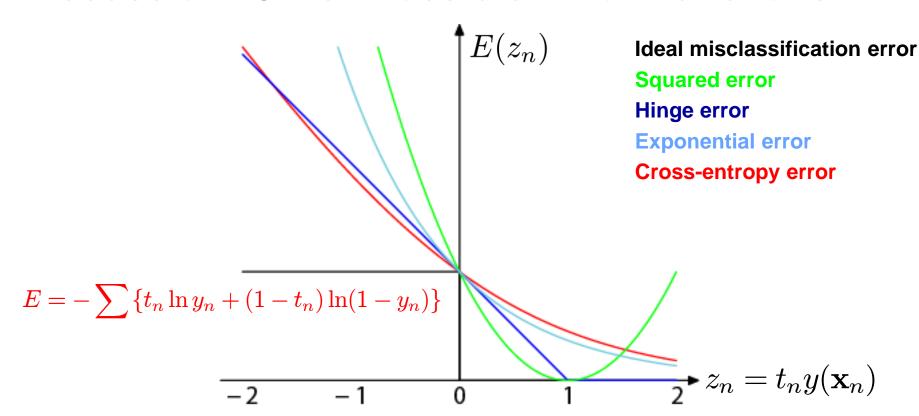
- Exponential error used in AdaBoost
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Properties?

Discussion: AdaBoost Error Function



- Exponential error used in AdaBoost
 - No penalty for too correct data points, fast convergence.
 - Disadvantage: exponential penalty for large negative values!
 - ⇒ Less robust to outliers or misclassified data points!

Discussion: Other Possible Error Functions



- "Cross-entropy error" used in Logistic Regression
 - \rightarrow Similar to exponential error for z>0.
 - > Only grows linearly with large negative values of z.
 - ⇒ Make AdaBoost more robust by switching to this error function.
 - ⇒ "GentleBoost"

Summary: AdaBoost

Properties

- Simple combination of multiple classifiers.
- Easy to implement.
- Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
- Commonly used in many areas.
- Empirically good generalization capabilities.

Limitations

- Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
- Single-class classifier
 - Multiclass extensions available

Today's Topic

Topics of This Lecture

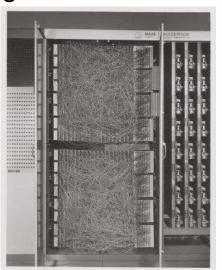
- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

1957 Rosenblatt invents the Perceptron

- And a cool learning algorithm: "Perceptron Learning"
- Hardware implementation "Mark I Perceptron" for 20×20 pixel image analysis

The New York Times

"The embryo of an electronic computer that [...] will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."



- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
 - They showed that (single-layer) Perceptrons cannot solve all problems.
 - This was misunderstood by many that they were worthless.

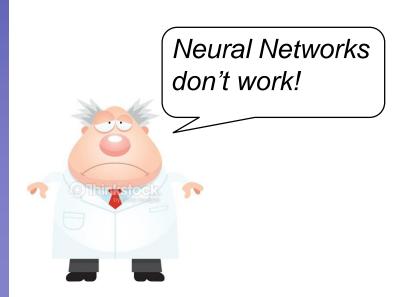


Image source: colourbox.de, thinkstock

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

- Some notable successes with multi-layer perceptrons.
- Backpropagation learning algorithm

OMG! They work like the human brain!

Oh no! Killer robots will achieve world domination!

- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
- 1980s Resurgence of Neural Networks
 - Some notable successes with multi-layer perceptrons.
 - Backpropagation learning algorithm
 - But they are hard to train, tend to overfit, and have unintuitive parameters.
 - So, the excitement fades again...

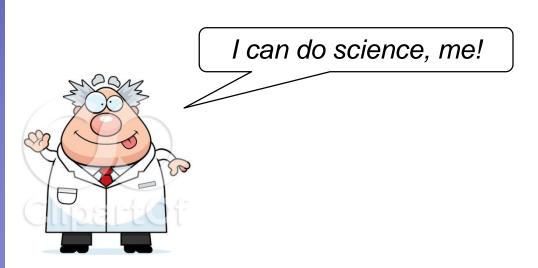
1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

- Notably Support Vector Machines
- Machine Learning becomes a discipline of its own.



- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
- 1980s Resurgence of Neural Networks
- 1995+ Interest shifts to other learning methods
 - Notably Support Vector Machines
 - Machine Learning becomes a discipline of its own.
 - The general public and the press still love Neural Networks.

I'm doing Machine Learning.

So, you're using Neural Networks?

Actually...

- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
- 1980s Resurgence of Neural Networks
- 1995+ Interest shifts to other learning methods
- 2005+ Gradual progress
 - Better understanding how to successfully train deep networks
 - Availability of large datasets and powerful GPUs
 - Still largely under the radar for many disciplines applying ML

Are you using Neural Networks?

Come on. Get real!

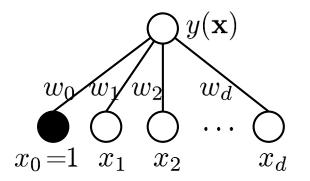
- 1957 Rosenblatt invents the Perceptron
- 1969 Minsky & Papert
- 1980s Resurgence of Neural Networks
- 1995+ Interest shifts to other learning methods
- 2005+ Gradual progress
- 2012 Breakthrough results
 - ImageNet Large Scale Visual Recognition Challenge
 - A ConvNet halves the error rate of dedicated vision approaches.
 - Deep Learning is widely adopted.

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Perceptrons (Rosenblatt 1957)

Standard Perceptron



Output layer

Weights

Input layer

- Input Layer
 - Hand-designed features based on common sense
- Outputs
 - Linear outputs $y(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_0$

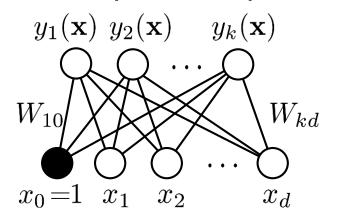
Logistic outputs

$$y(\mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + w_0)$$

Learning = Determining the weights w

Extension: Multi-Class Networks

One output node per class



Output layer

Weights

Input layer

- Outputs
 - Linear outputs

$$y_k(\mathbf{x}) = \sum_{i=0}^d W_{ki} x_i$$

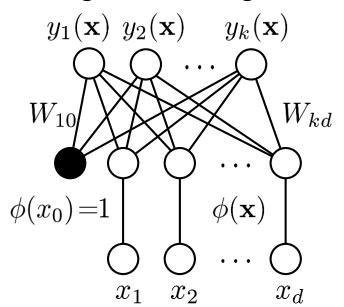
Logistic outputs

$$y_k(\mathbf{x}) = \sigma\left(\sum_{i=0}^d W_{ki} x_i\right)$$

⇒ Can be used to do multidimensional linear regression or multiclass classification.

Extension: Non-Linear Basis Functions

Straightforward generalization



Output layer

Weights

Feature layer

Mapping (fixed)

Input layer

- Outputs
 - Linear outputs

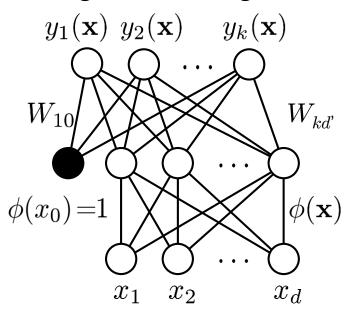
$$y_k(\mathbf{x}) = \sum_{i=0}^d W_{ki} \phi(x_i)$$

Logistic outputs

$$y_k(\mathbf{x}) = \sigma \left(\sum_{i=0}^d W_{ki} \phi(\mathbf{x}_i) \right)$$

Extension: Non-Linear Basis Functions

Straightforward generalization



Output layer

Weights

Feature layer

Mapping (fixed)

Input layer

Remarks

- Perceptrons are generalized linear discriminants!
- Everything we know about the latter can also be applied here.
- Note: feature functions $\phi(\mathbf{x})$ are kept fixed, not learned!

Perceptron Learning

- Very simple algorithm
- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- This is guaranteed to converge to a correct solution if such a solution exists.

Perceptron Learning

- Let's analyze this algorithm...
- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- Translation

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)}$$

Perceptron Learning

- Let's analyze this algorithm...
- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
- Translation

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

- This is the Delta rule a.k.a. LMS rule!
- ⇒ Perceptron Learning corresponds to 1st-order (stochastic) Gradient Descent (e.g., of a quadratic error function)!

Loss Functions

We can now also apply other loss functions

L2 loss
$$L(t,y(\mathbf{x})) = \sum_n \left(y(\mathbf{x}_n) - t_n\right)^2$$
 \Rightarrow Least-squares regression

L1 loss:

$$L(t, y(\mathbf{x})) = \sum_{n} |y(\mathbf{x}_n) - t_n|$$

Cross-entropy loss

$$L(t, y(\mathbf{x})) = -\sum_{n} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

Hinge loss

$$L(t, y(\mathbf{x})) = \sum_{n} [1 - t_n y(\mathbf{x}_n)]_{+}$$

Softmax loss

$$L(t, y(\mathbf{x})) = -\sum_{n} \sum_{k} \left\{ \mathbb{I}\left(t_{n} = k\right) \ln \frac{\exp(y_{k}(\mathbf{x}))}{\sum_{j} \exp(y_{j}(\mathbf{x}))} \right\}$$

B. Leibe

 \Rightarrow Logistic regression $\{(1-u)\}$

⇒ Median regression

⇒ SVM classification

Regularization

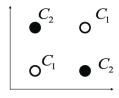
- In addition, we can apply regularizers
 - E.g., an L2 regularizer

$$E(\mathbf{w}) = \sum L(t_n, y(\mathbf{x}_n; \mathbf{w})) + \lambda ||\mathbf{w}||^2$$

- > This is known as weight decay in Neural Networks.
- We can also apply other regularizers, e.g. L1 ⇒ sparsity
- Since Neural Networks often have many parameters, regularization becomes very important in practice.
- We will see more complex regularization techniques later on...

Limitations of Perceptrons

- What makes the task difficult?
 - Perceptrons with fixed, hand-coded input features can model any separable function perfectly...
 - ...given the right input features.
 - For some tasks this requires an exponential number of input features.
 - E.g., by enumerating all possible binary input vectors as separate feature units (similar to a look-up table).
 - But this approach won't generalize to unseen test cases!
 - ⇒ It is the feature design that solves the task!
 - Once the hand-coded features have been determined, there are very strong limitations on what a perceptron can learn.
 - Classic example: XOR function.



Wait...

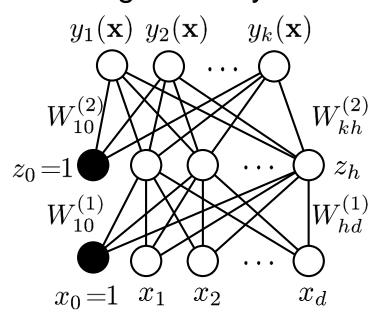
- Didn't we just say that...
 - Perceptrons correspond to generalized linear discriminants
 - And Perceptrons are very limited...
 - Doesn't this mean that what we have been doing so far in this lecture has the same problems???
- Yes, this is the case.
 - A linear classifier cannot solve certain problems (e.g., XOR).
 - However, with a non-linear classifier based on the right kind of features, the problem becomes solvable.
 - \Rightarrow So far, we have solved such problems by hand-designing good features ϕ and kernels $\phi^{\top}\phi$.
 - ⇒ Can we also learn such feature representations?

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Multi-Layer Perceptrons

Adding more layers



Output layer

Hidden layer

Mapping (learned!)

Input layer

Output

$$y_k(\mathbf{x}) = g^{(2)} \left(\sum_{i=0}^h W_{ki}^{(2)} g^{(1)} \left(\sum_{j=0}^d W_{ij}^{(1)} x_j \right) \right)$$

Multi-Layer Perceptrons

$$y_k(\mathbf{x}) = g^{(2)} \left(\sum_{i=0}^h W_{ki}^{(2)} g^{(1)} \left(\sum_{j=0}^d W_{ij}^{(1)} x_j \right) \right)$$

- Activation functions $g^{(k)}$:
 - > For example: $g^{(2)}(a) = \sigma(a)$, $g^{(1)}(a) = a$
- The hidden layer can have an arbitrary number of nodes
 - There can also be multiple hidden layers.
- Universal approximators
 - A 2-layer network (1 hidden layer) can approximate any continuous function of a compact domain arbitrarily well! (assuming sufficient hidden nodes)

Learning with Hidden Units

- Networks without hidden units are very limited in what they can learn
 - More layers of linear units do not help ⇒ still linear
 - Fixed output non-linearities are not enough.
- We need multiple layers of adaptive non-linear hidden units.
 But how can we train such nets?
 - Need an efficient way of adapting all weights, not just the last layer.
 - Learning the weights to the hidden units = learning features
 - > This is difficult, because nobody tells us what the hidden units should do.
 - ⇒ Main challenge in deep learning.

Learning with Hidden Units

- How can we train multi-layer networks efficiently?
 - > Need an efficient way of adapting all weights, not just the last layer.

- Idea: Gradient Descent
 - Set up an error function

$$E(\mathbf{W}) = \sum_{n} L(t_n, y(\mathbf{x}_n; \mathbf{W})) + \lambda \Omega(\mathbf{W})$$

with a loss $L(\cdot)$ and a regularizer $\Omega(\cdot)$.

$$imes$$
 E.g., $L(t,y(\mathbf{x};\mathbf{W})) = \sum_n \left(y(\mathbf{x}_n;\mathbf{W}) - t_n\right)^2$ L₂ loss

$$\Omega(\mathbf{W}) = ||\mathbf{W}||_F^2$$

L₂ regularizer ("weight decay")

 \Rightarrow Update each weight $W_{ij}^{(k)}$ in the direction of the gradient $\frac{\partial E(\mathbf{W})}{\partial W_{ij}^{(k)}}$

Gradient Descent

- Two main steps
 - 1. Computing the gradients for each weight
 - Adjusting the weights in the direction of the gradient

today

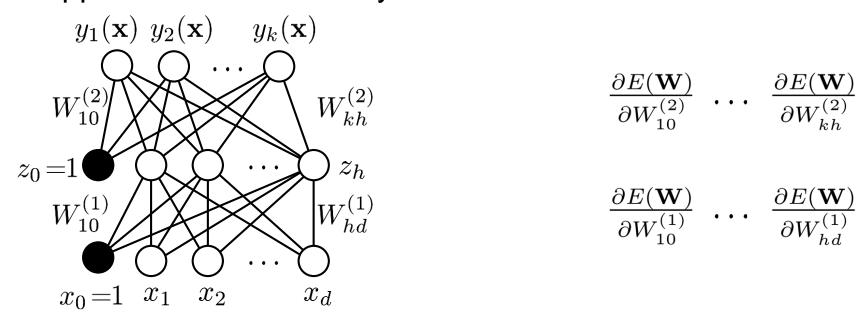
next lecture

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Obtaining the Gradients

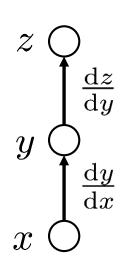
Approach 1: Naive Analytical Differentiation



- Compute the gradients for each variable analytically.
- What is the problem when doing this?

Excursion: Chain Rule of Differentiation

One-dimensional case: Scalar functions



$$\Delta z = \frac{\mathrm{d}z}{\mathrm{d}y} \Delta y$$

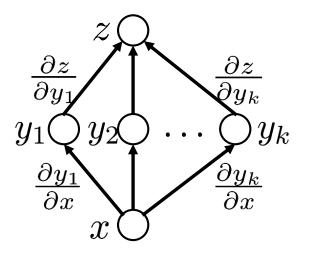
$$\Delta y = \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$$

$$\Delta y = \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$$
$$\Delta z = \frac{\mathrm{d}z}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x} \Delta x$$

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \frac{\mathrm{d}y}{\mathrm{d}x}$$

Excursion: Chain Rule of Differentiation

Multi-dimensional case: Total derivative



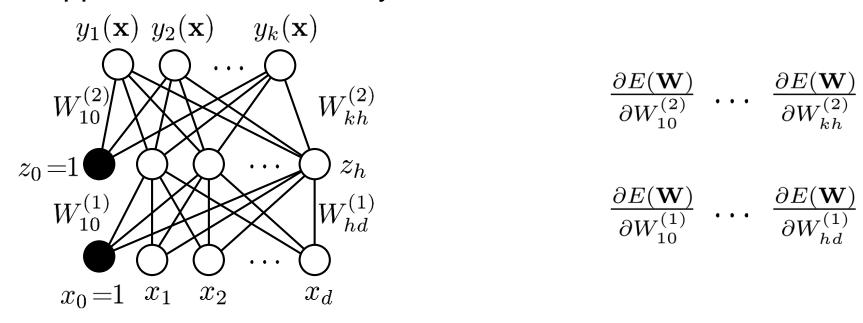
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x} + \dots$$

$$=\sum_{i=1}^{k} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

 \Rightarrow Need to sum over all paths that lead to the target variable x.

Obtaining the Gradients

Approach 1: Naive Analytical Differentiation



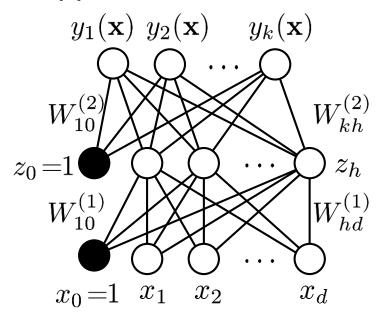
- Compute the gradients for each variable analytically.
- What is the problem when doing this?
- ⇒ With increasing depth, there will be exponentially many paths!
- \Rightarrow Infeasible to compute this way.

Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Obtaining the Gradients

Approach 2: Numerical Differentiation



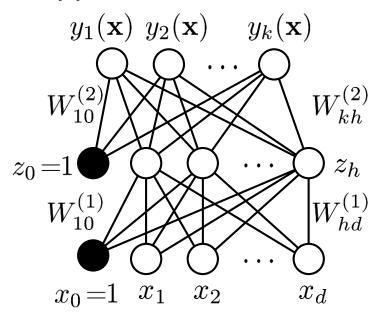
- Solution Given the current state $\mathbf{W}^{(\tau)}$, we can evaluate $E(\mathbf{W}^{(\tau)})$.
- Idea: Make small changes to $\mathbf{W}^{(\tau)}$ and accept those that improve $E(\mathbf{W}^{(\tau)})$.
- ⇒ Horribly inefficient! Need several forward passes for each weight. Each forward pass is one run over the entire dataset!

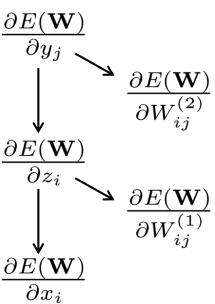
Topics of This Lecture

- A Brief History of Neural Networks
- Perceptrons
 - Definition
 - Loss functions
 - Regularization
 - Limits
- Multi-Layer Perceptrons
 - Definition
 - Learning with hidden units
- Obtaining the Gradients
 - Naive analytical differentiation
 - Numerical differentiation
 - Backpropagation

Obtaining the Gradients

Approach 3: Incremental Analytical Differentiation



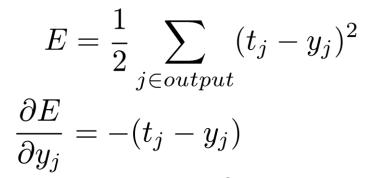


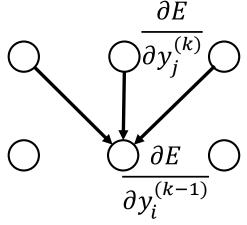
- Idea: Compute the gradients layer by layer.
- Each layer below builds upon the results of the layer above.
- ⇒ The gradient is propagated backwards through the layers.
- ⇒ Backpropagation algorithm

Core steps

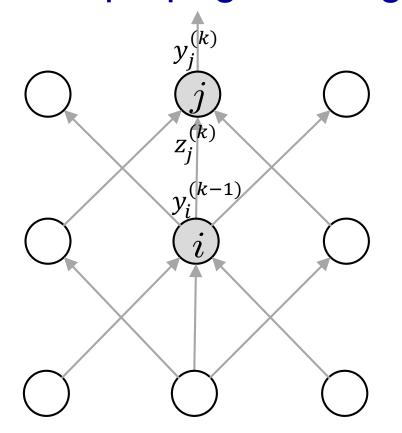
 Convert the discrepancy between each output and its target value into an error derivate.

- 2. Compute error derivatives in each hidden layer from error derivatives in the layer above.
- 3. Use error derivatives *w.r.t.* activities to get error derivatives *w.r.t.* the incoming weights





$$\frac{\partial E}{\partial y_j^{(k)}} \longrightarrow \frac{\partial E}{\partial w_{ji}^{(k-1)}}$$



$$\frac{\partial E}{\partial z_j^{(k)}} = \frac{\partial y_j^{(k)}}{\partial z_j^{(k)}} \frac{\partial E}{\partial y_j^{(k)}} \qquad = \frac{\partial g\left(z_j^{(k)}\right)}{\partial z_j^{(k)}} \frac{\partial E}{\partial y_j^{(k)}}$$

- **Notation**
 - $y_j^{(k)}$

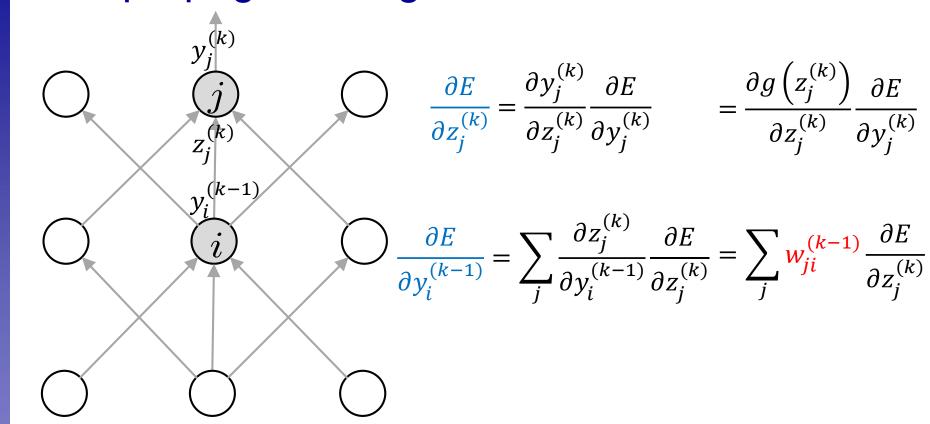
Output of layer *k*

Connections: $z_{j}^{(k)} = \sum_{i} w_{ji}^{(k-1)} y_{i}^{(k-1)}$ $y_{j}^{(k)} = g\left(z_{j}^{(k)}\right)$

$$> z_j^{(k)}$$

Input of layer k

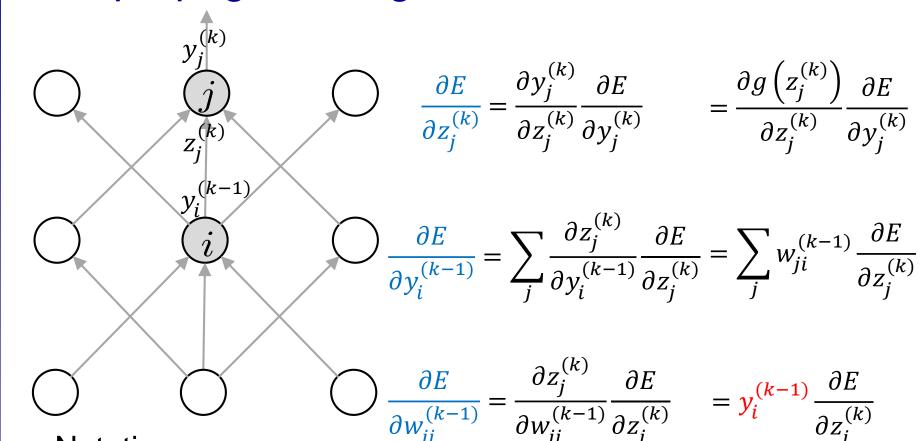
$$y_j^{(k)} = g\left(z_j^{(k)}\right)$$



Notation

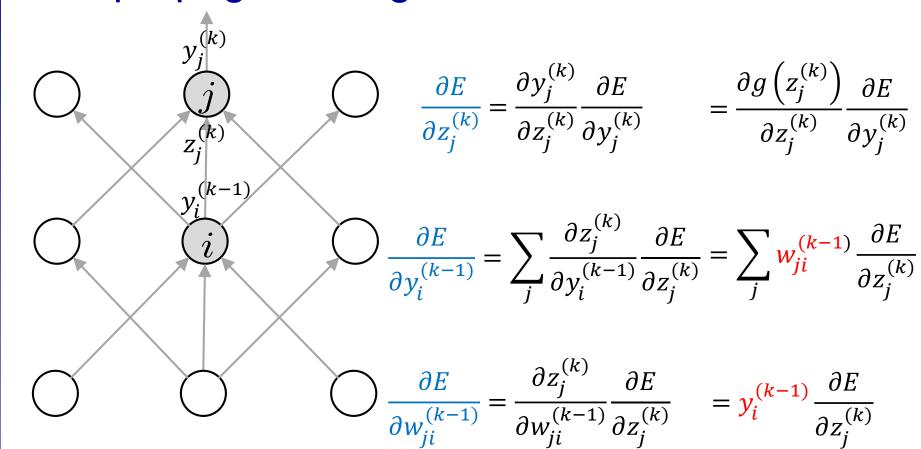
- Connections: $z_j^{(k)} = \sum w_{ji}^{(k-1)} y_i^{(k-1)}$ $\frac{\partial z_j^{(k)}}{\partial y_i^{(k-1)}} = w_{ji}^{(k-1)}$ 64 $y_j^{(k)}$ Output of layer *k*
- $> Z_i^{(k)}$ Input of layer k

B. Leibe



- **Notation**
 - Connections: $z_j^{(k)} = \sum w_{ji}^{(k-1)} y_i^{(k-1)}$ $\frac{\partial z_j^{(k)}}{\partial w_{ji}^{(k-1)}} = y_i^{(k-1)}$ 65 $y_i^{(k)}$ Output of layer k
 - $> Z_i^{(k)}$ Input of layer k

Slide adapted from Geoff Hinton



- Efficient propagation scheme
 - $y_i^{(k-1)}$ is already known from forward pass! (Dynamic Programming)
 - \Rightarrow Propagate back the gradient from layer k and multiply with $y_i^{(k-1)}$. 66

Summary: MLP Backpropagation

Forward Pass

$$\mathbf{y}^{(0)} = \mathbf{x}$$
for $k = 1, ..., l$ do
 $\mathbf{z}^{(k)} = \mathbf{W}^{(k)} \mathbf{y}^{(k-1)}$
 $\mathbf{y}^{(k)} = g_k(\mathbf{z}^{(k)})$
endfor
 $\mathbf{y} = \mathbf{y}^{(l)}$
 $E = L(\mathbf{t}, \mathbf{y}) + \lambda \Omega(\mathbf{W})$

Backward Pass

$$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{y}} = \frac{\partial}{\partial \mathbf{y}} L(\mathbf{t}, \mathbf{y}) + \lambda \frac{\partial}{\partial \mathbf{y}} \Omega$$
for $k = l, l\text{-}1, ..., 1$ do
$$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{z}^{(k)}} = \mathbf{h} \odot g'(\mathbf{y}^{(k)})$$

$$\frac{\partial E}{\partial \mathbf{W}^{(k)}} = \mathbf{h} \mathbf{y}^{(k-1)\top} + \lambda \frac{\partial \Omega}{\partial \mathbf{W}^{(k)}}$$

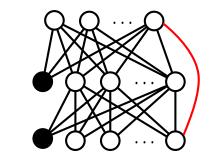
$$\mathbf{h} \leftarrow \frac{\partial E}{\partial \mathbf{y}^{(k-1)}} = \mathbf{W}^{(k)\top} \mathbf{h}$$
endfor

Notes

- ightharpoonup For efficiency, an entire batch of data ${f X}$ is processed at once.
- o denotes the element-wise product

Analysis: Backpropagation

- Backpropagation is the key to make deep NNs tractable
 - However...
- The Backprop algorithm given here is specific to MLPs
 - It does not work with more complex architectures, e.g. skip connections or recurrent networks!
 - Whenever a new connection function induces a different functional form of the chain rule, you have to derive a new Backprop algorithm for it.



- ⇒ Tedious...
- Let's analyze Backprop in more detail
 - This will lead us to a more flexible algorithm formulation
 - Next lecture...

References and Further Reading

 More information on Neural Networks can be found in Chapters 6 and 7 of the Goodfellow & Bengio book

> I. Goodfellow, Y. Bengio, A. Courville Deep Learning MIT Press, 2016

https://goodfeli.github.io/dlbook/

