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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

2
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Topics of This Lecture

• Learning Multi-layer Networks
 Backpropagation 

 Computational graphs

 Automatic differentiation

 Practical issues

• Gradient Descent  
 Stochastic Gradient Descent & Minibatches

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization 3
B. Leibe
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Recap: Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight          in the direction of the gradient            

4
B. Leibe

L2 loss 

L2 regularizer

(“weight decay”) 
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Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of 

the gradient

5
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Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

9
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Excursion: Chain Rule of Differentiation

• One-dimensional case: Scalar functions

10
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Excursion: Chain Rule of Differentiation

• Multi-dimensional case: Total derivative

 Need to sum over all paths that lead to the target variable x.

11
B. Leibe
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Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

 With increasing depth, there will be exponentially many paths!

 Infeasible to compute this way.

12
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Obtaining the Gradients

• Approach 2: Numerical Differentiation

 Given the current state W(¿), we can evaluate E(W(¿)).

 Idea: Make small changes to W(¿) and accept those that improve 

E(W(¿)).

 Horribly inefficient! Need several forward passes for each weight. 

Each forward pass is one run over the entire dataset!
13
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Obtaining the Gradients

• Approach 3: Incremental Analytical Differentiation

 Idea: Compute the gradients layer by layer.

 Each layer below builds upon the results of the layer above.

 The gradient is propagated backwards through the layers.

 Backpropagation algorithm

14
B. Leibe
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Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

15
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• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm
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• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm
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• Notation

 𝑦𝑗
(𝑘)

Output of layer k Connections:

 𝑧𝑗
(𝑘)

Input of layer k

Backpropagation Algorithm

18
B. LeibeSlide adapted from Geoff Hinton

𝑧𝑗
(𝑘)

=

𝑖

𝑤𝑗𝑖
(𝑘−1)

𝑦𝑖
(𝑘−1)

𝑦𝑗
(𝑘)

= 𝑔 𝑧𝑗
(𝑘)

=
𝜕𝑔 𝑧𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=
𝜕𝑦𝑗

(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)

𝜕𝐸

𝜕𝑦𝑖
(𝑘−1)

=

𝑗

𝜕𝑧𝑗
(𝑘)

𝜕𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

=

𝑗

𝑤𝑗𝑖
(𝑘−1) 𝜕𝐸

𝜕𝑧𝑗
(𝑘)

𝜕𝑧𝑗
(𝑘)

𝜕𝑤𝑗𝑖
(𝑘−1)

= 𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑤𝑗𝑖
(𝑘−1)

=
𝜕𝑧𝑗

(𝑘)

𝜕𝑤𝑗𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑧𝑗
(𝑘)

= 𝑦𝑖
(𝑘−1) 𝜕𝐸

𝜕𝑧𝑗
(𝑘)

𝑦𝑗
(𝑘)

𝑧𝑗
(𝑘)

𝑦𝑖
(𝑘−1)

𝜕𝐸

𝜕𝑦𝑗
(𝑘)



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

8

• Efficient propagation scheme

 𝑦𝑖
(𝑘−1)

is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer k and multiply with 𝑦𝑖
(𝑘−1)

. 

Backpropagation Algorithm
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Summary: MLP Backpropagation

• Forward Pass

for  k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

20
B. Leibe

• Backward Pass

for  k = l, l-1, ...,1 do

endfor
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Analysis: Backpropagation

• Backpropagation is the key to make deep NNs tractable

 However...

• The Backprop algorithm given here is specific to MLPs

 It does not work with more complex architectures,

e.g. skip connections or recurrent networks!

 Whenever a new connection function induces a

different functional form of the chain rule, you 

have to derive a new Backprop algorithm for it.

 Tedious...

• Let’s analyze Backprop in more detail

 This will lead us to a more flexible algorithm formulation

21
B. Leibe



P
e
rc

e
p

tu
a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h
in

e
 L

e
a
rn

in
g
 W

in
te

r 
‘1

8

Topics of This Lecture

• Learning Multi-layer Networks
 Recap: Backpropagation 

 Computational graphs

 Automatic differentiation

 Practical issues

• Gradient Descent  
 Stochastic Gradient Descent & Minibatches

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization 22
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Computational Graphs

• We can think of mathematical expressions as graphs

 E.g., consider the expression

 We can decompose this into

the operations

and visualize this as a computational graph.

• Evaluating partial derivatives       in such a graph

 General rule: sum over all possible paths from Y to X

and multiply the derivatives on each edge of the path together.

23
B. LeibeSlide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Factoring Paths

• Problem: Combinatorial explosion

 Example:

 There are 3 paths from X to Y and 3 more from Y to Z.

 If we want to compute       , we need to sum over 3£3 paths:

 Instead of naively summing over paths, it’s better to factor them

24
B. LeibeSlide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Efficient Factored Algorithms

• Efficient algorithms for computing the sum 

 Instead of summing over all of the paths explicitly, compute

the sum more efficiently by merging paths back together at

every node. 
25
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Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Why Do We Care?

• Let’s consider the example again

 Using forward-mode differentiation 

from b up...

 Runtime: O(#edges)

 Result: derivative of every node

with respect to b.

26
B. LeibeSlide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Why Do We Care?

• Let’s consider the example again

 Using reverse-mode differentiation 

from e down...

 Runtime: O(#edges)

 Result: derivative of e with 

respect  to every node.

 This is what we want to compute in Backpropagation!

 Forward differentiation needs one pass per node. With backward 

differentiation we can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

27
B. LeibeSlide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Topics of This Lecture

• Learning Multi-layer Networks
 Recap: Backpropagation 

 Computational graphs

 Automatic differentiation

 Practical issues

• Gradient Descent  
 Stochastic Gradient Descent & Minibatches

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization 28
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Obtaining the Gradients

• Approach 4: Automatic Differentiation

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the 

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
29
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Modular Implementation

• Solution in many current Deep Learning libraries

 Provide a limited form of automatic differentiation

 Restricted to “programs” composed of “modules” with a

predefined set of operations.

• Each module is defined by two main functions

1. Computing the outputs y of the module given its inputs x

where x, y, and intermediate results are stored in the module.

2. Computing the gradient E/x of a scalar cost w.r.t. the 

inputs x given the gradient E/y w.r.t. the outputs y

30
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 Practical issues
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Implementing Softmax Correctly

• Softmax output 

 De-facto standard for multi-class outputs

• Practical issue

 Exponentials get very big and can have vastly different magnitudes.

 Trick 1: Do not compute first softmax, then log,

but instead directly evaluate log-exp in the nominator

and log-sum-exp in the denominator.

 Trick 2: Softmax has the property that for a fixed vector b

 Subtract the largest weight vector wj from the others.

32
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Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of 

the gradient

• Recall: Basic update equation

• Main questions

 On what data do we want to apply this?

 How should we choose the step size ´ (the learning rate)?

 In which direction should we update the weights?
34
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Stochastic vs. Batch Learning

• Batch learning

 Process the full dataset at

once to compute the 

gradient.

• Stochastic learning

 Choose a single example

from the training set.

 Compute the gradient only

based on this example

 This estimate will generally

be noisy, which has some

advantages.
35
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Stochastic vs. Batch Learning

• Batch learning advantages

 Conditions of convergence are well understood.

 Many acceleration techniques (e.g., conjugate gradients) only 

operate in batch learning.

 Theoretical analysis of the weight dynamics and convergence rates 

are simpler.

• Stochastic learning advantages

 Usually much faster than batch learning.

 Often results in better solutions.

 Can be used for tracking changes.

• Middle ground: Minibatches

36
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Minibatches

• Idea

 Process only a small batch of training examples together

 Start with a small batch size & increase it as training proceeds.

• Advantages

 Gradients will be more stable than for stochastic gradient descent, 

but still faster to compute than with batch learning.

 Take advantage of redundancies in the training set.

 Matrix operations are more efficient than vector operations.

• Caveat

 Error function should be normalized by the minibatch size, 

s.t. we can keep the same learning rate between minibatches

37
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Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent

 Consider a simple 1D example first

 What is the optimal learning rate ´opt? 

 If E is quadratic, the optimal learning rate is given by the inverse of 

the Hessian

 What happens if we exceed this learning rate?

39
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Choosing the Right Learning Rate

• Behavior for different learning rates

40
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Learning Rate vs. Training Error

41
B. Leibe Image source: Goodfellow & Bengio book

Do not go beyond

this point!
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Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour 

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

43
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

44
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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The Momentum Method

• Idea

 Instead of using the gradient to change the position of the weight 

“particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has 

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high 

curvature by combining gradients with 

opposite signs.

 Build up speed in directions with a 

gentle but consistent gradient.

45
B. Leibe Image source: Geoff HintonSlide credit: Geoff Hinton
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The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject to a 

decay by ® < 1.

 Set the weight change to the current velocity

46
B. LeibeSlide credit: Geoff Hinton
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The Momentum Method: Behavior

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal 

velocity

– If the momentum ® is close to 1, this is much faster than simple 

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are stuck 

in a ravine, the momentum can be smoothly raised to its final value 

(e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent 

oscillations without the momentum.

47
B. LeibeSlide credit: Geoff Hinton
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

48
B. LeibeSlide adapted from Geoff Hinton
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights 

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight 

(determined empirically)
49
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Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for different 

weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign of the 

gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)). 

50
B. LeibeSlide adapted from Geoff Hinton
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Other Optimizers

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less 

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

51
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Behavior in a Long Valley

52
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp
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Behavior around a Saddle Point

53
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp
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Visualization of Convergence Behavior

54
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn
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Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
55

B. Leibe Image source: Yoshua Bengio
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Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower/impossible after that.
56
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Summary

• Deep multi-layer networks are very powerful.

• But training them is hard!

 Complex, non-convex learning problem

 Local optimization with stochastic gradient descent

• Main issue: getting good gradient updates for the lower 

layers of the network

 Many seemingly small details matter!

 Weight initialization, normalization, data augmentation, choice of 

nonlinearities, choice of learning rate, choice of optimizer,…

 In the following, we will take a look at the most important factors 

(to be continued in the next lecture…)

57
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Shuffling the Examples

• Ideas

 Networks learn fastest from the most unexpected sample.

 It is advisable to choose a sample at each iteration that is most 

unfamiliar to the system. 

– E.g. a sample from a different class than the previous one.

– This means, do not present all samples of class A, then all of class B.

 A large relative error indicates that an input has not been learned 

by the network yet, so it contains a lot of information.

 It can make sense to present such inputs more frequently.

– But: be careful, this can be disastrous when the data are outliers.

• Practical advice

 When working with stochastic gradient descent or minibatches, 

make use of shuffling.
59
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Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

60
B. Leibe Image source: Lucas Beyer
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Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
61
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Augmented training data
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Image source: Lucas Beyer
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Practical Advice

62
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Normalization

• Motivation

 Consider the Gradient Descent update steps

 From backpropagation, we know that

 When all of the components of the input vector yi are positive, all of 

the updates of weights that feed into a node will be of the same sign. 

 Weights can only all increase or decrease together.

 Slow convergence

63
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Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)

 Normalize all inputs that an input unit sees to zero-mean, 

unit covariance.

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion).

64
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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