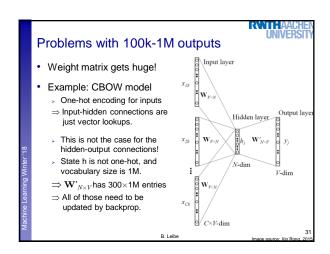
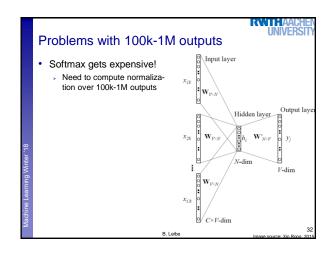


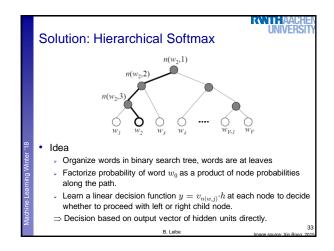
Interesting property • Embedding often preserves linear regularities between words • Analogy questions can be answered through simple algebraic operations with the vector representation of words. • Example • What is the word that is similar to small in the same sense as bigger is to big? • For this, we can simply compute • X = vec("bigger") - vec("big") + vec("small") • Then search the vector space for the word closes to X using the cosine distance. ⇒ Result (when words are well trained): vec("smaller"). • Other example • E.g., vec("King") - vec("Man") + vec("Woman") ≈ vec("Queen")

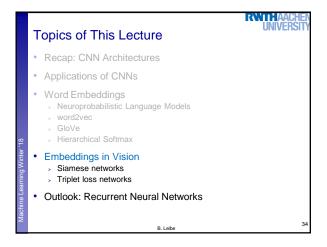
		0,	Questi		
	Type of relationship	Word Pair 1		Word Pair 2	
semantic	Common capital city All capital cities Currency City-in-state Man-Woman	Athens Astana Angola Chicago brother	Greece Kazakhstan kwanza Illinois sister	Oslo Harare Iran Stockton grandson	Norway Zimbabwe rial California granddaughte
syntactic	Adjective to adverb Opposite Comparative Superlative Present Participle Nationality adjective Past tense Plural nouns Plural verbs	apparent possibly great easy think Switzerland walking mouse work	apparently impossibly greater easiest thinking Swiss walked mice works	rapid ethical tough lucky read Cambodia swimming dollar speak	rapidly unethical tougher luckiest reading Cambodian swam dollars speaks

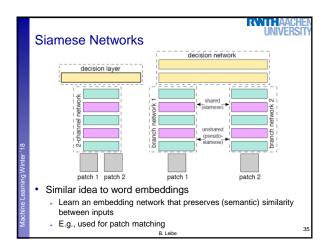
Model		Results						RWTHAACHEN UNIVERSITY				
NNLM		Model			Ac	ecuracy [%]						
NNLM					Semantic	Syntactic	Total					
Results Word2vec embedding is able to correctly answer many of those analogy questions. CBOW structure better for syntactic tasks Skip-gram structure better for semantic tasks		NNLM	100	6B	34.2		50.8	14 x 180				
Results word2vec embedding is able to correctly answer many of those analogy questions. CBOW structure better for syntactic tasks Skip-gram structure better for semantic tasks		CBOW	1000	6B	57.3	68.9	63.7	2 x 140				
Results word2vec embedding is able to correctly answer many of those analogy questions. CBOW structure better for syntactic tasks Skip-gram structure better for semantic tasks		Skip-gram	1000	6B	66.1	65.1	65.6	2.5 x 125				
B. Leibe	er '18	 word2vec embedding is able to correctly answer many of those analogy questions. CBOW structure better for syntactic tasks Skip-gram structure better for semantic tasks 										

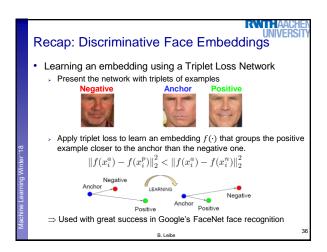


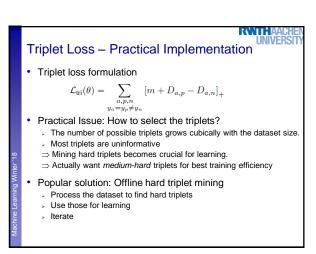


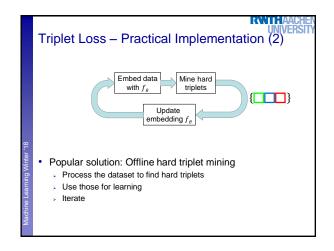


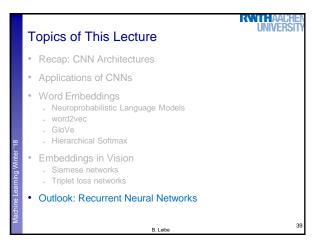


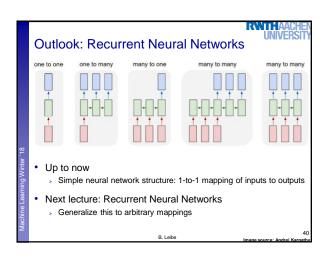












Polymorphology Property Pennington, Richard Socher, and Christopher D. Manning, GloVe: Global Vectors for Word Representations, Richard Socher, and Christopher D. Manning, GloVe: Global Vectors for Word Representations in Vector Space, ICLR'13 Workshop Proceedings, 2013. GloVe Jeffrey Pennington, Richard Socher, and Christopher D. Manning, GloVe: Global Vectors for Word Representation, 2014. Hierarchical Softmax F. Morin and Y. Bengio, Hierarchical probabilistic neural network language model. In AISTATS 2005. A. Mnih and G.E. Hinton (2009). A scalable hierarchical distributed language model. In NIPS 2009.

References: Other Embeddings • Face Embeddings • F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, in CVPR 2015. • A. Radford, L. Metz, S. Chintala, Unsupervise Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016.

7