

Machine Learning – Lecture 19

Repetition

31.01.2019

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements

- Exams
 - Special oral exams (for exchange students):
 - We're in the process of sending out the exam slots
 - You'll receive an email with details tonight
 - Format: 30 minutes, 4 questions, 3 answers
 - Regular exams:
 - We will send out an email with the assignment to lecture halls
 - Format: 120min, closed-book exam

Announcements (2)

- Today, I'll summarize the most important points from the lecture.
 - It is an opportunity for you to ask questions...
 - ...or get additional explanations about certain topics.
 - > So, please do ask.
- Today's slides are intended as an index for the lecture.
 - > But they are not complete, won't be sufficient as only tool.
 - Also look at the exercises they often explain algorithms in detail.

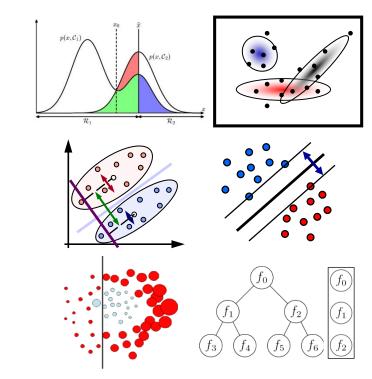
Announcements (3)

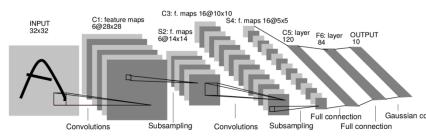
- Seminar in the summer semester
 - Current topics in Computer Vision and Machine Learning
 - Quick poll: Who is interested?

RWTHAACHEN UNIVERSITY

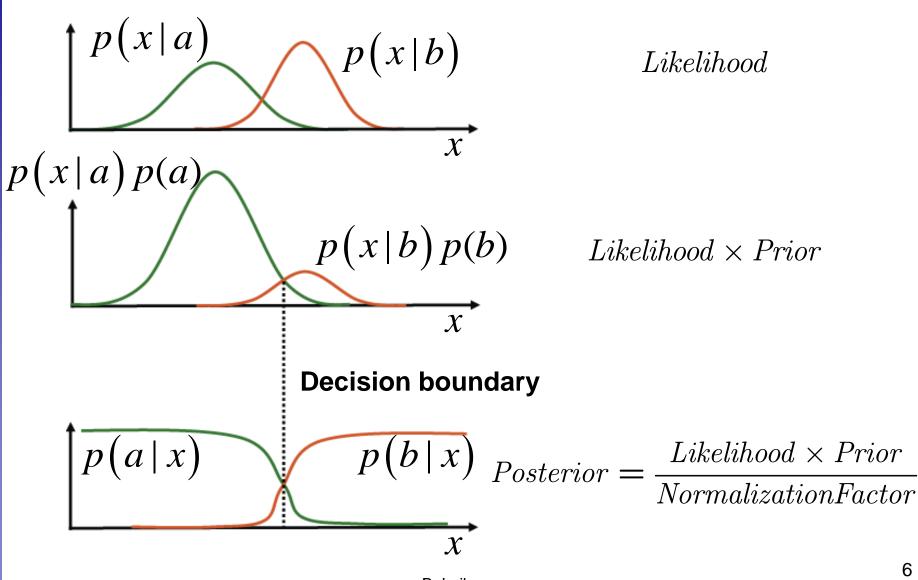
Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





Recap: Bayes Decision Theory



Machine Learning Winter '18

B. Leibe

Recap: Bayes Decision Theory

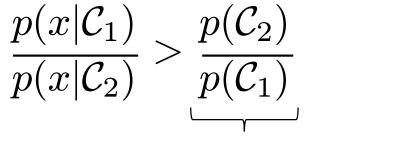
- Optimal decision rule
 - > Decide for C_1 if

 $p(\mathcal{C}_1|x) > p(\mathcal{C}_2|x)$

This is equivalent to

$$p(x|\mathcal{C}_1)p(\mathcal{C}_1) > p(x|\mathcal{C}_2)p(\mathcal{C}_2)$$

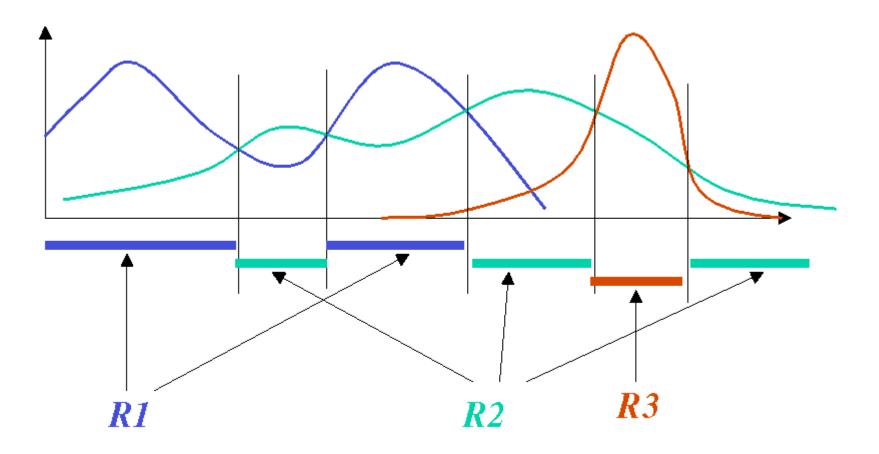
Which is again equivalent to (Likelihood-Ratio test)



Decision threshold $\boldsymbol{\theta}$

Recap: Bayes Decision Theory

• Decision regions: \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_{3^c} ...



Recap: Classifying with Loss Functions

• In general, we can formalize this by introducing a loss matrix L_{kj}

$$L_{kj} = loss for decision C_j if truth is C_k.$$

Example: cancer diagnosis

 $L_{cancer \ diagnosis} = \underbrace{\underbrace{\texttt{P}}}_{\text{portion}} \begin{array}{c} \text{Cancer normal} \\ \text{Cancer normal} \\ \text{Cancer normal} \end{array} \left(\begin{array}{c} 0 & 1000 \\ 1 & 0 \end{array} \right)$

Recap: Minimizing the Expected Loss

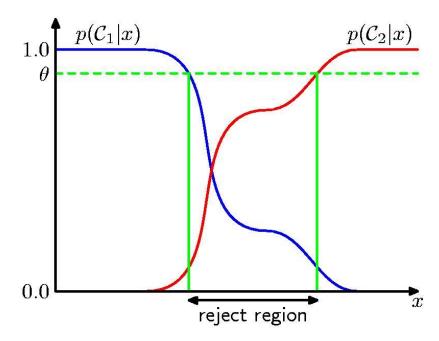
- Optimal solution minimizes the loss.
 - But: loss function depends on the true class, which is unknown.
- Solution: Minimize the expected loss

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) \, \mathrm{d}\mathbf{x}$$

• This can be done by choosing the regions \mathcal{R}_j uch that $\mathbb{E}[L] = \sum_k L_{kj} p(\mathcal{C}_k | \mathbf{x})$

which is easy to do once we know the posterior class probabilities $p(C_k|\mathbf{x})$

Recap: The Reject Option



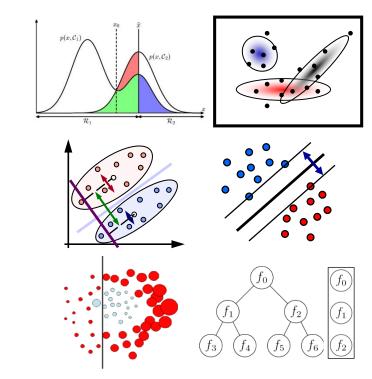
- Classification errors arise from regions where the largest posterior probability $p(C_k|\mathbf{x})$ is significantly less than 1.
 - These are the regions where we are relatively uncertain about class membership.
 - For some applications, it may be better to reject the automatic decision entirely in such a case and e.g. consult a human expert.

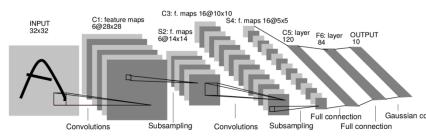
11

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - > Probability Density Estimation
 - Mixture Models and EM
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks

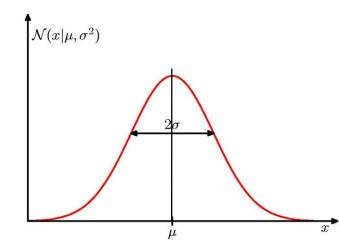




Recap: Gaussian (or Normal) Distribution

- One-dimensional case
 - > Mean μ
 - > Variance σ^2

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$



0.16

0.14 0.12 0.1

0.08 0.06 0.04

0.02

- Multi-dimensional case
 - > Mean μ
 - > Covariance Σ

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

13

Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - \succ Single data point: $p(x_n| heta)$
 - > Assumption: all data points $X = \{x_1, \dots, x_n\}$ e independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

Log-likelihood

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{\infty} \ln p(x_n | \theta)$$

N

- Estimation of the parameters θ (Learning)
 - Maximize the likelihood (= minimize the negative log-likelihood)
 - \Rightarrow Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

Slide credit: Bernt Schiele

B. Leibe

Recap: Bayesian Learning Approach

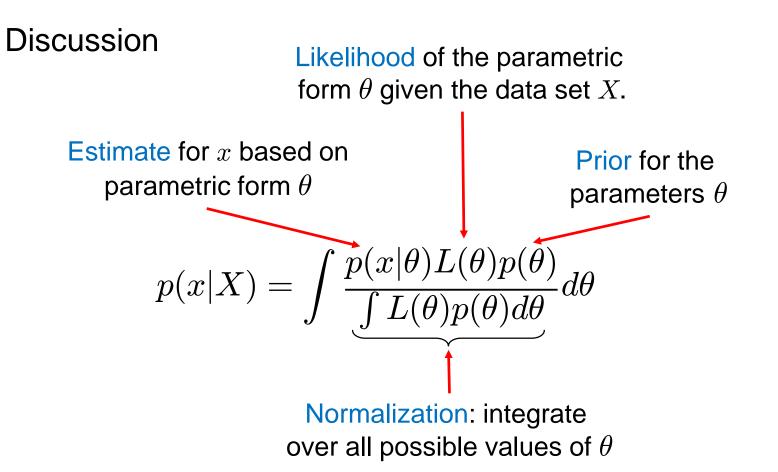
- Bayesian view:
 - > Consider the parameter vector θ as a random variable.
 - > When estimating the parameters, what we compute is

$$\begin{split} p(x|X) &= \int p(x,\theta|X)d\theta & \text{Assumption: given } \theta \text{, this} \\ \text{doesn't depend on X anymore} \\ p(x,\theta|X) &= p(x|\theta, \textbf{X})p(\theta|X) \end{split} \\ \end{split}$$

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).

Machine Learning Winter 18

Recap: Bayesian Learning Approach

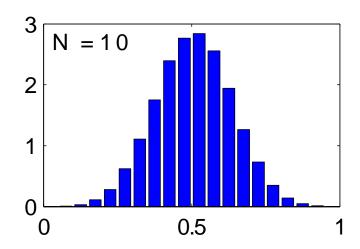


> The more uncertain we are about θ , the more we average over all possible parameter values.

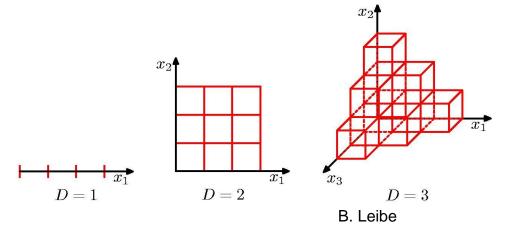
Recap: Histograms

- Basic idea:
 - > Partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

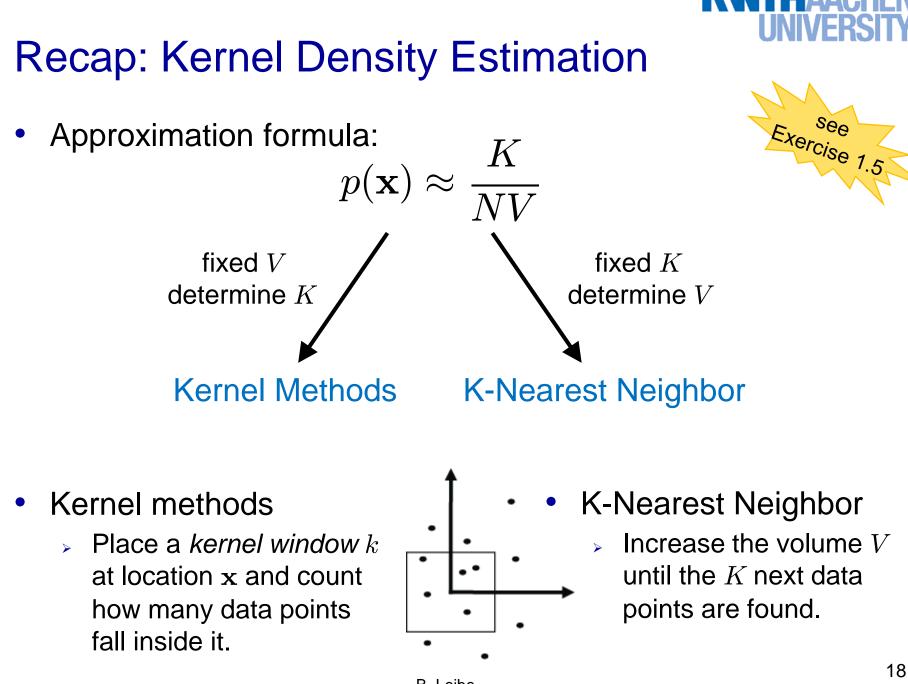


- > Often, the same width is used for all bins, $\Delta_i = \Delta$.
- This can be done, in principle, for any dimensionality D...



...but the required number of bins grows exponentially with *D*!

17 Image source: C.M. Bishop, 2006



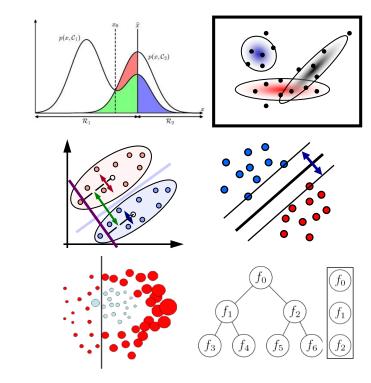
Slide adapted from Bernt Schiele

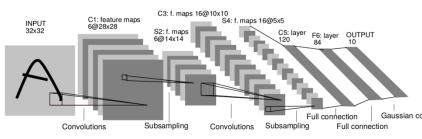
Machine Learning Winter '18

RWTHAACHEN UNIVERSITY

Course Outline

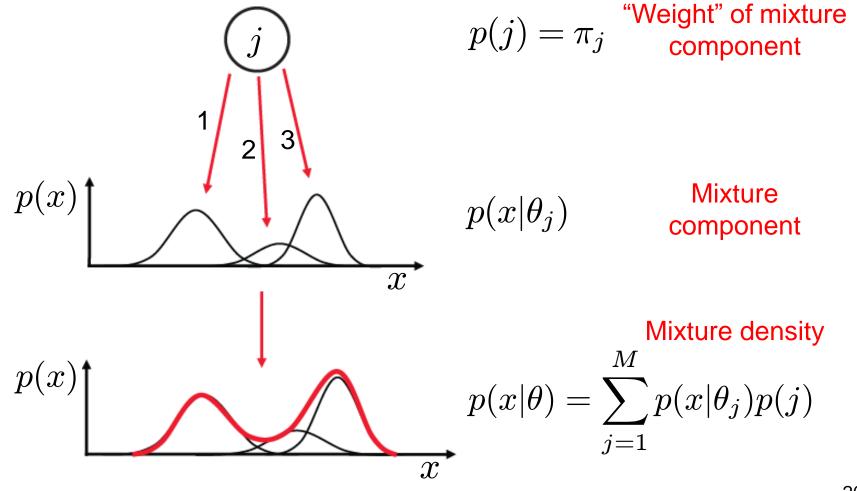
- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Random Forests
- Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





Recap: Mixture of Gaussians (MoG)

"Generative model"

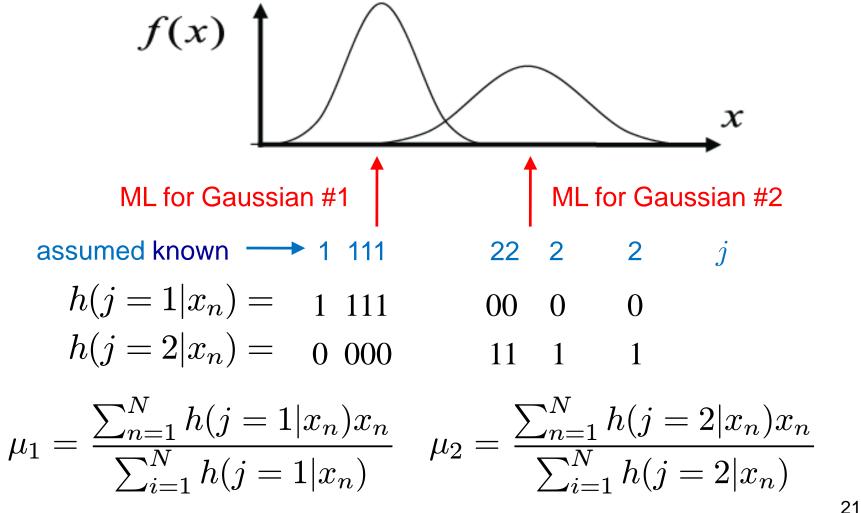


Machine Learning Winter '18

B. Leibe

Recap: MoG – Iterative Strategy

Assuming we knew the values of the hidden variable...

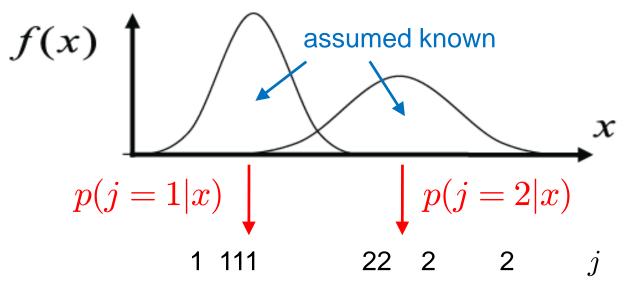


Machine Learning Winter '18

B. Leibe

Recap: MoG – Iterative Strategy

Assuming we knew the mixture components...

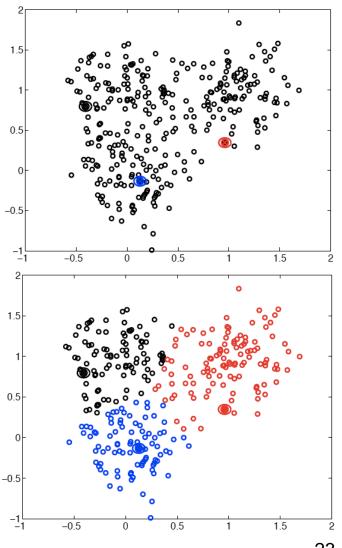


• Bayes decision rule: Decide j = 1 if $p(j = 1 | x_n) > p(j = 2 | x_n)$

Recap: K-Means Clustering

- Iterative procedure
 - 1. Initialization: pick K arbitrary centroids (cluster means)
 - 2. Assign each sample to the closest centroid.
 - 3. Adjust the centroids to be the means of the samples assigned to them.
 - 4. Go to step 2 (until no change)
- Algorithm is guaranteed to converge after finite #iterations.
 - Local optimum
 - > Final result depends on initialization.

Machine Learning Winter '18



23

Recap: EM Algorithm

Expectation-Maximization (EM) Algorithm

λT

E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j = 1, \dots, K, \ n = 1, \dots, N$$

 M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) = \text{soft number of samples labeled } j$$

$$\hat{\pi}_{j}^{\text{new}} \leftarrow \frac{\hat{N}_{j}}{N}$$

$$\hat{\mu}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n}$$

$$\hat{\Sigma}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\mu}_{j}^{\text{new}}) (\mathbf{x}_{n} - \hat{\mu}_{j}^{\text{new}})^{\text{T}}$$

Slide adapted from Bernt Schiele

Wachine Learning Winter '18

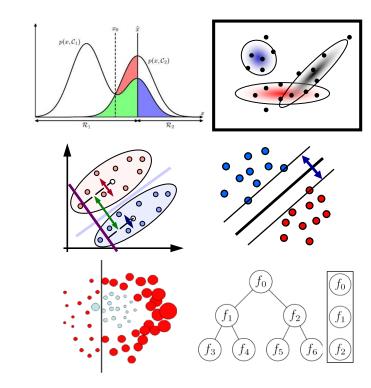
B. Leibe

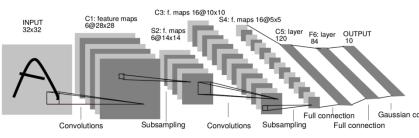
See Exercise 1.6

RWTHAACHEN UNIVERSITY

Course Outline

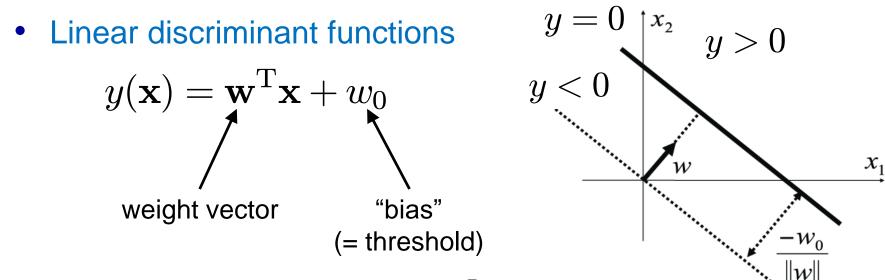
- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.



- > w, $w_{\rm o}$ define a hyperplane in \mathbb{R}^D .
- If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

<u>Machine Learning Winter '18</u>

Recap: Least-Squares Classification

• Simplest approach

Machine Learning Winter '18

> Directly try to minimize the sum-of-squares error

 ΛT

$$E(\mathbf{w}) = \sum_{n=1}^{N} \left(y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n \right)^2$$
$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \operatorname{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}$$

Setting the derivative to zero yields

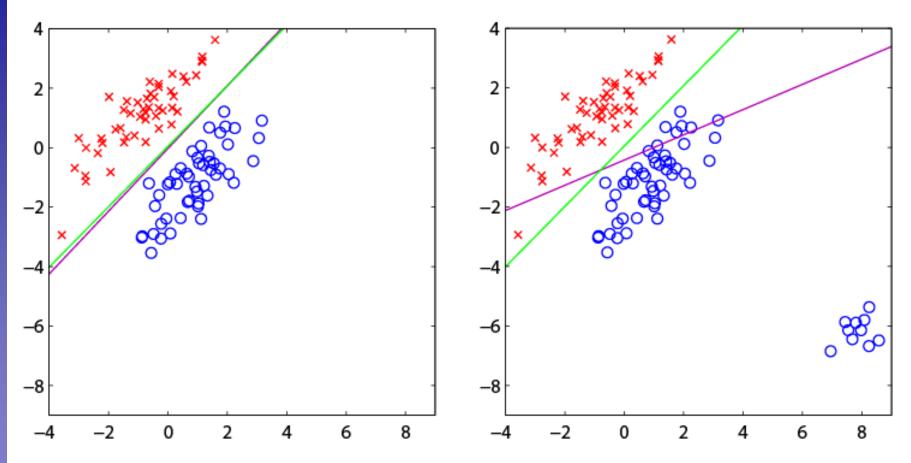
$$\widetilde{\mathbf{W}} \,=\, (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} = \widetilde{\mathbf{X}}^{\dagger}\mathbf{T}$$

We then obtain the discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}} = \mathbf{T}^{\mathrm{T}} \left(\widetilde{\mathbf{X}}^{\dagger} \right)^{\mathrm{T}} \widetilde{\mathbf{x}}$$

→ Exact, closed-form solution for the discriminant function parameters.

Recap: Problems with Least Squares



- Least-squares is very sensitive to outliers!
 - > The error function penalizes predictions that are "too correct".

Image source: C.M. Bishop, 2006

28

Recap: Generalized Linear Models

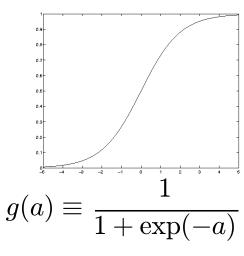
Generalized linear model

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

- > $g(\cdot)$ is called an activation function and may be nonlinear.
- The decision surfaces correspond to

$$y(\mathbf{x}) = const. \quad \Leftrightarrow \quad \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = const.$$

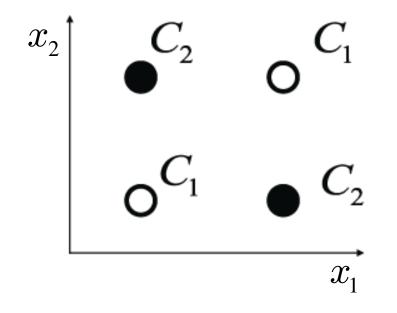
- If g is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of x.
- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and "too correct" data points.
 - > When using a sigmoid for $g(\cdot)$, we can interpret the $y(\mathbf{x})$ as posterior probabilities.



Recap: Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

Classical counterexample: XOR



Recap: Extension to Nonlinear Basis Fcts.

- Generalization
 - Fransform vector \mathbf{x} with M nonlinear basis functions $\phi_j(\mathbf{x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{ki} \phi_j(\mathbf{x}) + w_{k0}$$

- Advantages
 - Transformation allows non-linear decision boundaries.
 - > By choosing the right ϕ_j , every continuous function can (in principle) be approximated with arbitrary accuracy.
- Disadvatage
 - The error function can in general no longer be minimized in closed form.
 - \Rightarrow Minimization with Gradient Descent

Recap: Probabilistic Discriminative Models

Consider models of the form

with
$$p(\mathcal{C}_1|\phi) = y(\phi) = \sigma(\mathbf{w}^T\phi)$$

 $p(\mathcal{C}_2|\phi) = 1 - p(\mathcal{C}_1|\phi)$

- This model is called logistic regression.
- Properties
 - Probabilistic interpretation
 - > But discriminative method: only focus on decision hyperplane
 - > Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling $p(\phi|C_k)$ and $p(C_k)$.

Recap: Logistic Regression

• Let's consider a data set $\{\phi_n, t_n\}$ with n = 1, ..., N, where $\phi_n = \phi(\mathbf{x}_n)$ and $t_n \in \{0, 1\}$ $\mathbf{t} = (t_1, ..., t_N)^T$

• With
$$y_n = p(\mathcal{C}_1 | \phi_n)$$
, we can write the likelihood as $p(\mathbf{t} | \mathbf{w}) = \prod_{n=1}^N y_n^{t_n} \{1 - y_n\}^{1-t_n}$

- Define the error function as the negative log-likelihood $E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w})$ $= -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$
 - > This is the so-called cross-entropy error function.

Recap: Iterative Methods for Estimation

Gradient Descent (1st order)

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \left. \nabla E(\mathbf{w}) \right|_{\mathbf{w}^{(\tau)}}$$

- Simple and general
- Relatively slow to converge, has problems with some functions
- Newton-Raphson (2nd order) $\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \mathbf{H}^{-1} \nabla E(\mathbf{w}) |_{\mathbf{w}^{(\tau)}}$

where $\mathbf{H} = \nabla \nabla E(\mathbf{w})$ is the Hessian matrix, i.e. the matrix of second derivatives.

- Local quadratic approximation to the target function
- Faster convergence

Recap: Iteratively Reweighted Least Squares

Update equations

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \right\} \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{z} \\ & \text{with} \quad \mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t}) \end{split}$$

- Very similar form to pseudo-inverse (normal equations)
 - > But now with non-constant weighing matrix ${f R}$ (depends on ${f w}$).
 - Need to apply normal equations iteratively.
 - \Rightarrow Iteratively Reweighted Least-Squares (IRLS)

Recap: Softmax Regression

- Multi-class generalization of logistic regression
 - > In logistic regression, we assumed binary labels $t_n \in \{0,1\}$
 - > Softmax generalizes this to K values in 1-of-K notation.

$$\mathbf{y}(\mathbf{x};\mathbf{w}) = \begin{bmatrix} P(y=1|\mathbf{x};\mathbf{w}) \\ P(y=2|\mathbf{x};\mathbf{w}) \\ \vdots \\ P(y=K|\mathbf{x};\mathbf{w}) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^{\top}\mathbf{x})} \begin{bmatrix} \exp(\mathbf{w}_1^{\top}\mathbf{x}) \\ \exp(\mathbf{w}_2^{\top}\mathbf{x}) \\ \vdots \\ \exp(\mathbf{w}_K^{\top}\mathbf{x}) \end{bmatrix}$$

> This uses the softmax function

$$\frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

Note: the resulting distribution is normalized.

Recap: Softmax Regression Cost Function

- Logistic regression
 - Alternative way of writing the cost function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\} \\ = -\sum_{n=1}^{N} \sum_{k=0}^{1} \{\mathbb{I}(t_n = k) \ln P(y_n = k | \mathbf{x}_n; \mathbf{w})\}$$

- Softmax regression
 - > Generalization to K classes using indicator functions.

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} \left\{ \mathbb{I}\left(t_n = k\right) \ln \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^{\top} \mathbf{x})} \right\}$$

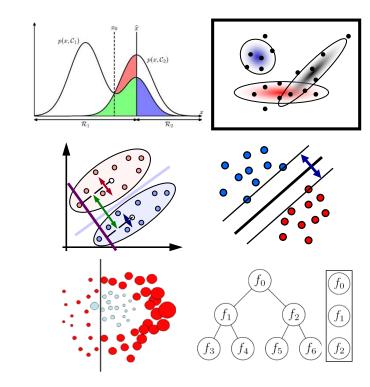
$$7_{\mathbf{w}_k} E(\mathbf{w}) = -\sum_{n=1}^{N} \left[\mathbb{I}\left(t_n = k\right) \ln P\left(y_n = k | \mathbf{x}_n; \mathbf{w}\right) \right]$$

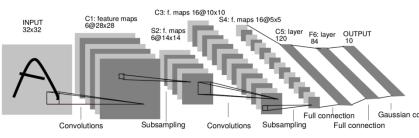
B. Leibe

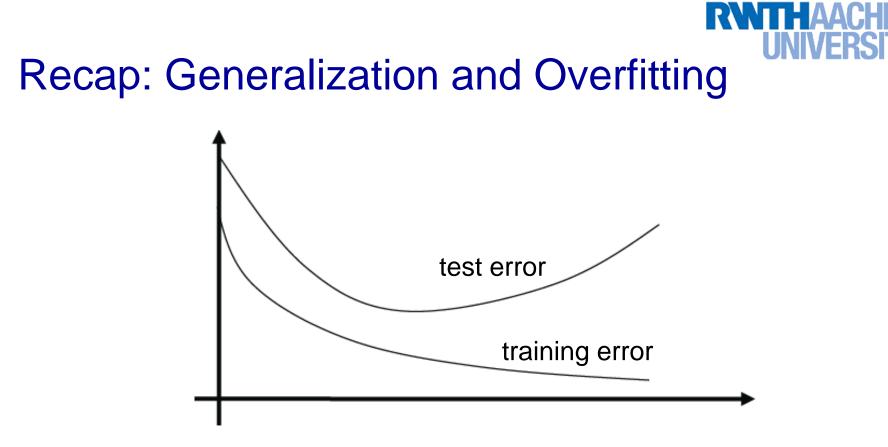
RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks







- Goal: predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 - \Rightarrow Overfitting to the training set!

B. Leibe

Recap: Support Vector Machine (SVM)

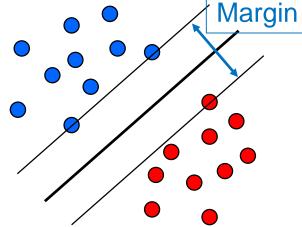
- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - > Up to now: consider linear classifiers

 $\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$

Find the hyperplane satisfying $\operatorname*{arg\,min}_{\mathbf{w},b} \frac{1}{2} {\|\mathbf{w}\|}^2$

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n+b) \ge 1 \quad \forall n$$

based on training data points \mathbf{x}_n and target values



 $t_n \in \{-1, 1\}$

Recap: SVM – Primal Formulation

• Lagrangian primal form

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b) - 1\}$$
$$= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}y(\mathbf{x}_{n}) - 1\}$$

- The solution of L_p needs to fulfill the KKT conditions
 - Necessary and sufficient conditions

$$a_n \ge 0$$

 $t_n y(\mathbf{x}_n) - 1 \ge 0$

Ω

$$a_n \left\{ t_n y(\mathbf{x}_n) - 1 \right\} = 0$$

$$egin{array}{ccc} {\sf KKT:} & \ \lambda &\geq & 0 \ f({f x}) &\geq & 0 \ \lambda f({f x}) &= & 0 \end{array}$$

Recap: SVM – Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

- Sparse solution: $a_n \neq 0$ only for some points, the support vectors \Rightarrow Only the SVs actually influence the decision boundary!
- Compute b by averaging over all support vectors:

$$b = \frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

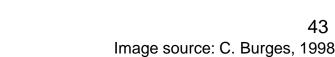
B. Leibe

Recap: SVM – Support Vectors

 The training points for which a_n > 0 are called "support vectors".

Origin

- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 - \Rightarrow All other data points can be discarded!



0

Margin

W

W

0

О

0

O

Recap: SVM – Dual Formulation

• Maximize

$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$

under the conditions

$$a_n \geq 0 \quad \forall n$$

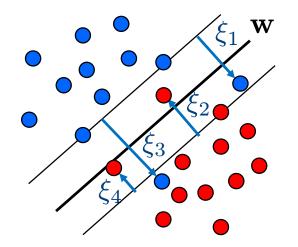
 $\sum_{n=1}^N a_n t_n = 0$

- Comparison
 - > L_d is equivalent to the primal form L_p , but only depends on a_n .
 - > L_p scales with $\mathcal{O}(D^3)$.
 - > L_d scales with $\mathcal{O}(N^3)$ in practice between $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$.

Slide adapted from Bernt Schiele

Recap: SVM for Non-Separable Data

- Slack variables
 - > One slack variable $\xi_n \ge 0$ for each training data point.
- Interpretation
 - > $\xi_n = 0$ for points that are on the correct side of the margin.
 - > $\xi_n = |t_n y(\mathbf{x}_n)|$ for all other points.



Point on decision boundary: $\xi_n = 1$

 $\begin{array}{l} \text{Misclassified point:} \\ \xi_n > 1 \end{array}$

- > We do not have to set the slack variables ourselves!
- \Rightarrow They are jointly optimized together with \mathbf{w} .

45

Recap: SVM – New Dual Formulation

New SVM Dual: Maximize

SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

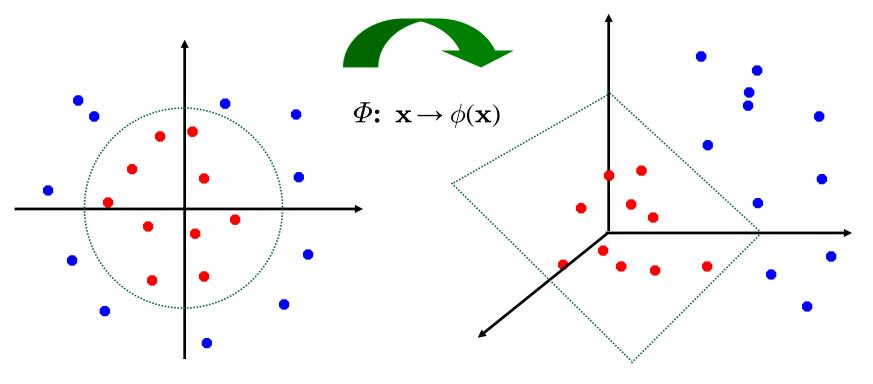
$$egin{array}{ccc} 0 \cdot & a_n \cdot & C \ \sum_{n=1}^N a_n t_n &= & 0 \end{array}$$

This is all that changed!

This is again a quadratic programming problem \Rightarrow Solve as before...

Recap: Nonlinear SVMs

 General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:



Recap: The Kernel Trick

- Important observation
 - > $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$:

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$$
$$= \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}) + b$$

- > Define a so-called kernel function $k(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$.
- Now, in place of the dot product, use the kernel instead:

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$$

> The kernel function *implicitly* maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Recap: Kernels Fulfilling Mercer's Condition

Polynomial kernel

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}}\mathbf{y} + 1)^{p}$$

Radial Basis Function kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left\{-\frac{(\mathbf{x} - \mathbf{y})^2}{2\sigma^2}
ight\}$$
 e.g. Gaussian

Hyperbolic tangent kernel

$$k(\mathbf{x}, \mathbf{y}) = anh(\kappa \mathbf{x}^{\mathrm{T}} \mathbf{y} + \delta)$$
 e.g. Sigmoid

And many, many more, including kernels on graphs, strings, and symbolic data...

B. Leibe

Recap: Kernels Fulfilling Mercer's Condition

Polynomial kernel

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}}\mathbf{y} + 1)^{p}$$

Radial Basis Function kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left\{-\frac{(\mathbf{x} - \mathbf{y})^2}{2\sigma^2}
ight\}$$
 e.g. Gaussian

Hyperbolic tangent kernel

$$k(\mathbf{x}, \mathbf{y}) = \tanh(\mathbf{x}\mathbf{x}^{\mathrm{T}}\mathbf{y} + \delta)$$
 e.g. Sigmoid

Actually, that was wrong in the original SVM paper...

And many, many more, including kernels on graphs, strings, and symbolic data...

Wachine Learning Winter '18

Recap: Nonlinear SVM – Dual Formulation

SVM Dual: Maximize

I Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_m, \mathbf{x}_n)$$

under the conditions

$$0 \cdot a_n \cdot C$$
$$\sum_{n=1}^N a_n t_n = 0$$

Classify new data points using •

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n \mathbf{k}(\mathbf{x}_n, \mathbf{x}) + b$$

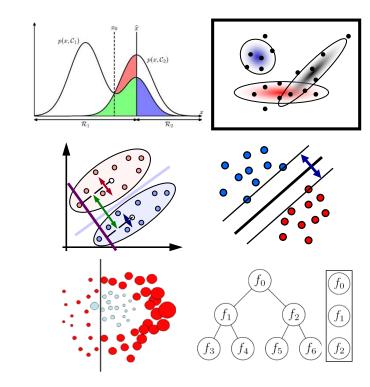
B. Leibe

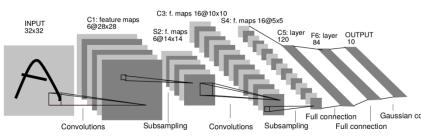
see

RWTHAACHEN UNIVERSITY

Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - > Ensemble Methods & Boosting
 - Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





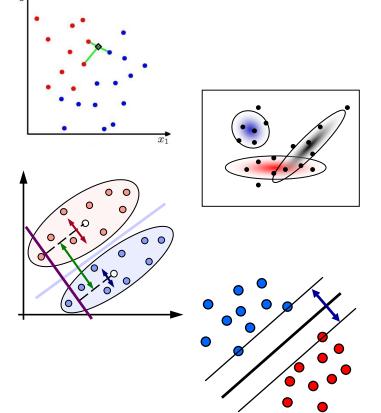
Machine Learning Winter 18

Recap: Classifier Combination

- We've seen already a variety of different classifiers
 - > k-NN
 - Bayes classifiers

Fisher's Linear Discriminant

SVMs



- Each of them has their strengths and weaknesses...
 - Can we improve performance by combining them?

Recap: Bayesian Model Averaging

- Model Averaging
 - > Suppose we have H different models h = 1, ..., H with prior probabilities p(h).
 - Construct the marginal distribution over the data set

$$p(\mathbf{X}) = \sum_{h=1}^{H} p(\mathbf{X}|h) p(h)$$

- Average error of committee $\mathbb{E}_{COM} = \frac{1}{M} \mathbb{E}_{AV}$
 - > This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
 - Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.

Recap: AdaBoost – "Adaptive Boosting"

• Main idea

[Freund & Schapire, 1996]

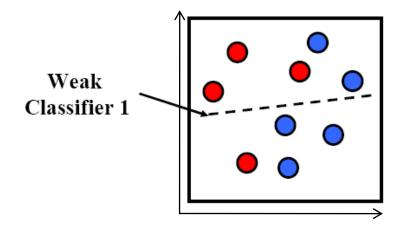
- Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.
- Components
 - > $h_m(\mathbf{x})$: "weak" or base classifier
 - Condition: <50% training error over any distribution
 - > $H(\mathbf{x})$: "strong" or final classifier

AdaBoost:

Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:

$$H(\mathbf{x}) = sign\left(\sum_{\substack{m=1\\ B \ l \ eibe}}^{M} \alpha_m h_m(\mathbf{x})\right)$$

Recap: AdaBoost – Intuition

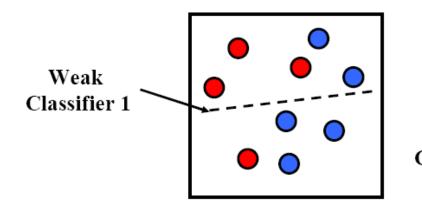


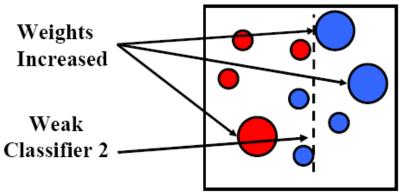
Consider a 2D feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

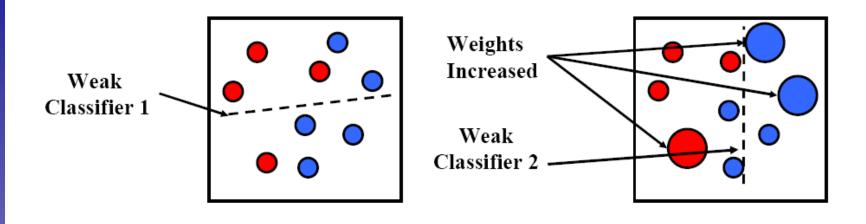
Examples misclassified by a previous weak learner are given more emphasis at future rounds.

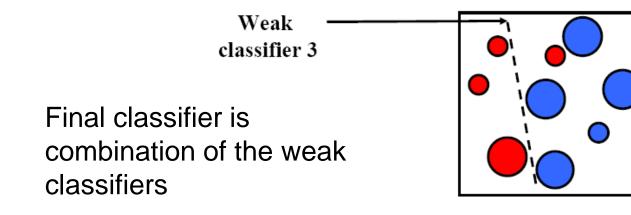
Recap: AdaBoost – Intuition





Recap: AdaBoost – Intuition





Slide credit: Kristen Grauman

Exercise 3.1

Recap: AdaBoost – Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for n = 1, ..., N.

2. For $m = 1, \ldots, M$ iterations

a) Train a new weak classifier $h_m(\mathbf{x})$ using the current weighting coefficients $\mathbf{W}^{(m)}$ by minimizing the weighted error function

$$J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n) \qquad \qquad I(A) = \begin{cases} 1, & \text{if } A \text{ is true} \\ 0, & \text{else} \end{cases}$$

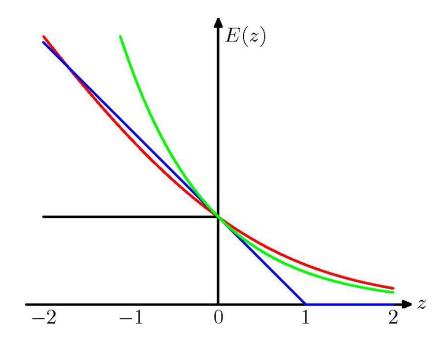
b) Estimate the weighted error of this classifier on \mathbf{X} :

$$\epsilon_m = \frac{\sum_{n=1}^N w_n^{(m)} I(h_m(\mathbf{x}) \neq t_n)}{\sum_{n=1}^N w_n^{(m)}}$$

- c) Calculate a weighting coefficient for $h_m(\mathbf{x})$: $\alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}$
- d) Update the weighting coefficients:

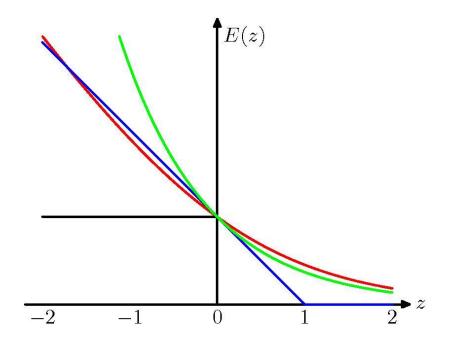
$$w_n^{(m+1)} = w_n^{(m)} \exp\left\{\alpha_m I(h_m(\mathbf{x}_n) \neq t_n)\right\}$$

Recap: Comparing Error Functions



- Ideal misclassification error function
- "Hinge error" used in SVMs
- Exponential error function
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Disadvantage: exponential penalty for large negative values!
 - \Rightarrow Less robust to outliers or misclassified data points!

Recap: Comparing Error Functions



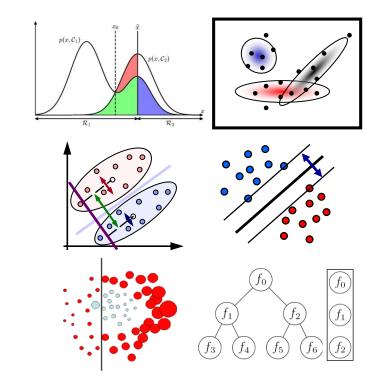
- Ideal misclassification error function
- "Hinge error" used in SVMs
- > Exponential error function
- "Cross-entropy error" $E = -\sum \{t_n \ln y_n + (1 t_n) \ln(1 y_n)\}$
 - Similar to exponential error for z>0.
 - Only grows linearly with large negative values of z.
 - \Rightarrow Make AdaBoost more robust by switching \Rightarrow "GentleBoost" 61

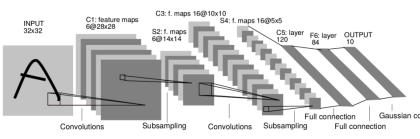
Image source: Bishop, 2006

RWTHAACHEN UNIVERSITY

Course Outline

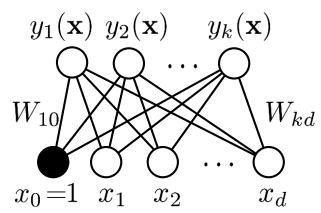
- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





Recap: Perceptrons

• One output node per class



Output layer *Weights* Input layer

- Outputs
 - Linear outputs

$$y_k(\mathbf{x}) = \sum_{i=0}^d W_{ki} x_i$$

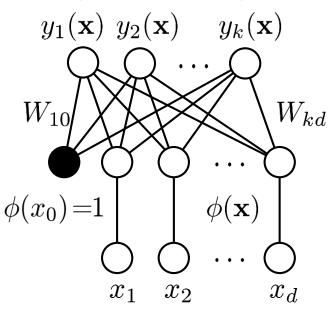
With output nonlinearity

$$y_k(\mathbf{x}) = g\left(\sum_{i=0}^d W_{ki} x_i\right)$$

 \Rightarrow Can be used to do multidimensional linear regression or multiclass classification.

Recap: Non-Linear Basis Functions

Straightforward generalization



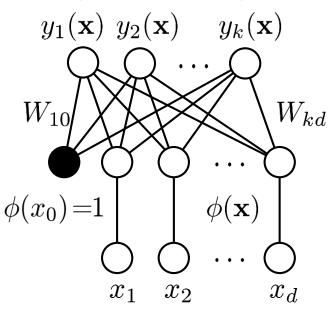
Output layer *Weights* Feature layer *Mapping (fixed)* Input layer

- Outputs
 - Linear outputs $y_k(\mathbf{x}) = \sum_{i=0}^d W_{ki} \phi(x_i)$

with output nonlinearity $y_k(\mathbf{x}) = g\left(\sum_{i=0}^d W_{ki}\phi(x_i)\right)$

Recap: Non-Linear Basis Functions

Straightforward generalization



Output layer *Weights* Feature layer *Mapping (fixed)* Input layer

Remarks

- > Perceptrons are generalized linear discriminants!
- Everything we know about the latter can also be applied here.
- > Note: feature functions $\phi(\mathbf{x})$ are kept fixed, not learned!

Recap: Perceptron Learning

- Process the training cases in some permutation
 - If the output unit is correct, leave the weights alone.
 - If the output unit incorrectly outputs a zero, add the input vector to the weight vector.
 - If the output unit incorrectly outputs a one, subtract the input vector from the weight vector.
 - **Translation**

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

- > This is the Delta rule a.k.a. LMS rule!
- ⇒ Perceptron Learning corresponds to 1st-order (stochastic) Gradient Descent of a quadratic error function!

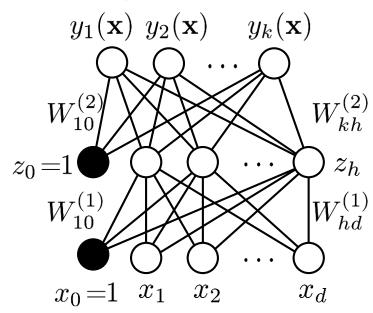
Recap: Loss Functions

- We can now also apply other loss functions
 - > $L_2 \text{ loss}$ \Rightarrow Least-squares regression $L(t, y(\mathbf{x})) = \sum_n (y(\mathbf{x}_n) - t_n)^2$
 - > L₁ loss: $L(t, y(\mathbf{x})) = \sum_{n} |y(\mathbf{x}_{n}) - t_{n}|$ \Rightarrow Median regression
 - Cross-entropy loss ⇒ Logistic regression $L(t, y(\mathbf{x})) = -\sum_{n} \{t_n \ln y_n + (1 t_n) \ln(1 y_n)\}$
 - > Hinge loss \Rightarrow SVM classification $L(t, y(\mathbf{x})) = \sum_n [1 t_n y(\mathbf{x}_n)]_+$
 - > Softmax loss \Rightarrow Multi-class probabilistic classification $I(t, u(\mathbf{x})) = \sum \sum \int \mathbb{I}(t, -k) \ln \exp(y_k(\mathbf{x})) \Big]$

$$L(t, y(\mathbf{x})) = -\sum_{n} \sum_{k} \left\{ \mathbb{I}\left(t_{n} = k\right) \ln \frac{\exp(y_{k}(\mathbf{x}))}{\sum_{j} \exp(y_{j}(\mathbf{x}))} \right\}$$
67

Recap: Multi-Layer Perceptrons

Adding more layers



Output layer

Hidden layer

Input layer

• Output

$$y_k(\mathbf{x}) = g^{(2)} \left(\sum_{i=0}^h W_{ki}^{(2)} g^{(1)} \left(\sum_{j=0}^d W_{ij}^{(1)} x_j \right) \right)$$

Slide adapted from Stefan Roth

B. Leibe

69

Recap: Learning with Hidden Units

- How can we train multi-layer networks efficiently?
 - > Need an efficient way of adapting all weights, not just the last layer.

- Idea: Gradient Descent
 - Set up an error function

$$E(\mathbf{W}) = \sum_{n} L(t_n, y(\mathbf{x}_n; \mathbf{W})) + \lambda \Omega(\mathbf{W})$$

with a loss $L(\cdot)$ and a regularizer $\Omega(\cdot)$.

> E.g.,
$$L(t, y(\mathbf{x}; \mathbf{W})) = \sum_{n} (y(\mathbf{x}_{n}; \mathbf{W}) - t_{n})^{2}$$
 L₂ loss

$$\Omega(\mathbf{W}) = ||\mathbf{W}||_{F}^{2}$$

$$L_{2} \text{ regularizer}$$
("weight decay")

 \Rightarrow Update each weight $W_{ij}^{(k)}$ in the direction of the gradient $\frac{\partial E(\mathbf{N})}{\partial W_{ij}^{(k)}}$

Recap: Gradient Descent

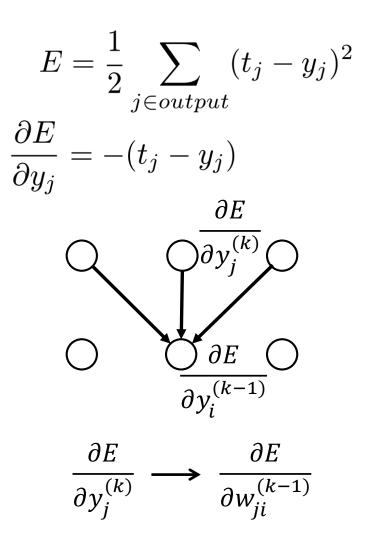
- Two main steps
 - 1. Computing the gradients for each weight
 - 2. Adjusting the weights in the direction of the gradient
- We consider those two steps separately
 - > Computing the gradients:
 - Adjusting the weights:

Backpropagation

Optimization techniques

Recap: Backpropagation Algorithm

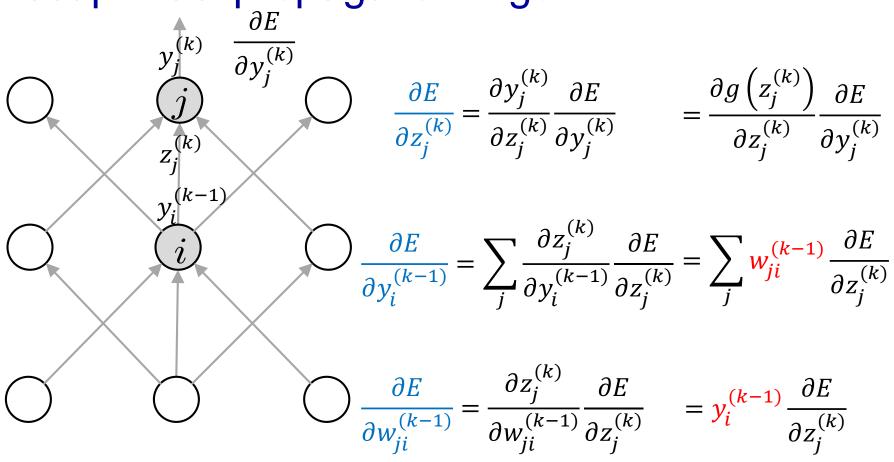
- Core steps
 - Convert the discrepancy between each output and its target value into an error derivate.
 - 2. Compute error derivatives in each hidden layer from error derivatives in the layer above.
 - 3. Use error derivatives *w.r.t.* activities to get error derivatives *w.r.t.* the incoming weights



Slide adapted from Geoff Hinton

B. Leibe

Recap: Backpropagation Algorithm



- Efficient propagation scheme
 - > $y_i^{(k-1)}$ is already known from forward pass! (Dynamic Programming)
- \Rightarrow Propagate back the gradient from layer k and multiply with $y_i^{(k-1)}$.

-earning Winter '18

Machine

Recap: MLP Backpropagation Algorithm

Forward Pass

$$\mathbf{y}^{(0)} = \mathbf{x}$$

for $k = 1, ..., l$ do
$$\mathbf{z}^{(k)} = \mathbf{W}^{(k)} \mathbf{y}^{(k-1)}$$

$$\mathbf{y}^{(k)} = g_k(\mathbf{z}^{(k)})$$

endfor

$$\mathbf{y} = \mathbf{y}^{(l)}$$

 $E = L(\mathbf{t}, \mathbf{y}) + \lambda \Omega(\mathbf{W})$

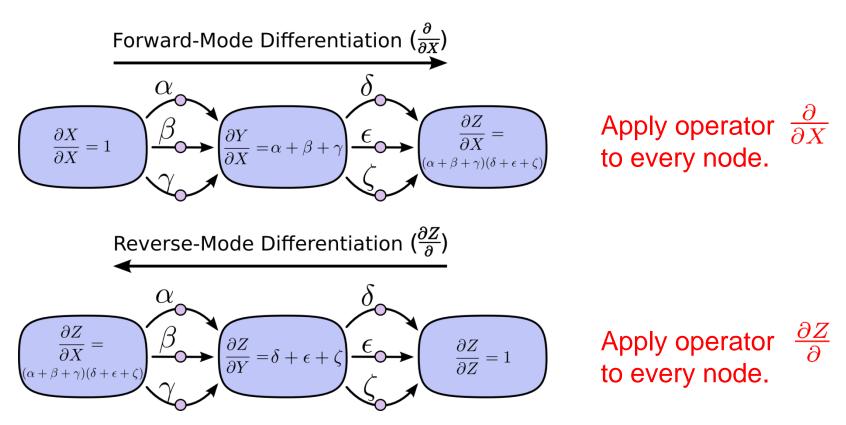
Backward Pass

$$\begin{split} \mathbf{h} &\leftarrow \frac{\partial E}{\partial \mathbf{y}} = \frac{\partial}{\partial \mathbf{y}} L(\mathbf{t}, \mathbf{y}) + \lambda \frac{\partial}{\partial \mathbf{y}} \Omega\\ \text{for } k &= l, l\text{-}1, \dots, 1 \text{ do}\\ \mathbf{h} &\leftarrow \frac{\partial E}{\partial \mathbf{z}^{(k)}} = \mathbf{h} \odot g'(\mathbf{y}^{(k)})\\ \frac{\partial E}{\partial \mathbf{W}^{(k)}} &= \mathbf{h} \mathbf{y}^{(k-1)\top} + \lambda \frac{\partial \Omega}{\partial \mathbf{W}^{(k)}}\\ \mathbf{h} &\leftarrow \frac{\partial E}{\partial \mathbf{y}^{(k-1)}} = \mathbf{W}^{(k)\top} \mathbf{h}\\ \text{endfor} \end{split}$$

Notes

- $\,\,$ For efficiency, an entire batch of data ${\bf X}$ is processed at once.
- ➤ ⊙ denotes the element-wise product

Recap: Computational Graphs

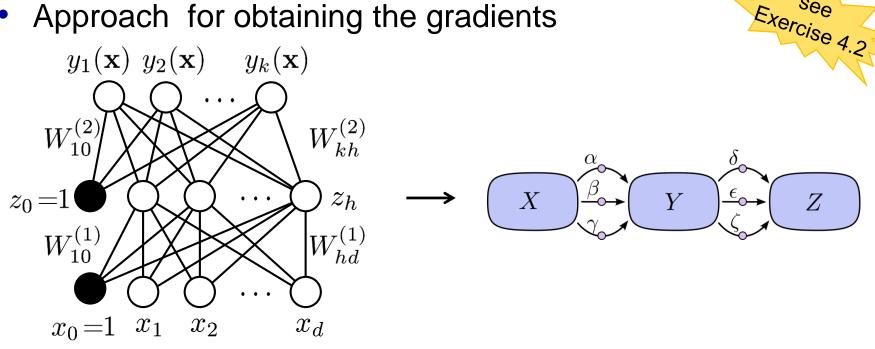


- Forward differentiation needs one pass per node. Reverse-mode differentiation can compute all derivatives in one single pass.
- \Rightarrow Speed-up in $\mathcal{O}(\#$ inputs) compared to forward differentiation!

Slide inspired by Christopher Olah

Recap: Automatic Differentiation

Approach for obtaining the gradients



- Convert the network into a computational graph.
- Each new layer/module just needs to specify how it affects the forward and backward passes.
- Apply reverse-mode differentiation. \succ
- \Rightarrow Very general algorithm, used in today's Deep Learning packages

75

See

Recap: Choosing the Right Learning Rate

- Convergence of Gradient Descent
 - Simple 1D example

$$W^{(\tau-1)} = W^{(\tau)} - \eta \frac{\mathrm{d}E(W)}{\mathrm{d}W}$$

- » What is the optimal learning rate $\eta_{
 m opt}$?
- If E is quadratic, the optimal learning rate is given by the inverse of the Hessian

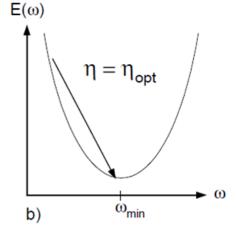
$$\eta_{\rm opt} = \left(\frac{\mathrm{d}^2 E(W^{(\tau)})}{\mathrm{d}W^2}\right)^{-1}$$

B. Leibe

- Advanced optimization techniques try to approximate the Hessian by a simplified form.
- If we exceed the optimal learning rate, bad things happen!

this point!

Don't go beyond



Recap: Advanced Optimization Techniques

• Momentum

- Instead of using the gradient to change the position of the weight "particle", use it to change the velocity.
- Effect: dampen oscillations in directions of high curvature
- Nesterov-Momentum: Small variation in the implementation

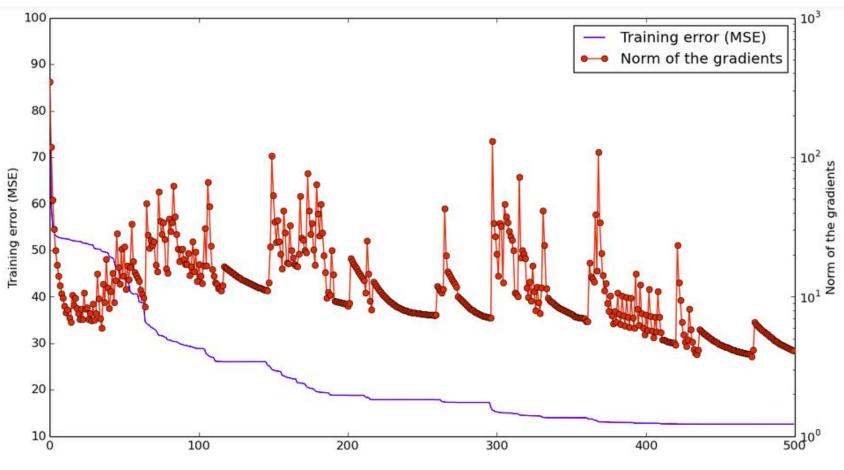
RMS-Prop

- Separate learning rate for each weight: Divide the gradient by a running average of its recent magnitude.
- AdaGrad
- AdaDelta
- Adam

Some more recent techniques, work better for some problems. Try them.

Recap: Patience

Saddle points dominate in high-dimensional spaces!

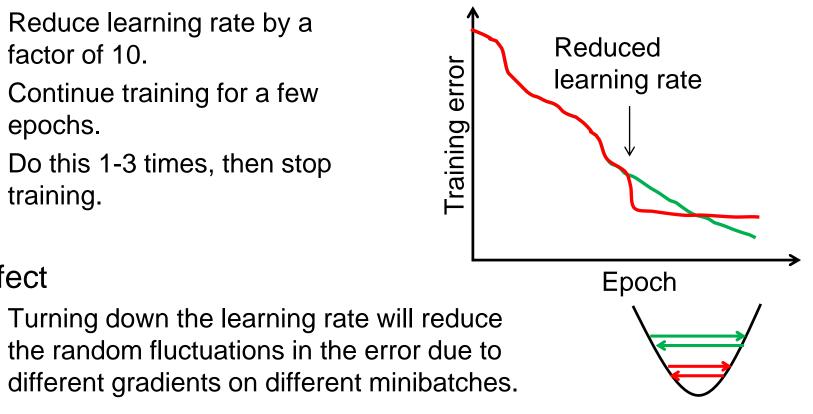


 \Rightarrow Learning often doesn't get stuck, you just may have to wait...

B. Leibe

Recap: Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a ≻ factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop ≻ training.



Be careful: Do not turn down the learning rate too soon!

Further progress will be much slower after that. \geq

Effect

 \geq

Machine Learning Winter '18

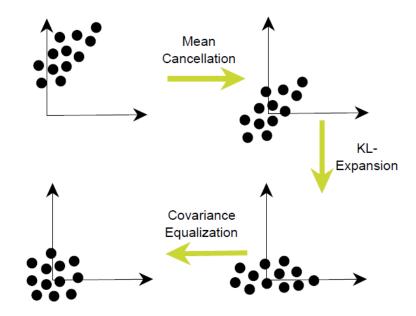
Recap: Data Augmentation

- Effect
 - Much larger training set
 - Robustness against expected variations
- During testing
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

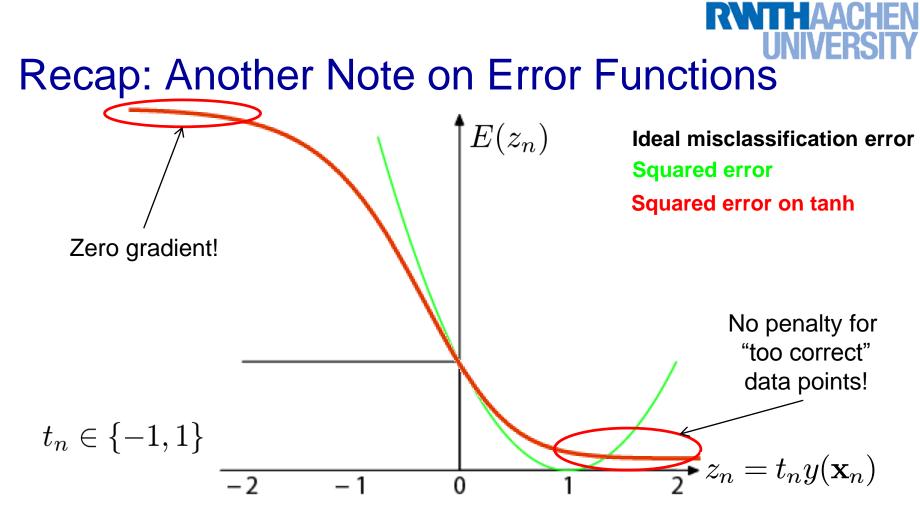
Augmented training data (from one original image)

Recap: Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.



- Advisable normalization steps (for MLPs only, not for CNNs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).



- Squared error on sigmoid/tanh output function
 - Avoids penalizing "too correct" data points.
 - > But: zero gradient for confidently incorrect classifications!
 - \Rightarrow Do not use L₂ loss with sigmoid outputs (instead: cross-entropy)!

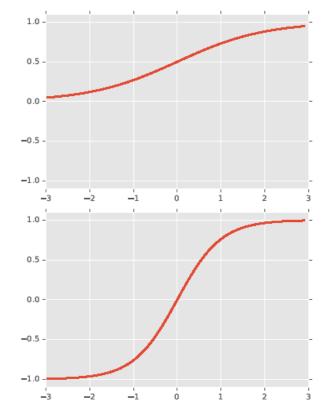
Recap: Commonly Used Nonlinearities

- Sigmoid $g(a) = \sigma(a)$ $= \frac{1}{1 + \exp\{-a\}}$
- Hyperbolic tangent

$$g(a) = tanh(a)$$
$$= 2\sigma(2a) - 1$$

Softmax

$$g(\mathbf{a}) = \frac{\exp\{-a_i\}}{\sum_j \exp\{-a_j\}}$$

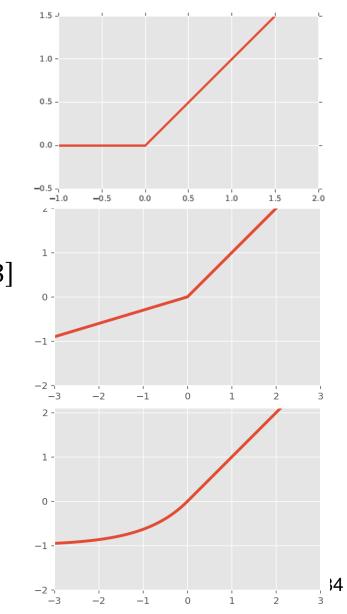


Recap: Commonly Used Nonlinearities (2)

Rectified linear unit (ReLU)

 $g(a) = \max\{0, a\}$

- Leaky ReLU $g(a) = \max\{\beta a, a\}$ $\beta \in [0.01, 0.3]$
 - Avoids stuck-at-zero units
 - > Weaker offset bias
 - ELU $g(a) = \begin{cases} a, & a \ge 0\\ e^a - 1, & a < 0 \end{cases}$
 - No offset bias anymore
 - > BUT: need to store activations



B. Leibe

Recap: Glorot Initialization

- Variance of neuron activations
 - > Suppose we have an input X with n components and a linear neuron with random weights W that spits out a number Y.
 - > We want the variance of the input and output of a unit to be the same, therefore $n \operatorname{Var}(W_i)$ should be 1. This means

٦

$$\operatorname{Var}(W) = rac{2}{n_{ ext{in}} + n_{ ext{out}}}$$

 \Rightarrow Randomly sample the weights with this variance. That's it.

 $\operatorname{Var}(W_i) = rac{1}{n_{\mathrm{out}}}$

$$\operatorname{Var}(W_i) = \frac{1}{n} = \frac{1}{n_{\mathrm{in}}}$$

Recap: He Initialization

- Extension of Glorot Initialization to ReLU units
 - > Use Rectified Linear Units (ReLU)

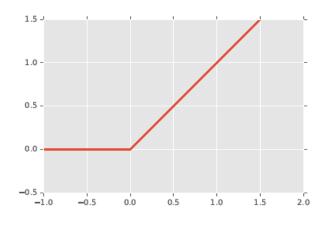
$$g(a) = \max\{0, a\}$$

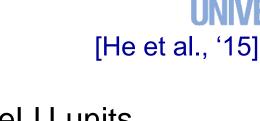
 Effect: gradient is propagated with a constant factor

$$\frac{\partial g(a)}{\partial a} = \begin{cases} 1, & a > 0\\ 0, & \text{else} \end{cases}$$

- Same basic idea: Output should have the input variance
 - However, the Glorot derivation was based on tanh units, linearity assumption around zero does not hold for ReLU.
 - > He et al. made the derivations, proposed to use instead

$$\operatorname{Var}(W) = rac{2}{n_{ ext{in}}}$$





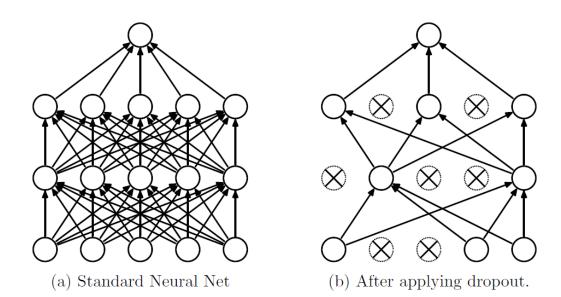
Recap: Batch Normalization

[loffe & Szegedy '14]

- Motivation
 - Optimization works best if all inputs of a layer are normalized.
- Idea
 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 - I.e., perform transformations on all activations and undo those transformations when backpropagating gradients
 - Effect
 - (Typically) much improved convergence

RNTHAACHEN UNIVERSITY [Srivastava, Hinton '12]

Recap: Dropout



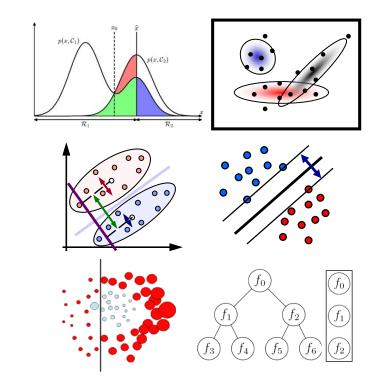
Idea

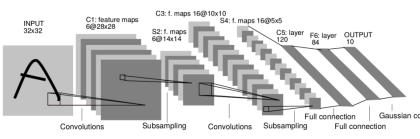
- Randomly switch off units during training.
- Change network architecture for each data point, effectively training many different variants of the network.
- When applying the trained network, multiply activations with the probability that the unit was set to zero.
- \Rightarrow Improved performance

RWTHAACHEN UNIVERSITY

Course Outline

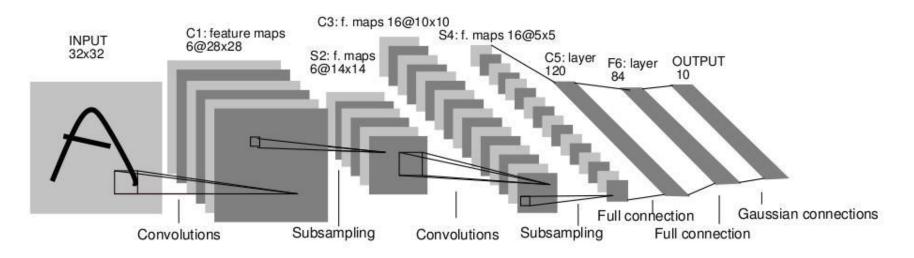
- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





RWTHAACHEN UNIVERSITY

Recap: Convolutional Neural Networks



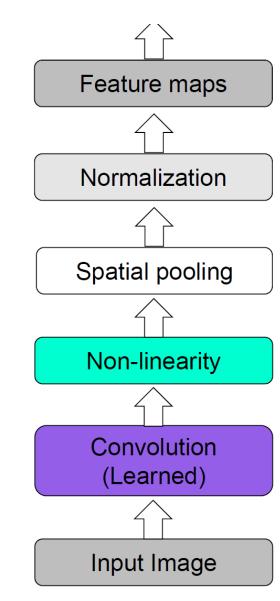
- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to</u> <u>document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

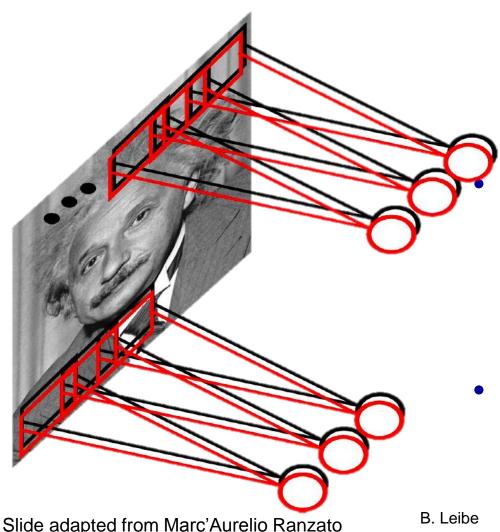
Recap: CNN Structure

RWTHAACHE UNIVERSIT

- Feed-forward feature extraction
 - 1. Convolve input with learned filters
 - 2. Non-linearity
 - 3. Spatial pooling
 - 4. (Normalization)
- Supervised training of convolutional filters by back-propagating classification error



Recap: Intuition of CNNs



Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

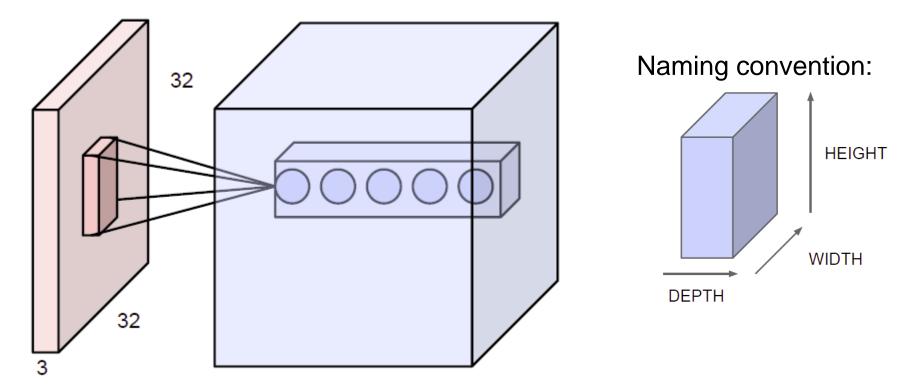
Learn *multiple* filters

- E.g. 1000×1000 image 100 filters 10×10 filter size
- \Rightarrow only 10k parameters
- Result: Response map
 - > size: 1000×1000×100
 - Only memory, not params!

92

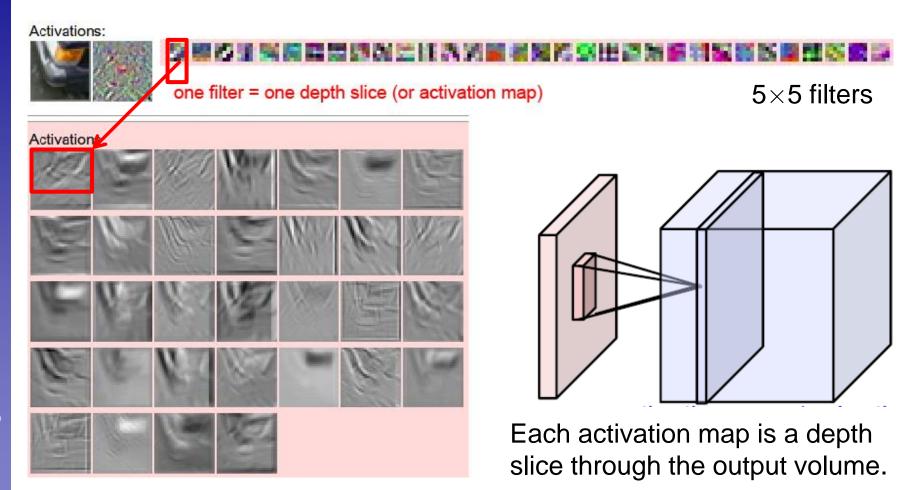
See Exercise 5.

Recap: Convolution Layers



- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - > Form a single $[1 \times 1 \times depth]$ depth column in output volume.

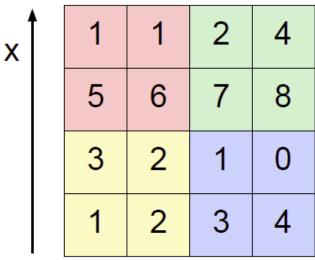
Recap: Activation Maps



Activation maps

Recap: Pooling Layers

Single depth slice



max pool with 2x2 filters and stride 2

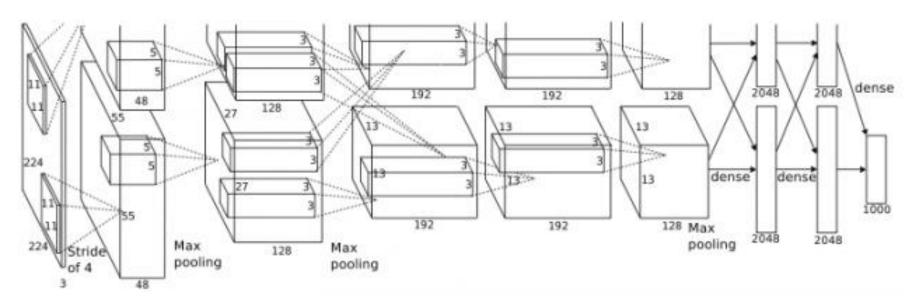
- Make the representation smaller without losing too much information
- Achieve robustness to translations

٧

RWTHAACHEN UNIVERSITY

96

Recap: AlexNet (2012)



- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10⁶ images instead of 10³)
 - > GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep</u> <u>Convolutional Neural Networks</u>, NIPS 2012.

Recap: VGGNet (2014/15)

- Main ideas
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation of all components

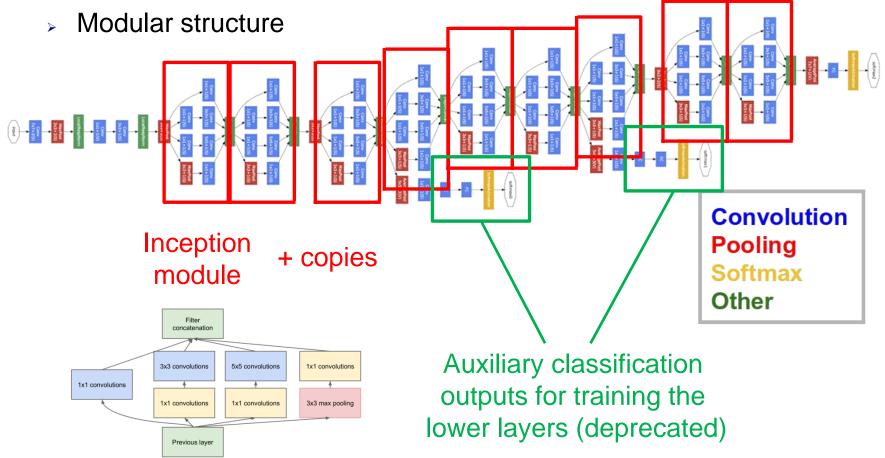
Results

Improved ILSVRC top-5 error rate to 6.7%.

ConvNet Configuration					
А	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224×224 RGB imag.)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
	maxpool				
FC-4096 Mainly us					y used
FC-4096					
FC-1000					
soft-max					

Recap: GoogLeNet (2014)

- Ideas:
 - Learn features at multiple scales



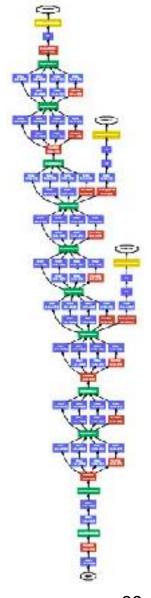
(b) Inception module with dimension reductions

Discussion

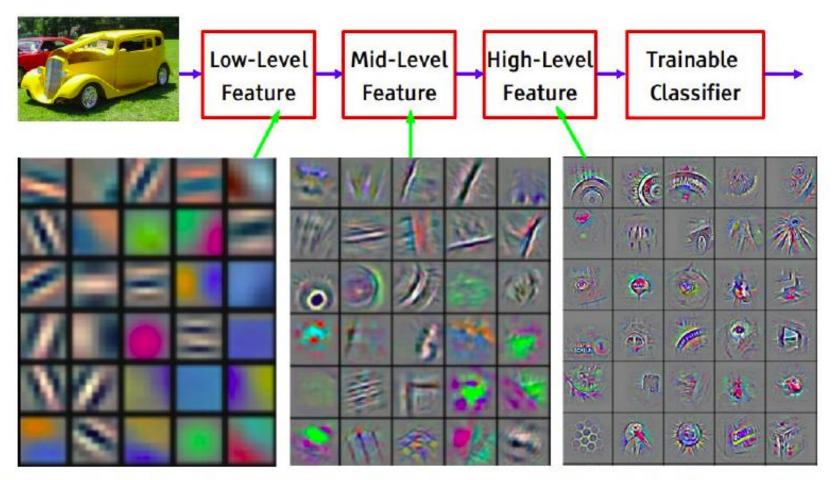
- GoogLeNet
 - 12× fewer parameters than AlexNet
 - \Rightarrow ~5M parameters
 - > Where does the main reduction come from?
 - \Rightarrow From throwing away the fully connected (FC) layers.
- Effect

Machine Learning Winter '18

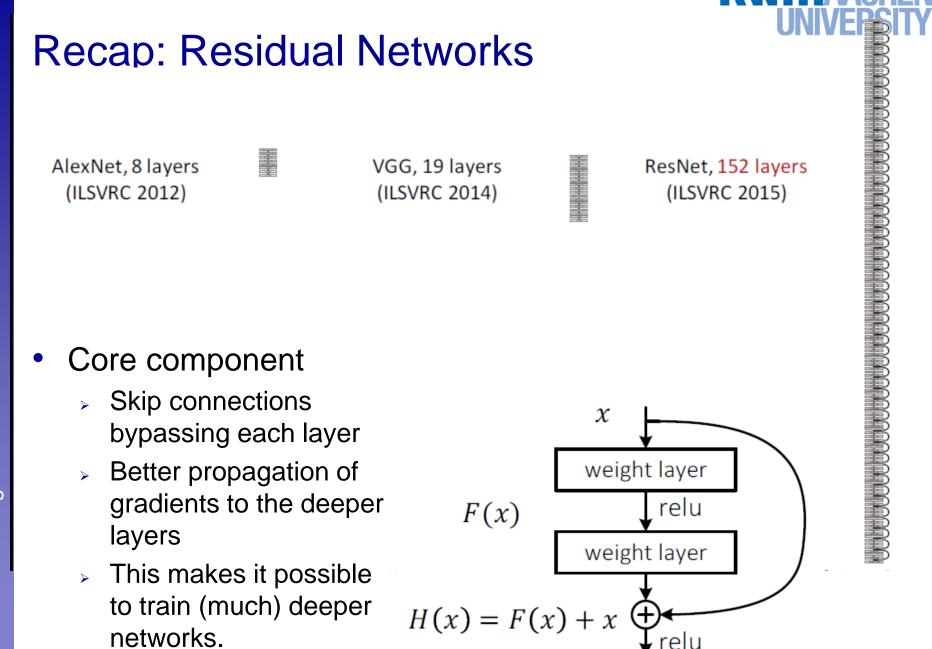
- After last pooling layer, volume is of size [7×7×1024]
- Normally you would place the first 4096-D FC layer here (Many million params).
- Instead: use Average pooling in each depth slice:
- \Rightarrow Reduces the output to [1×1×1024].
- ⇒ Performance actually improves by 0.6% compared to when using FC layers (less overfitting?)



Recap: Visualizing CNNs

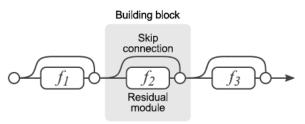


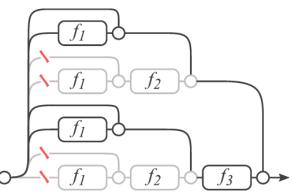
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Recap: Analysis of ResNets

- The effective paths in ResNets are relatively shallow
 - Effectively only 5-17 active modules
- This explains the resilience to deletion
 - Deleting any single layer only affects a subset of paths (and the shorter ones less than the longer ones).
- New interpretation of ResNets
 - ResNets work by creating an ensemble of relatively shallow paths
 - Making ResNets deeper increases the size of this ensemble
 - Excluding longer paths from training does not negatively affect the results.





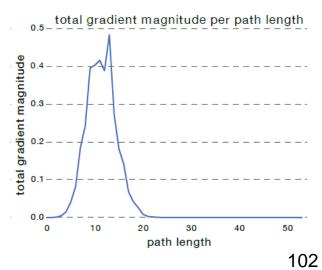
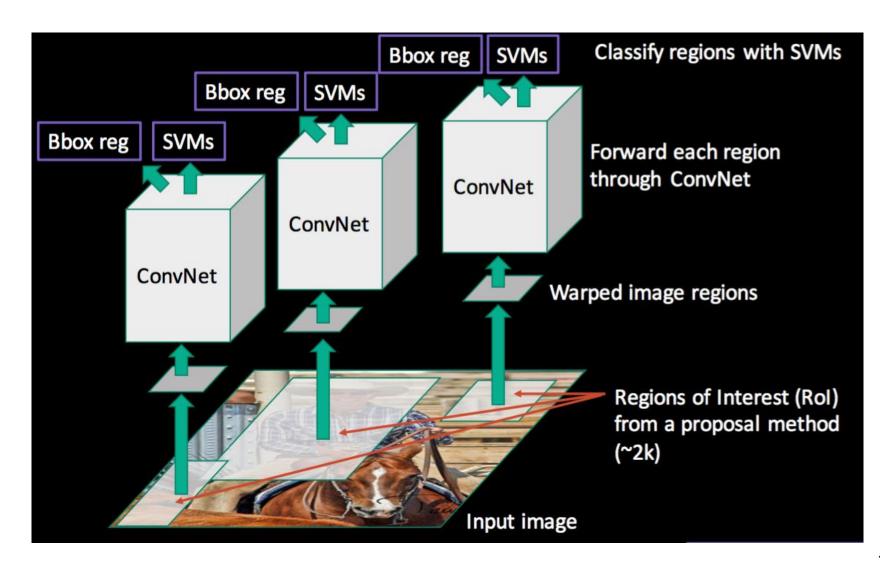


Image source: Veit et al., 2016

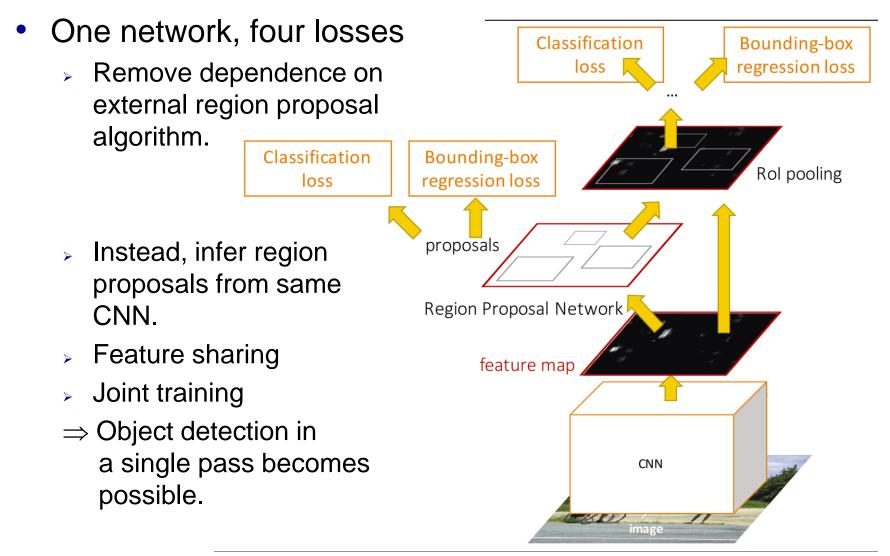
RWTHAACHEN UNIVERSITY

Recap: R-CNN for Object Detection



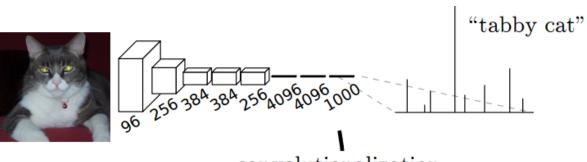
Machine Learning Winter '18

Recap: Faster R-CNN for Object Detection



Recap: Fully Convolutional Networks

• CNN



384 384 256 409 409 000

• FCN

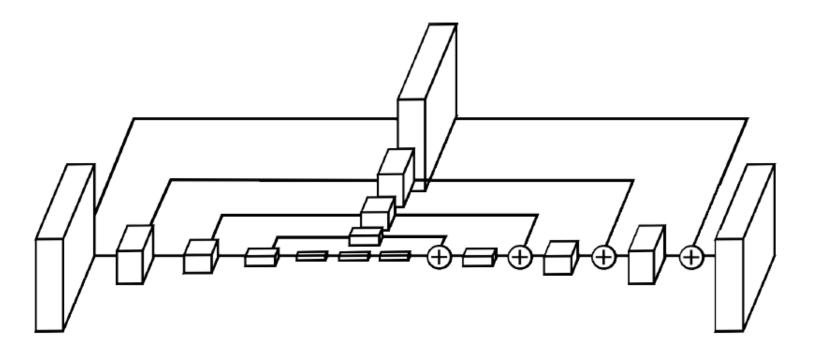
convolutionalization

tabby cat heatmap

- Intuition
 - Think of FCNs as performing a sliding-window classification, producing a heatmap of output scores for each class

256

Recap: Semantic Image Segmentation

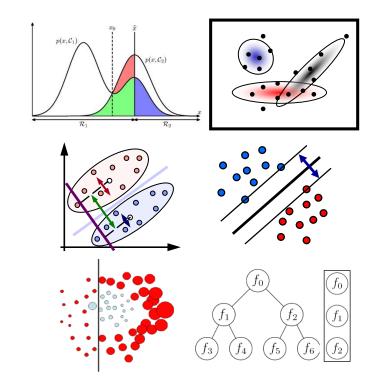


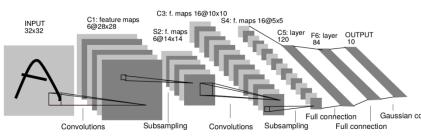
- **Encoder-Decoder Architecture**
 - Problem: FCN output has low resolution
 - Solution: perform upsampling to get back to desired resolution
 - > Use skip connections to preserve higher-resolution information

RWTHAACHEN UNIVERSITY

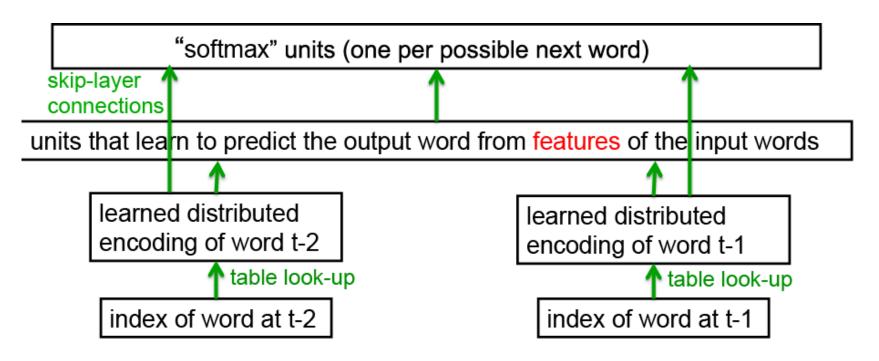
Course Outline

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
- Classification Approaches
 - Linear Discriminants
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Deep Learning
 - Foundations
 - Convolutional Neural Networks
 - Recurrent Neural Networks





Recap: Neural Probabilistic Language Model



- Core idea
 - Learn a shared distributed encoding (word embedding) for the words in the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, <u>A Neural Probabilistic Language</u> <u>Model</u>, In JMLR, Vol. 3, pp. 1137-1155, 2003.

Slide adapted from Geoff Hinton

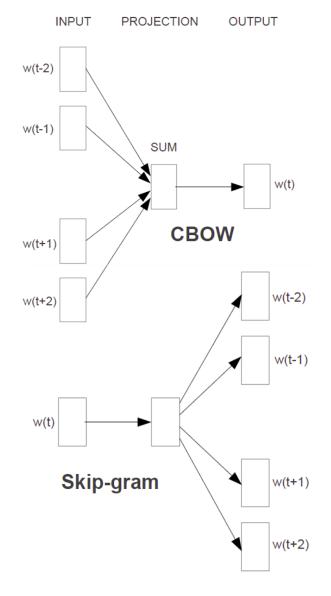
B. Leibe

Recap: word2vec

 Make it possible to learn high-quality word embeddings from huge data sets (billions of words in training set).

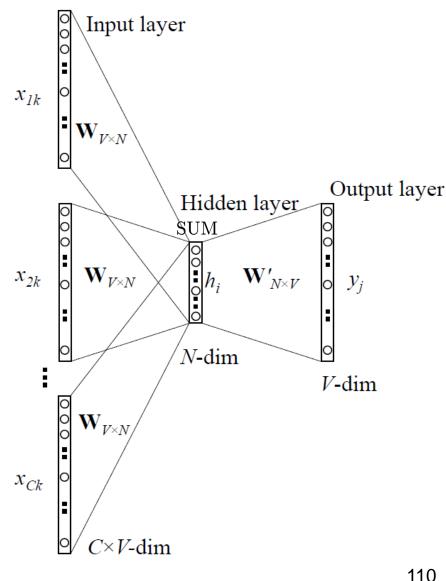
• Approach

- Define two alternative learning tasks for learning the embedding:
 - "Continuous Bag of Words" (CBOW)
 - "Skip-gram"
- Designed to require fewer parameters.



Recap: word2vec CBOW Model

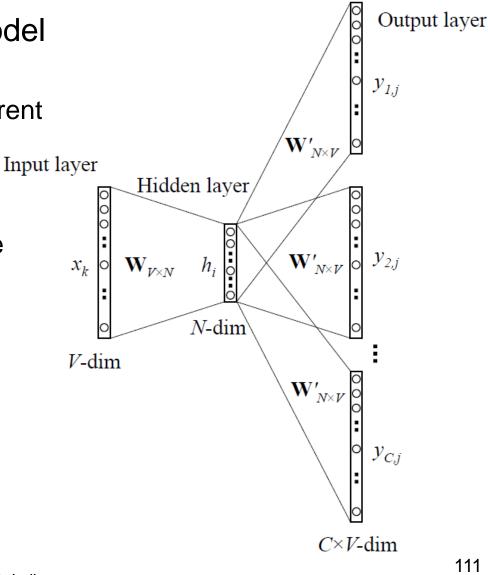
- Continuous BOW Model
 - Remove the non-linearity from the hidden layer
 - Share the projection layer for all words (their vectors are averaged)
 - ⇒ Bag-of-Words model (order of the words does not matter anymore)



B. Leibe

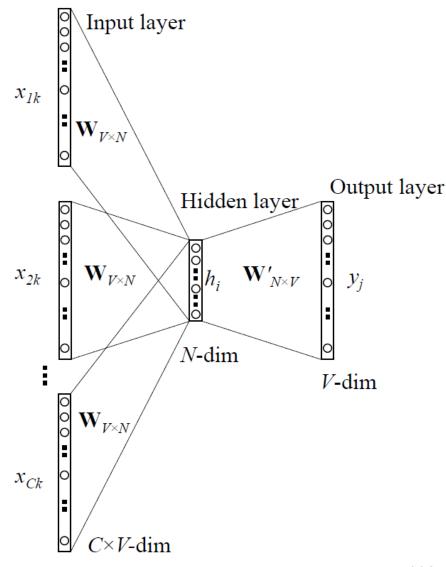
Recap: word2vec Skip-Gram Model

- Continuous Skip-Gram Model
 - Similar structure to CBOW
 - Instead of predicting the current word, predict words within a certain range of the current word.
 - Give less weight to the more distant words

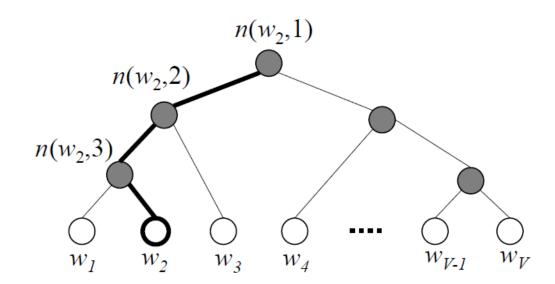


Recap: Problems with 100k-1M outputs

- Weight matrix gets huge!
 - Example: CBOW model
 - One-hot encoding for inputs
 - ⇒ Input-hidden connections are just vector lookups.
 - This is not the case for the hidden-output connections!
 - State h is not one-hot, and vocabulary size is 1M.
 - \Rightarrow $\mathbf{W'}_{N \times V}$ has 300×1M entries
- Softmax gets expensive!
 - Need to compute normalization over 100k-1M outputs



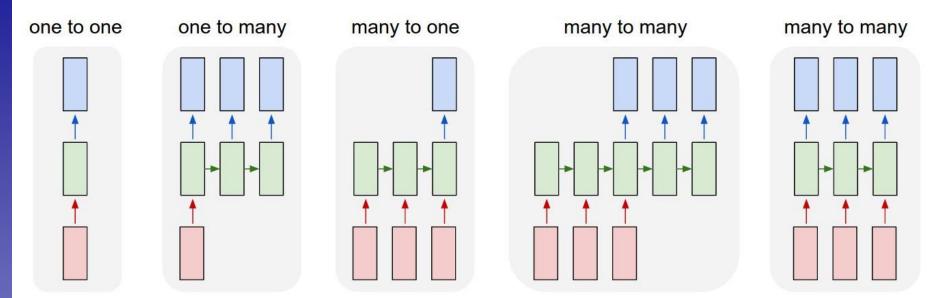
Recap: Hierarchical Softmax



Idea

- Organize words in binary search tree, words are at leaves
- > Factorize probability of word w_0 as a product of node probabilities along the path.
- > Learn a linear decision function $y = v_{n(w,j)} \cdot h$ at each node to decide whether to proceed with left or right child node.
- \Rightarrow Decision based on output vector of hidden units directly.

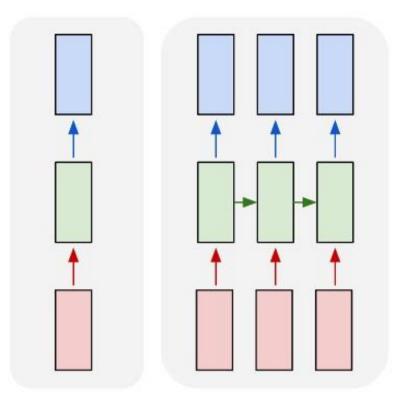
Recap: Recurrent Neural Networks



- Up to now
 - Simple neural network structure: 1-to-1 mapping of inputs to outputs
- Recurrent Neural Networks
 - Generalize this to arbitrary mappings

Recap: Recurrent Neural Networks (RNNs)

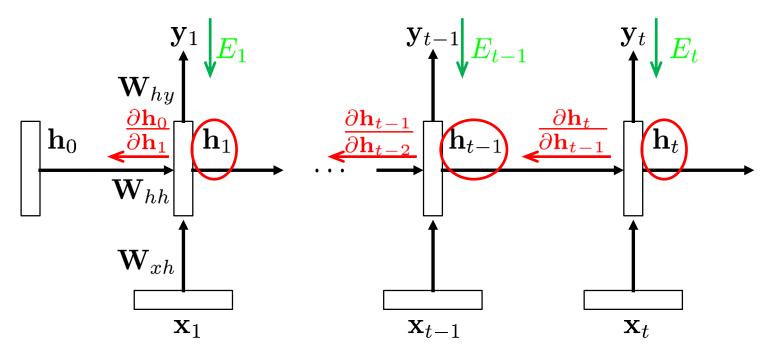
- RNNs are regular NNs whose hidden units have additional connections over time.
 - You can unroll them to create a network that extends over time.
 - When you do this, keep in mind that the weights for the hidden are shared between temporal layers.



RNNs are very powerful

With enough neurons and time, they can compute anything that can be computed by your computer.

Recap: Backpropagation Through Time (BPTT)



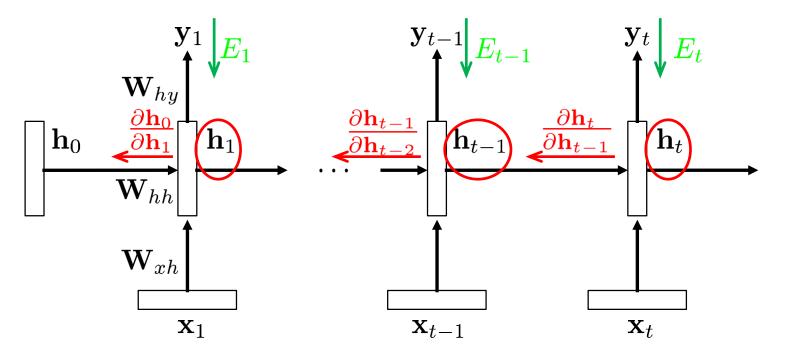
Configuration

 $\mathbf{h}_{t} = \sigma \left(\mathbf{W}_{xh} \mathbf{x}_{t} + \mathbf{W}_{hh} \mathbf{h}_{t-1} + b \right)$ $\hat{\mathbf{y}}_{t} = \operatorname{softmax} \left(\mathbf{W}_{hy} \mathbf{h}_{t} \right)$

- Backpropagated gradient
 - > For weight w_{ij} :

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$
 116

Recap: Backpropagation Through Time (BPTT)

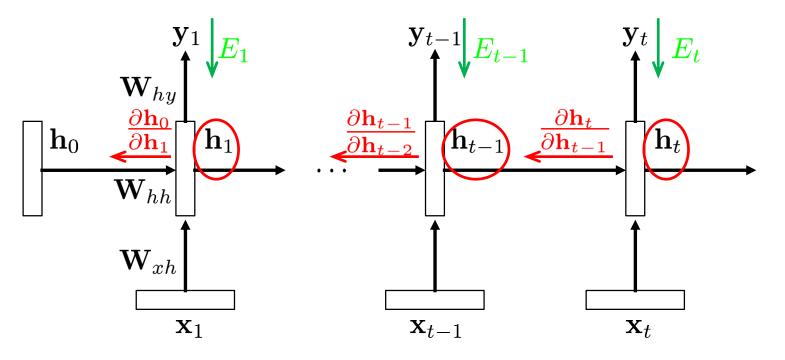


- Analyzing the terms
 - > For weight w_{ij} :

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$

> This is the "immediate" partial derivative (with \mathbf{h}_{k-1} as constant)

Recap: Backpropagation Through Time (BPTT)



- Analyzing the terms
 - > For weight w_{ij} :
 - Propagation term:

$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{t \ge i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

Recap: Backpropagation Through Time (BPTT

- Summary
 - Backpropagation equations

$$E = \sum_{1 \le t \le T} E_t$$
$$\frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right)$$
$$\frac{\partial h_t}{\partial h_k} = \prod_{t \ge i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \prod_{t \ge i > k} \mathbf{W}_{hh}^\top diag \left(\sigma'(\mathbf{h}_{i-1}) \right)$$

- \succ Remaining issue: how to set the initial state $\mathbf{h}_0?$
- \Rightarrow Learn this together with all the other parameters.

See Exercise 6.1

Recap: Exploding / Vanishing Gradient Problem

• BPTT equations:

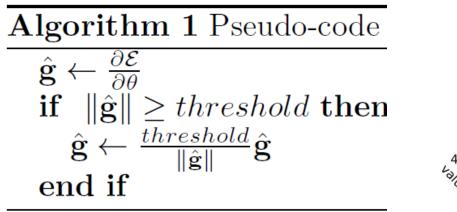
$$\begin{aligned} \frac{\partial E_t}{\partial w_{ij}} &= \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_k} \frac{\partial^+ h_k}{\partial w_{ij}} \right) \\ \frac{\partial h_t}{\partial h_k} &= \prod_{t \ge i > k} \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \prod_{t \ge i > k} \mathbf{W}_{hh}^\top diag \left(\sigma'(\mathbf{h}_{i-1}) \right) \\ &= \left(\mathbf{W}_{hh}^\top \right)^l \end{aligned}$$

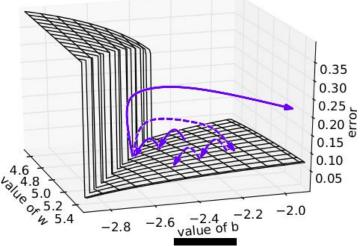
(if t goes to infinity and l = t - k.)

- \Rightarrow We are effectively taking the weight matrix to a high power.
- > The result will depend on the eigenvalues of \mathbf{W}_{hh} .
 - Largest eigenvalue > 1 \Rightarrow Gradients *may* explode.
 - Largest eigenvalue < 1 \Rightarrow Gradients *will* vanish.
 - This is very bad...

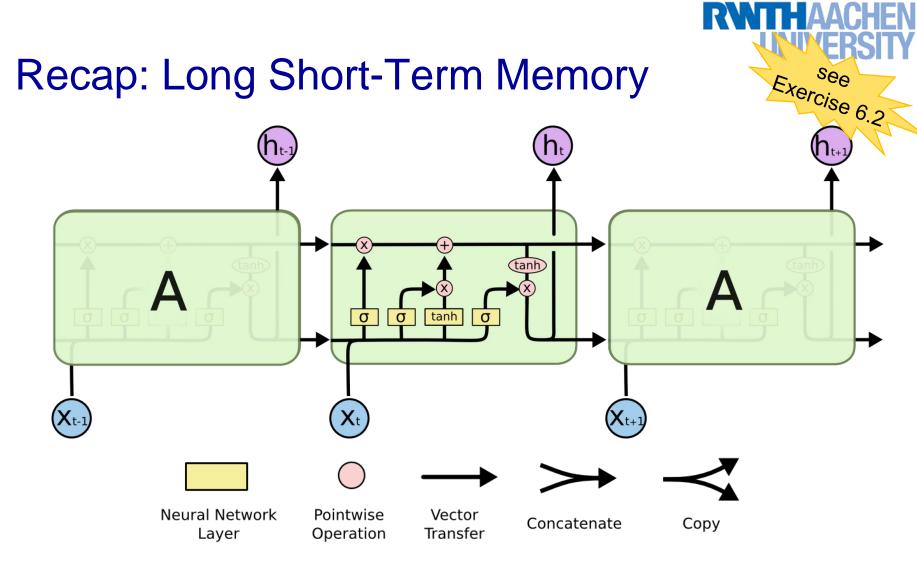
Recap: Gradient Clipping

- Trick to handle exploding gradients
 - If the gradient is larger than a threshold, clip it to that threshold.





> This makes a big difference in RNNs



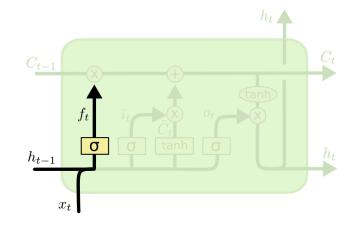
- LSTMs
 - Inspired by the design of memory cells
 - > Each module has 4 layers, interacting in a special way.

122

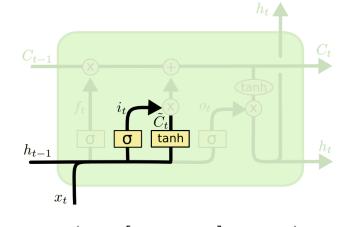
Recap: Elements of LSTMs

Forget gate layer

- > Look at \mathbf{h}_{t-1} and \mathbf{x}_t and output a number between 0 and 1 for each dimension in the cell state \mathbf{C}_{t-1} .
 - 0: completely delete this,
 - 1: completely keep this.
- Update gate layer
 - Decide what information to store in the cell state.
 - Sigmoid network (input gate layer) decides which values are updated.
 - tanh layer creates a vector of new candidate values that could be added to the state.



$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$



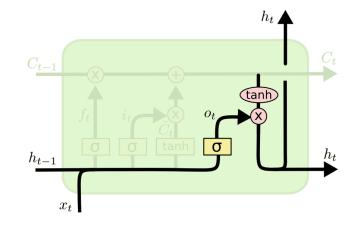
$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b \mathcal{Z}$$

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs

Recap: Elements of LSTMs

- Output gate layer
 - Output is a filtered version of our gate state.
 - First, apply sigmoid layer to decide what parts of the cell state to output.
 - Then, pass the cell state through a tanh (to push the values to be between -1 and 1) and multiply it with the output of the sigmoid gate.



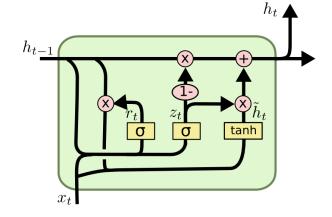
$$o_{t} = \sigma \left(W_{o} \left[h_{t-1}, x_{t} \right] + b_{o} \right)$$
$$h_{t} = o_{t} * \tanh \left(C_{t} \right)$$

124

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Gated Recurrent Units (GRU)

- Simpler model than LSTM
 - > Combines the forget and input gates into a single update gate z_t .
 - > Similar definition for a reset gate r_t , but with different weights.
 - In both cases, merge the cell state and hidden state.
- Empirical results
 - Both LSTM and GRU can learn much longer-term dependencies than regular RNNs
 - GRU performance similar to LSTM (no clear winner yet), but fewer parameters.



$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

125

Any More Questions?

Good luck for the exam!