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Topics of This Lecture

* Recap: Nonlinear Support Vector Machines

* Ensembles of classifiers
» Bagging
» Bayesian Model Averaging

* AdaBoost
» Intuition
» Algorithm
» Analysis
» Extensions
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Recap: SVM — Dual Formulation
* Maximize
N 1 N N
Ly(a) = an — 5 Z Z Unmtnton(XE%,)
n=1 n=1m=1

under the conditions
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* Comparison
» L, is equivalent to the primal form L,, but only depends on a,,.
» L, scales with O(D?).
» L, scales with O(NN®) — in practice between O(IN) and O(N?).
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Course Outline

* Fundamentals
» Bayes Decision Theory
» Probability Density Estimation

* Classification Approaches
» Linear Discriminants
» Support Vector Machines
» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

* Deep Learning

» Foundations
» Convolutional Neural Networks E‘. Lr

» Recurrent Neural Networks
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Recap: Support Vector Machine (SVM)

* Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

» Up to now: consider linear classifiers

wix+b=0

* Formulation as a convex optimization problem
» Find the hyperplane satisfying

1 2
argmin [Iw]|
under the constraints
ty(WTx, +b) >1 Vn
based on training data points x,, and target values ¢, € {—1,1}
4
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Recap: Nonlinear SVMs

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training

set is separable:
r . .

L D x— ¢(x) = .

de credit- Ravmond Mooney




Recap: The Kernel Trick

* Important observation
» ¢(x) only appears in the form of dot products ¢(x)T¢é(y):

y(x) = wio(x) +b

N
=) antad(xn)"$(x) +b
n=1

. Define a so-called kernel function k(x,y) = ¢(x)To(y).

» Now, in place of the dot product, use the kernel instead:
N
y(X) = Z antnk(xna X) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!
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subject to the constraints

“Most points should
tay(xn) = 16,

be on the correct
side of the margin”
 Different way of looking at it

» We can reformulate the constraints into the objective function.

N
1
min (W[ +C Y1 tay(xn)],

weRP ot
%/_/ —
L, regularizer

where [z], := max{0,z}.

“Hinge loss”
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Recap: SVM Loss Function
* Traditional soft-margin formulation
N
. 1 2 “Maximize
weRD, g ekt 2 twl” + O;&L the margin”

Topics of This Lecture

* Ensembles of classifiers
» Bagging
» Bayesian Model Averaging

* AdaBoost
> Intuition
» Algorithm
» Analysis
» Extensions

)
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

B. Leibe

Machine Learning Winter ‘19

Machine Learning Winter ‘19

RWTH//CHE
Recap: Nonlinear SVM — Dual Formulation

* SVM Dual: Maximize
V N N

N
1
La(a) = a, - 5 SN anamtutmb(xm, x0)

n=1 n=1m=1

under the conditions

0- a,: C
N
Z apt, = 0
n=1
* Classify new data points using

N
y(x) = > antuk(x,,x) +b

n=1
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Recap: Hinge Loss Analysis
E(z,) Ideal misclassification erro
Squared error
Hinge error
Robust to outliers!
Not differentiable! / Favors sparse
\ / solutions!
- 3 0 - NS > #n = tny(xn)
* “Hinge error” used in SVMs
» Zero error for points outside the margin (z, > 1) = sparsity
» Linear penalty for misclassified points (z, < 1) = robustness
» Not differentiable around z,= 1 = Cannot be optimized directly.
B. Leibe Image sorce Bishop 9%2
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TWTH G
SoFar...

* We've seen already a variety of different classifiers
+ kNN

~ Bayes classifiers

» Linear discriminants

» SVMs

* Each of them has their strengths and weaknesses...

» Can we improve performance by combining them?
12
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Ensembles of Classifiers

* Intuition
» Assume we have K classifiers.
» They are independent (i.e., their errors are uncorrelated).
» Each of them has an error probability p < 0.5 on training data.
— Why can we assume that p won't be larger than 0.5?

» Then a simple majority vote of all classifiers should have a
lower error than each individual classifier...

Machine Learning Winter ‘19
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Constructing Ensembles

* Bagging = “Bootstrap aggregation” (Breiman 1996)
» In each run of the training algorithm, randomly select M samples
with replacement from the full set of IV training data points.

» If M = N, then on average, 63.2% of the training points will be
represented. The rest are duplicates.

* Injecting randomness

» Many (iterative) learning algorithms need a random initialization
(e.g. k-means, EM)

» Perform mutliple runs of the learning algorithm with different
random initializations.

Machine Learning Winter ‘19
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Note the Different Interpretations!

* Model Combination (e.g., Mixtures of Gaussians)
~ Different data points generated by different model components.
» Uncertainty is about which component created which data point.
= One latent variable z,, for each data point:

p(X) = Hp(xn) = H Zp(xmzn)
n=1

n=1 z,

* Bayesian Model Averaging
» The whole data set is generated by a single model.
» Uncertainty is about which model was responsible.
= One latent variable z for the entire data set:

p(X) = ZP(X7 z)

B. Leibe
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Constructing Ensembles

* How do we get different classifiers?
» Simplest case: train same classifier on different data.
» But... where shall we get this additional data from?
— Recall: training data is very expensive!

* |dea: Subsample the training data

» Reuse the same training algorithm several times on different
subsets of the training data.

* Well-suited for “unstable” learning algorithms
» Unstable: small differences in training data can produce very
different classifiers
— E.g., Decision trees, neural networks, rule learning algorithms,...
» Stable learning algorithms
— E.g., Nearest neighbor, linear regression, SVMs,...

14
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Bayesian Model Averaging

* Model Averaging
» Suppose we have H different models A = 1,...,H with prior
probabilities p(h).
» Construct the marginal distribution over the data set

p(X) =Y p(XIh)p(h)

h=1

* Interpretation

» Just one model is responsible for generating the entire data set.
The probability distribution over h just reflects our uncertainty
which model that is.
As the size of the data set increases, this uncertainty reduces,
and p(X|h) becomes focused on just one of the models.

v

v
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Model Averaging: Expected Error

* Combine M predictors y,,(x) for target output h(x).
» E.g. each trained on a different bootstrap data set by bagging.
» The committee prediction is given by

M
1
yoom (x) = 57 > ym(x)
m=1
» The output can be written as the true value plus some error.
y(x) = h(x) + e(x)

» Thus, the expected sum-of-squares error takes the form

B = [{um () = h(x)Y"] = Bx [e ()"

18
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Model Averaging: Expected Error

* Average error of individtj&al models

Eay = ]17 Z Ex [em(x)2]
m=1

* Average error of committee

Ym(X) = h(X) + € (X)

L XM 2 L M 2]
Ecom = Bx {szm(x)*h(x)} = Ex {szm(x)}
m=1 m=1

* Assumptions
. Errors have zero mean:  Ex [e,(x)] =0
» Errors are uncorrelated: By [€,,,(%)€;(x)] = 0
1 Isny "y
* Then: Ecom = M]EAV Spectacugm
19
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AdaBoost — “Adaptive Boosting”

* Main idea [Freund & Schapire, 1996]
» lteratively select an ensemble of component classifiers
» After each iteration, reweight misclassified training examples.
— Increase the chance of being selected in a sampled training set.
— Or increase the misclassification cost when training on the full set.
¢ Components
> h,(x): “weak” or base classifier
— Condition: <50% training error over any distribution
» H(x): “strong” or final classifier
* AdaBoost:

» Construct a strong classifier as a thresholded linear combination of
the weighted weak classifiers:

M
H(x) = sign z amhm(x)>

)
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

m=1 n
B. Leibe
AdaBoost: Intuition
™Y (o] Weights
Weak ® ® o Increased ® e
Classifier | ™~ Z_--=-=""" @
LY Weak '@
[ ] @ Classifier 2 — [}
23
de credit Kristen Grauman B. Leibe Eiqure adapted from Freund & Schapic
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Model Averaging: Expected Error
* Average error of committee
1
Ecom = M]EAV

» This suggests that the average error of a model can be reduced by
a factor of M simply by averaging M versions of the model!

» Spectacular indeed...
» This sounds almost too good to be true...

* Anditis... Can you see where the problem is?

» Unfortunately, this result depends on the assumption that the
errors are all uncorrelated.

» In practice, they will typically be highly correlated.
» Sitill, it can be shown that
Econm - Eav

20
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AdaBoost: Intuition

Consider a 2D feature space
with positive and negative
examples.

Weak e %o
Classifier 1 -

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.

22

de credit Kristen Grauman B Leibe Eique adapted from Freund & Schapin
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AdaBoost: Intuition

® @ Weights
B Increased
Weak ® ._
Classifier | "o -=—="""
® @ Weak
Classifier 2 —
®e9
Weak
classifier 3

The final classifier is a
linear combination of
the weak classifiers

24
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AdaBoost — Formalization

* 2-class classification problem
» Given: training set X = {x,, ..., Xy}
with target values T ={t,, ..., ty }, t, € {-1,1}.
» Associated weights W={wy, ..., wy} for each training point.

* Basic steps

on the current weighting coefficients W),
» We then adapt the weighting coefficients for each point
— Increase w, if x,, was misclassified by h,,(x).
- Decrease w, if x, was classified correctly by h,,(x).
» Make predictions using the final combined model

M
H(x) = sign Z amhm(x)>

Machine Learning Winter ‘19

m=1
B. Leibe

» In each iteration, AdaBoost trains a new weak classifier h,,(x) based

25

AdaBoost — Historical Development

* Originally motivated by Statistical Learning Theory
» AdaBoost was introduced in 1996 by Freund & Schapire.
» It was empirically observed that AdaBoost often tends not to overfit.
(Breiman 96, Cortes & Drucker 97, etc.)
As a result, the margin theory (Schapire et al. 98) developed, which
is based on loose generalization bounds.
— Note: margin for boosting is not the same as margin for SVM.
— A bit like retrofitting the theory...
» However, those bounds are too loose to be of practical value.

v

 Different explanation (Friedman, Hastie, Tibshirani, 2000)

» Interpretation as sequential minimization of an exponential error
function (“Forward Stagewise Additive Modeling”).

» Explains why boosting works well.
» Improvements possible by altering the error function.

Machine Learning Winter ‘19
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AdaBoost — Minimizing Exponential Error

* Sequential Minimization

» Suppose that the base classifiers h,(x),..., h,,.,(x) and their
coefficients a,,...,q,,_, are fixed.

= Only minimize with respect to «,, and h,,,(x).

m

n=1
° N .
g = ZGXP {_tnfm—l(xn) - —tnamhm(xn)}
s — 2
= n=1 B
E = const.
3 N 1
: = 3w exp {— 5tna,,,hm(xn)}
-‘:ﬁ’ n=1
=

B. Leibe
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N
E=Y"exp{—tafm(x)} with fux) =35> chix)
=1

29

AdaBoost — Algorithm

e 1
1. Initialization: Set w(!) = 5 forn=1,...,N.
2. Form=1,....M iterations
a) Train a new weak classifier h,,(x) using the current weighting
coefficients W™ by minimizing the weighted error function
N
I =D WM (A (%) # tn)
n=1
b) Estimate the weighted error of this classifier on X:
_ S 0l I (%) # 1)

271:/:1 wf[")

c) Calculate a weighting coefficient for h,,(x):

€m

ay, = 7

o L if A s true
Ay =
0, else

How should we

d) Update the weighting coefficients: do this exactly?

wimt) = 7

Machine Learning Winter ‘19
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AdaBoost — Minimizing Exponential Error

* Exponential error function
N
E= Z exp {7tnfm(xn)}
n=1

» where f,,(x) is a classifier defined as a linear combination of base
classifiers hy(x):

frn(x) = %Z alhl (X)
=1

* Goal

» Minimize E with respect to both the weighting coefficients o, and
the parameters of the base classifiers h(x).

Machine Learning Winter ‘19
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AdaBoost — Minimizing Exponential Error

N
1
E= Z wﬁbm) exp {7§tnamhm(xn)}

n=1

> Observation:
— Correctly classified points: ¢,h,,(x,) = +1
toh () = -1

= collectin 7,

m

— Misclassified points: = collectin F,,

» Reuwrite the error function as
B e—om/? Z wi™

n€Tm

- (ea’"/z ) i W T (B (%) # )

n=1
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AdaBoost — Minimizing Exponential Error

N
1
E= Z wflm> exp {7 itnamhm(xn)}

n=1
» Observation:
— Correctly classified points: t,h,,(x,) = +1 = collectin 7,
— Misclassified points: t,h,(x,) = -1 = collect in F,,
- » Rewrite the error function as
= E=
£
E
g .
2
I
g N
E _ ( eom/2 _ pfa,n/z) Z“’ )L (o (%) 7 £) + €0/ Zw(m)
S
(]
=
31
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AdaBoost — Minimizing Exponential Error
A . OE
* Minimize with respect to «,,: Eraal

E= ( eom/2 P’“’“/Z) Zw(m)l m(Xn) # tn) e om/2 Zw(m

N N
</]Z/Cmn/2 . ;}/an,/z> S I () £ 1) - zefam/z S
n=1 n=1

v

2 weighted . _ e—om/2

8 error e eoml? F e—om/?

£

= 1

g R

3 . 1-cn

] = Update for the « coefficients: am = In —

£ m

3

5 33
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AdaBoost — Final Algorithm

1. Initialization: Set  w(!) = ]lv)rn =1,...,N.
2. Form=1,...,M iterations

a) Train a new weak classifier h,,(x) using the current weighting
coefficients W) bv minimizing the weighted error function

,,ﬁzw (%) # 1)

b) Estimate the weighted error of this classifier on X:

€m

c) Calculate a weighting coefficient for h,,(x):
Q, =1n —
€m

d) Update the weighting coefficients:
w D = (™ exp {n I (ho (Xn) # tn)}

B. Leibe

)
g
=
o
=
=
S
®
3
o
=
=
S
I}
=

35

RWTH//ACHET]

AdaBoost — Minimizing Exponential Error
OE |

O (xn)

E= ( eom/2 _ E—am/'z) Z W (B (%) # ) + €O /2 Zw(m)
n=1
%/—/ %/—/
= const. = const.

* Minimize with respect to h,,(x):

= This is equivalent to minimizing
I = ZWU x) # tn)
(our weighted error function from step 2a) of the algorithm)

= We’re on the right track. Let’s continue...

Machine Learning Winter ‘19
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AdaBoost — Minimizing Exponential Error

* Remaining step: update the weights
» Recall that

N
1
E = Z wﬁbm) exp {7§tnamhm(xn)}

n=1

This becomes w;m“)
in the next iteration.
» Therefore

1
TN E

= w™ exp {am ] (hn(%n) # tn)}

= Update for the weight coefficients.

Machine Learning Winter ‘19
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AdaBoost — Analysis

* Result of this derivation

» We now know that AdaBoost minimizes an exponential error
function in a sequential fashion.

» This allows us to analyze AdaBoost’s behavior in more detail.
» In particular, we can see how robust it is to outlier data points.
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Recap: Error Functions Recap: Error Functions

t, € {-1,1} E{zq) Ideal misclassification erro E(z,) Ideal misclassification erro
" ’ Squared error

t,e {—1.1}

Sensitive to outliers!

Penalizes “too correct”
data points!

Not differentiable! ——— 5

2l (2] /
£ = 1 %1 72 = ty(%n) s 2 - i A = by ()
§ ¢ |deal misclassification error function (black) é’ * Squared error used in Least-Squares Classification
5’? » This is what we want to approximate, § » Very popular, leads to closed-form solutions.
2 » Unfortunately, it is not differentiable. 2 » However, sensitive to outliers due to squared penalty.
< <
é » The gradient is zero for misclassified points. § » Penalizes “too correct” data points
= We cannot minimize it by gradient descent. 37 = Generally does not lead to good classifiers. 38
lmage sour Bishop, 200¢ lmage source: Bishop, 200t
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Recap: Error Functions Discussion: AdaBoost Error Function
E(z,) Ideal misclassification erro E(z,) Ideal misclassification erro
Squared error Squared error
Hinge error Hinge error
. Exponential error
Robust to outliers!
Not differentiable! ! / Favors sparse \ /
\ /! solutions! N\ S/
2 W% = tay(xn) B I A = tay(Xa)

* “Hinge error” used in SVMs
» Zero error for points outside the margin (z, > 1) = sparsity
» Linear penalty for misclassified points (z, < 1) = robustness
» Not differentiable around z,= 1 = Cannot be optimized directly.

* Exponential error used in AdaBoost
» Continuous approximation to ideal misclassification function.
» Sequential minimization leads to simple AdaBoost scheme.
» Properties?

Machine Learning Winter ‘19
Machine Learning Winter ‘19
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lmage source: Bishop, 200¢
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lmage source: Bishop, 2001
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Discussion: AdaBoost Error Function Discussion: Other Possible Error Functions
E(zn) Ideal misclassification errol E(zn) Ideal misclassification erro
Squared error Squared error
Hinge error Hinge error
. . Exponential erro Exponential error
Sensitive to outliers! Cross-entropy error
/,: E= —Z{f,,t Iny, + (1 —t,) In(1 —y,)} /,r
2 = tay(x) R 5" o = tay(xn)

* Exponential error used in AdaBoost
» No penalty for too correct data points, fast convergence.
» Disadvantage: exponential penalty for large negative values!
= Less robust to outliers or misclassified data points!

* “Cross-entropy error” used in Logistic Regression
» Similar to exponential error for z2>0.
» Only grows linearly with large negative values of z.
= Make AdaBoost more robust by switching to this error function.
= “GentleBoost” B. Leibe
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Summary: AdaBoost

* Properties

» Simple combination of multiple classifiers.

» Easy to implement.

» Can be used with many different types of classifiers.
— None of them needs to be too good on its own.
— In fact, they only have to be slightly better than chance.

» Commonly used in many areas.

» Empirically good generalization capabilities.

* Limitations
» Original AdaBoost sensitive to misclassified training data points.
— Because of exponential error function.
— Improvement by GentleBoost
» Single-class classifier
— Multiclass extensions available

y 43
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References and Further Reading
* More information on Classifier Combination and Boosting

can be found in Chapters 14.1-14.3 of Bishop’s book.

Rt

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

* A more in-depth discussion of the statistical interpretation
of AdaBoost is available in the following paper:
» J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a

Statistical View of Boosting, The Annals of Statistics, Vol. 38(2),
pages 337-374, 2000.
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http://www-stat.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

