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Machine Learning – Lecture 10

AdaBoost

13.11.2019

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Randomized Trees, Forests & Ferns

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

2
B. Leibe

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Topics of This Lecture

• Recap: Nonlinear Support Vector Machines

• Ensembles of classifiers
 Bagging

 Bayesian Model Averaging

• AdaBoost
 Intuition

 Algorithm

 Analysis

 Extensions
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Recap: Support Vector Machine (SVM)

• Basic idea

 The SVM tries to find a classifier which  

maximizes the margin between pos. and

neg. data points.

 Up to now: consider linear classifiers

• Formulation as a convex optimization problem

 Find the hyperplane satisfying

under the constraints

based on training data points xn and target values                     .
4
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Margin

wTx+ b = 0

argmin
w;b

1

2
kwk2

tn(w
Txn + b) ¸ 1 8n

tn 2 f¡1;1g
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Recap: SVM – Dual Formulation

• Maximize

under the conditions

• Comparison

 Ld is equivalent to the primal form Lp, but only depends on an.

 Lp scales with O(D3).

 Ld scales with O(N3) – in practice between O(N) and O(N2).
5

B. Leibe

Ld(a) =

NX

n=1

an ¡
1

2

NX

n=1

NX

m=1

anamtntm(xTmxn)

NX

n=1

antn = 0

an ¸ 0 8n

Slide adapted from Bernt Schiele

P
e

rc
e

p
tu

a
l 

a
n

d
 S

e
n

s
o

ry
 A

u
g

m
e

n
te

d
 C

o
m

p
u

ti
n

g
M

a
c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Recap: Nonlinear SVMs

• General idea: The original input space can be mapped to 

some higher-dimensional feature space where the training 

set is separable:

6

©:  x→ Á(x)

Slide credit: Raymond Mooney
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Recap: The Kernel Trick

• Important observation

 Á(x) only appears in the form of dot products Á(x)TÁ(y):

 Define a so-called kernel function k(x,y) = Á(x)TÁ(y).

 Now, in place of the dot product, use the kernel instead:

 The kernel function implicitly maps the data to the higher-

dimensional space (without having to compute Á(x) explicitly)!

7
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Recap: Nonlinear SVM – Dual Formulation

• SVM Dual: Maximize

under the conditions

• Classify new data points using 

8
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NX
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0 · an · C
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Recap: SVM Loss Function

• Traditional soft-margin formulation

subject to the constraints

• Different way of looking at it

 We can reformulate the constraints into the objective function.

where [x]+ := max{0,x}.
9
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“Hinge loss”L2 regularizer

“Most points should 

be on the correct

side of the margin”

“Maximize 

the margin”
min

w2RD; »n2R+
1

2
kwk2 + C

NX

n=1

»n

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Slide adapted from Christoph Lampert
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Recap: Hinge Loss Analysis

• “Hinge error” used in SVMs

 Zero error for points outside the margin (zn > 1)     sparsity

 Linear penalty for misclassified points (zn < 1)  robustness

 Not differentiable around zn = 1  Cannot be optimized directly.
10

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse 

solutions!

Robust to outliers!

zn = tny(xn)
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Topics of This Lecture

• Recap: Nonlinear Support Vector Machines

• Ensembles of classifiers
 Bagging

 Bayesian Model Averaging

• AdaBoost
 Intuition

 Algorithm

 Analysis

 Extensions
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So Far…

• We’ve seen already a variety of different classifiers

 k-NN

 Bayes classifiers

 Linear discriminants

 SVMs

• Each of them has their strengths and weaknesses…

 Can we improve performance by combining them?
12
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Ensembles of Classifiers

• Intuition

 Assume we have K classifiers.

 They are independent (i.e., their errors are uncorrelated).

 Each of them has an error probability p < 0.5 on training data.

– Why can we assume that p won’t be larger than 0.5?

 Then a simple majority vote of all classifiers should have a 

lower error than each individual classifier…

13
B. LeibeSlide adapted from Bernt Schiele
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Constructing Ensembles

• How do we get different classifiers?

 Simplest case: train same classifier on different data.

 But… where shall we get this additional data from?

– Recall: training data is very expensive!

• Idea: Subsample the training data

 Reuse the same training algorithm several times on different 

subsets of the training data.

• Well-suited for “unstable” learning algorithms

 Unstable: small differences in training data can produce very 

different classifiers

– E.g., Decision trees, neural networks, rule learning algorithms,…

 Stable learning algorithms

– E.g., Nearest neighbor, linear regression, SVMs,…

14
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Constructing Ensembles

• Bagging = “Bootstrap aggregation” (Breiman 1996)

 In each run of the training algorithm, randomly select M samples 

with replacement from the full set of N training data points.

 If M = N, then on average, 63.2% of the training points will be 

represented. The rest are duplicates.

• Injecting randomness

 Many (iterative) learning algorithms need a random initialization 

(e.g. k-means, EM)

 Perform mutliple runs of the learning algorithm with different 

random initializations.

15
B. LeibeSlide adapted from Bernt Schiele
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Bayesian Model Averaging

• Model Averaging

 Suppose we have H different models h = 1,…,H with prior 

probabilities p(h).

 Construct the marginal distribution over the data set

• Interpretation

 Just one model is responsible for generating the entire data set.

 The probability distribution over h just reflects our uncertainty 

which model that is.

 As the size of the data set increases, this uncertainty reduces, 

and p(X|h) becomes focused on just one of the models.

16
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p(X) =

HX

h=1

p(Xjh)p(h)
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Note the Different Interpretations!

• Model Combination (e.g., Mixtures of Gaussians)

 Different data points generated by different model components.

 Uncertainty is about which component created which data point.

 One latent variable zn for each data point:

• Bayesian Model Averaging

 The whole data set is generated by a single model.

 Uncertainty is about which model was responsible.

 One latent variable z for the entire data set:
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p(X) =

NY

n=1

p(xn) =

NY

n=1

X

zn

p(xn; zn)

p(X) =
X

z

p(X; z)
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Model Averaging: Expected Error

• Combine M predictors ym(x) for target output h(x).

 E.g. each trained on a different bootstrap data set by bagging. 

 The committee prediction is given by

 The output can be written as the true value plus some error.

 Thus, the expected sum-of-squares error takes the form

18
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MX
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Model Averaging: Expected Error

• Average error of individual models

• Average error of committee

• Assumptions

 Errors have zero mean:

 Errors are uncorrelated:

• Then:

19
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EAV =
1

M

MX

m=1

Ex
£
²m(x)2

¤

ECOM = Ex

2
4
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1

M

MX

m=1

ym(x)¡ h(x)

)23
5 = Ex

2
4
(

1

M

MX

m=1

²m(x)

)23
5

Ex [²m(x)] = 0

Ex [²m(x)²j(x)] = 0

ECOM =
1

M
EAV

𝑦𝑚 𝐱 = ℎ 𝐱 + 𝜖𝑚 𝐱
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Model Averaging: Expected Error

• Average error of committee

 This suggests that the average error of a model can be reduced by 

a factor of M simply by averaging M versions of the model!

 Spectacular indeed…

 This sounds almost too good to be true…

• And it is… Can you see where the problem is?

 Unfortunately, this result depends on the assumption that the 

errors are all uncorrelated.

 In practice, they will typically be highly correlated.

 Still, it can be shown that

20
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AdaBoost – “Adaptive Boosting” 

• Main idea [Freund & Schapire, 1996]

 Iteratively select an ensemble of component classifiers

 After each iteration, reweight misclassified training examples.

– Increase the chance of being selected in a sampled training set.

– Or increase the misclassification cost when training on the full set.

• Components

 hm(x): “weak” or base classifier

– Condition: <50% training error over any distribution

 H(x): “strong” or final classifier

• AdaBoost: 

 Construct a strong classifier as a thresholded linear combination of 

the weighted weak classifiers:
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H(x) = sign

Ã
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AdaBoost: Intuition

22
B. Leibe

Consider a 2D feature space 

with positive and negative

examples.

Each weak classifier splits 

the training examples with at 

least 50% accuracy.

Examples misclassified by a 

previous weak learner are 

given more emphasis at 

future rounds.

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire
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AdaBoost: Intuition

23
B. LeibeSlide credit: Kristen Grauman Figure adapted from Freund & Schapire
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AdaBoost: Intuition

24
B. Leibe

The final classifier is a 

linear combination of 

the weak classifiers

Slide credit: Kristen Grauman Figure adapted from Freund & Schapire
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AdaBoost – Formalization

• 2-class classification problem

 Given: training set X = {x1, …, xN}

with target values  T = {t1,  …, tN }, tn 2 {-1,1}.

 Associated weights W={w1, …, wN} for each training point.

• Basic steps

 In each iteration, AdaBoost trains a new weak classifier hm(x) based 

on the current weighting coefficients W(m).

 We then adapt the weighting coefficients for each point

– Increase  wn if xn was misclassified by hm(x).

– Decrease wn if xn was classified correctly by hm(x).

 Make predictions using the final combined model

25
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H(x) = sign
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Jm =

NX

n=1

w(m)
n I(hm(x) 6= tn)

AdaBoost – Algorithm

1. Initialization: Set                 for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function 

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:
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w(1)
n =

1

N

²m =

PN

n=1 w
(m)
n I(hm(x) 6= tn)PN

n=1 w
(m)
n

®m = ?

w(m+1)
n = ?

How should we

do this exactly?
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AdaBoost – Historical Development

• Originally motivated by Statistical Learning Theory

 AdaBoost was introduced in 1996 by Freund & Schapire. 

 It was empirically observed that AdaBoost often tends not to overfit. 

(Breiman 96, Cortes & Drucker 97, etc.)

 As a result, the margin theory (Schapire et al. 98) developed, which 

is based on loose generalization bounds. 

– Note: margin for boosting is not the same as margin for SVM.

– A bit like retrofitting the theory…

 However, those bounds are too loose to be of practical value.

• Different explanation (Friedman, Hastie, Tibshirani, 2000)

 Interpretation as sequential minimization of an exponential error 

function (“Forward Stagewise Additive Modeling”).

 Explains why boosting works well.

 Improvements possible by altering the error function.
27
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AdaBoost – Minimizing Exponential Error

• Exponential error function

 where fm(x) is a classifier defined as a linear combination of base 

classifiers hl(x):

• Goal

 Minimize E with respect to both the weighting coefficients ®l and 

the parameters of the base classifiers hl(x).
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AdaBoost – Minimizing Exponential Error

• Sequential Minimization

 Suppose that the base classifiers h1(x),…, hm-1(x) and their 

coefficients ®1,…,®m-1 are fixed.

 Only minimize with respect to ®m and hm(x).

29
B. Leibe

=

NX

n=1

exp

½
¡tnfm¡1(xn)¡

1

2
tn®mhm(xn)

¾

fm(x) =
1

2

mX

l=1

®lhl(x)E =

NX

n=1

expf¡tnfm(xn)g with

=

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾
= const.
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AdaBoost – Minimizing Exponential Error

 Observation: 

– Correctly classified points:  tnhm(xn) = +1

– Misclassified points: tnhm(xn) = 1

 Rewrite the error function as

30
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E =

NX

n=1

w(m)
n exp
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¡1

2
tn®mhm(xn)
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X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm

 collect in Fm

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n
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AdaBoost – Minimizing Exponential Error

 Observation: 

– Correctly classified points:  tnhm(xn) = +1

– Misclassified points: tnhm(xn) = 1

 Rewrite the error function as
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E =

NX

n=1

w(m)
n exp

½
¡1

2
tn®mhm(xn)

¾

E = e¡®m=2
X

n2Tm

w(m)
n + e®m=2

X

n2Fm

w(m)
n

 collect in Tm

 collect in Fm

=
³
e®m=2 ¡ e¡®m=2

´ NX

n=1

w(m)
n I(hm(xn) 6= tn) + e¡®m=2

NX

n=1

w(m)
n
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AdaBoost – Minimizing Exponential Error

• Minimize with respect to hm(x):

 This is equivalent to minimizing

(our weighted error function from step 2a) of the algorithm)

 We’re on the right track. Let’s continue…
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AdaBoost – Minimizing Exponential Error

• Minimize with respect to ®m:

 Update for the ® coefficients:
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AdaBoost – Minimizing Exponential Error

• Remaining step: update the weights 

 Recall that

 Therefore

 Update for the weight coefficients.
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AdaBoost – Final Algorithm

1. Initialization: Set                 for n = 1,…,N.

2. For m = 1,…,M iterations

a) Train a new weak classifier hm(x) using the current weighting 

coefficients W(m) by minimizing the weighted error function 

b) Estimate the weighted error of this classifier on X:

c) Calculate a weighting coefficient for hm(x):

d) Update the weighting coefficients:
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AdaBoost – Analysis

• Result of this derivation

 We now know that AdaBoost minimizes an exponential error 

function in a sequential fashion.

 This allows us to analyze AdaBoost’s behavior in more detail.

 In particular, we can see how robust it is to outlier data points.

36
B. Leibe
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Recap: Error Functions

• Ideal misclassification error function (black)

 This is what we want to approximate, 

 Unfortunately, it is not differentiable.

 The gradient is zero for misclassified points.

 We cannot minimize it by gradient descent. 37
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tny(xn)
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Recap: Error Functions

• Squared error used in Least-Squares Classification

 Very popular, leads to closed-form solutions.

 However, sensitive to outliers due to squared penalty.

 Penalizes “too correct” data points

 Generally does not lead to good classifiers. 38
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes “too correct”

data points!

Sensitive to outliers!

zn = tny(xn)
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Recap: Error Functions

• “Hinge error” used in SVMs

 Zero error for points outside the margin (zn > 1)  sparsity

 Linear penalty for misclassified points (zn < 1)  robustness

 Not differentiable around zn = 1  Cannot be optimized directly.
39

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse 

solutions!

Robust to outliers!

zn = tny(xn)
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Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 Continuous approximation to ideal misclassification function.

 Sequential minimization leads to simple AdaBoost scheme.

 Properties?
40

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

zn = tny(xn)
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Discussion: AdaBoost Error Function

• Exponential error used in AdaBoost

 No penalty for too correct data points, fast convergence.

 Disadvantage: exponential penalty for large negative values!

 Less robust to outliers or misclassified data points!
41

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error
Sensitive to outliers!

zn = tny(xn)
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Discussion: Other Possible Error Functions

• “Cross-entropy error” used in Logistic Regression

 Similar to exponential error for z>0.

 Only grows linearly with large negative values of z.

 Make AdaBoost more robust by switching to this error function.

 “GentleBoost”
42

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Exponential error

Cross-entropy error

E = ¡
X

ftn lnyn + (1¡ tn) ln(1¡ yn)g

zn = tny(xn)
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Summary: AdaBoost

• Properties

 Simple combination of multiple classifiers.

 Easy to implement.

 Can be used with many different types of classifiers.

– None of them needs to be too good on its own.

– In fact, they only have to be slightly better than chance.

 Commonly used in many areas.

 Empirically good generalization capabilities.

• Limitations

 Original AdaBoost sensitive to misclassified training data points.

– Because of exponential error function.

– Improvement by GentleBoost

 Single-class classifier

– Multiclass extensions available
43
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References and Further Reading

• More information on Classifier Combination and Boosting 

can be found in Chapters 14.1-14.3 of Bishop’s book. 

• A more in-depth discussion of the statistical interpretation 

of AdaBoost is available in the following paper:

 J. Friedman, T. Hastie, R. Tibshirani, Additive Logistic Regression: a 

Statistical View of Boosting, The Annals of Statistics, Vol. 38(2), 

pages 337-374, 2000.
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