
1

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Machine Learning – Lecture 14

Optimization / Tricks of the Trade

04.12.2019

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

3
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Recap: Computational Graphs

 Forward differentiation needs one pass per node. Reverse-mode

differentiation can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

4
B. Leibe

Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Recap: Automatic Differentiation

• Approach for obtaining the gradients

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
5

B. Leibe Image source: Christopher Olah, colah.github.io

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Recap: Choosing the Right Learning Rate

• Convergence of Gradient Descent

 Simple 1D example

 What is the optimal learning rate ´opt?

 If E is quadratic, the optimal learning rate is given by the inverse of

the Hessian

 Advanced optimization techniques try to

approximate the Hessian by a simplified form.

 If we exceed the optimal learning rate,

bad things happen!
6

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Don’t go beyond

this point!

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Topics of This Lecture

• Optimization
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
7

B. Leibe

2

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

9
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

10
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

The Momentum Method

• Idea

 Instead of using the gradient to change the position of the weight

“particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high

curvature by combining gradients with

opposite signs.

 Build up speed in directions with a

gentle but consistent gradient.

11
B. Leibe Image source: Geoff HintonSlide credit: Geoff Hinton

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject to a

decay by ® < 1.

 Set the weight change to the current velocity

12
B. LeibeSlide credit: Geoff Hinton

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

The Momentum Method: Behavior

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal

velocity

– If the momentum ® is close to 1, this is much faster than simple

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are stuck

in a ravine, the momentum can be smoothly raised to its final value

(e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent

oscillations without the momentum.

13
B. LeibeSlide credit: Geoff Hinton

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight

(determined empirically)
14

B. LeibeSlide adapted from Geoff Hinton

3

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for different

weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign of the

gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)).

15
B. LeibeSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Other Optimizers

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

16
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Example: Behavior in a Long Valley

17
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Example: Behavior around a Saddle Point

18
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Visualization of Convergence Behavior

19
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you may just have to wait...
20

B. Leibe Image source: Yoshua Bengio

4

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce

the random fluctuations in the error due to

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower/impossible after that.
21

B. Leibe

Reduced

learning rate

T
ra

in
in

g
 e

rr
o
r

Epoch

Slide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Summary

• Deep multi-layer networks are very powerful.

• But training them is hard!

 Complex, non-convex learning problem

 Local optimization with stochastic gradient descent

• Main issue: getting good gradient updates for the early

layers of the network

 Many seemingly small details matter!

 Weight initialization, normalization, data augmentation, choice of

nonlinearities, choice of learning rate, choice of optimizer,…

 In the following, we will take a look at the most important factors

22
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Topics of This Lecture

• Optimization
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
23

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Shuffling the Examples

• Ideas

 Networks learn fastest from the most unexpected sample.

 It is advisable to choose a sample at each iteration that is most

unfamiliar to the system.

– E.g. a sample from a different class than the previous one.

– This means, do not present all samples of class A, then all of class B.

 A large relative error indicates that an input has not been learned

by the network yet, so it contains a lot of information.

 It can make sense to present such inputs more frequently.

– But: be careful, this can be disastrous when the data are outliers.

• Practical advice

 When working with stochastic gradient descent or minibatches,

make use of shuffling.
24

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

25
B. Leibe Image source: Lucas Beyer

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
26

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer

5

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Practical Advice

27
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Normalization

• Motivation

 Consider the Gradient Descent update steps

 From backpropagation, we know that

 When all of the components of the input vector yi are positive, all of

the updates of weights that feed into a node will be of the same sign.

 Weights can only all increase or decrease together.

 Slow convergence

28
B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)

 Normalize all inputs that an input unit sees to zero-mean,

unit covariance.

 If possible, try to decorrelate them using PCA (also known as

Karhunen-Loeve expansion).

29
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Topics of This Lecture

• Optimization
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
30

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Commonly Used Nonlinearities

• Sigmoid

• Hyperbolic tangent

• Softmax

31
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Choosing the Right Sigmoid

• Normalization is also important for intermediate layers

 Symmetric sigmoids, such as tanh, often converge faster than the

standard logistic sigmoid.

 Recommended sigmoid:

 When used with transformed inputs, the variance of the outputs will

be close to 1.
32

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Largest

curvature at 1

tanh 𝑎 = 2𝜎 2𝑎 − 1

6

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Usage

• Output nodes

 Typically, a sigmoid or tanh function is used here.

– Sigmoid for nice probabilistic interpretation (range [0,1]).

– tanh for regression tasks

• Internal nodes

 Historically, tanh was most often used.

 tanh is better than sigmoid for internal nodes, since it is

already centered.

 Internally, tanh is often implemented as piecewise linear function

(similar to hard tanh and maxout).

 More recently: ReLU often used for classification tasks.

33
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Effect of Sigmoid Nonlinearities

• Effects of sigmoid/tanh function

 Linear behavior around 0

 Saturation for large inputs

• If all parameters are too small

 Variance of activations will drop in each layer

 Sigmoids are approximately linear close to 0

 Good for passing gradients through, but...

 Gradual loss of the nonlinearity

 No benefit of having multiple layers

• If activations become larger and larger

 They will saturate and gradient will become zero

34

Image source: http://deepdish.io/2015/02/24/network-initialization/

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Another Note on Error Functions

• Squared error on sigmoid/tanh output function

 Avoids penalizing “too correct” data points.

 But: almost zero gradient for confidently incorrect classifications!

 Do not use L2 loss with sigmoid outputs (instead: cross-entropy)!

35
Image source: Bishop, 2006

Ideal misclassification error

Squared error

No penalty for

“too correct”

data points!

Small gradient!

zn = tny(xn)

Squared error on tanh

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Advantages

 Much easier to propagate gradients through deep networks.

 We do not need to store the ReLU output separately

– Reduction of the required memory by half compared to tanh!

 ReLU has become the de-facto standard for deep networks.

36
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Disadvantages / Limitations

 A certain fraction of units will remain “stuck at zero”.

– If the initial weights are chosen such that the ReLU output is 0 for the

entire training set, the unit will never pass through a gradient to change

those weights.

 ReLU has an offset bias, since its outputs will always be positive

37
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Further Extensions

• Rectified linear unit (ReLU)

• Leaky ReLU

 Avoids stuck-at-zero units

 Weaker offset bias

• ELU

 No offset bias anymore

 BUT: need to store activations
38

B. Leibe

𝑔 𝑎 = max 𝛽𝑎, 𝑎

𝑔 𝑎 = ቊ
𝑎, 𝑥 < 0
𝑒𝑎 − 1, 𝑥 ≥ 0

𝑔 𝑎 = max 0, 𝑎

7

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Topics of This Lecture

• Optimization
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
41

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Initializing the Weights

• Motivation

 The starting values of the weights can have a significant effect

on the training process.

 Weights should be chosen randomly, but in a way that the sigmoid

is primarily activated in its linear region.

• Guideline (from [LeCun et al., 1998] book chapter)

 Assuming that

– The training set has been normalized

– The recommended sigmoid is used

the initial weights should be randomly drawn from a distribution

(e.g., uniform or Normal) with mean zero and variance

where nin is the fan-in (#connections into the node).

42
B. Leibe

𝜎𝑤
2 = 1

𝑛𝑖𝑛

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Historical Sidenote

• Apparently, this guideline was either little known or

misunderstood for a long time

 A popular heuristic (also the standard in Torch) was to use

𝑊~𝑈 −
1

𝑛𝑖𝑛
,
1

𝑛𝑖𝑛

 This looks almost like LeCun’s rule. However…

• When sampling weights from a uniform distribution [a,b]

 Keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 If we do that for the above formula, we obtain

𝜎2 = 1

12

2

𝑛𝑖𝑛

2
=

1

3

1

𝑛𝑖𝑛

 Activations & gradients will be attenuated with each layer! (bad)
43

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Glorot Initialization

• Breakthrough results

 In 2010, Xavier Glorot published an analysis of what went wrong in

the initialization and derived a more general method for automatic

initialization.

 This new initialization massively improved results and made direct

learning of deep networks possible overnight.

 Let’s look at his analysis in more detail...

44
B. Leibe

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep

Feedforward Neural Networks, AISTATS 2010.

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Analysis

• Variance of neuron activations

 Suppose we have an input X with n components and a linear

neuron with random weights W that spits out a number Y.

 What is the variance of Y ?

 If inputs and outputs have both mean 0, the variance is

 If the Xi and Wi are all i.i.d, then

 The variance of the output is the variance of the input, but scaled

by n Var(Wi).
45

B. Leibe

𝑉𝑎𝑟 𝑊𝑖𝑋𝑖 = 𝐸 𝑋𝑖
2𝑉𝑎𝑟 𝑊𝑖 + 𝐸 𝑊𝑖

2𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

= 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

𝑉𝑎𝑟 𝑌 = 𝑉𝑎𝑟 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛 = nVar Wi Var(Xi)

𝑌 = 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Analysis (cont’d)

• Variance of neuron activations

 if we want the variance of the input and output of a unit to be the

same, then n Var(Wi) should be 1. This means

 If we do the same for the backpropagated gradient, we get

 As a compromise, Glorot & Bengio proposed to use

 Randomly sample the weights with this variance. That’s it.

46
B. Leibe

jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

8

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Sidenote

• When sampling weights from a uniform distribution [a,b]

 Again keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 Glorot initialization with uniform distribution

𝑊~𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

 Or when only taking into account the fan-in

𝑊~𝑈 −
3

𝑛𝑖𝑛
,

3

𝑛𝑖𝑛

 If this had been implemented correctly in Torch from the beginning,

the Deep Learning revolution might have happened a few years

earlier…
47

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Extension to ReLU

• Important for learning deep models

 Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• We can also improve them with proper initialization

 However, the Glorot derivation was based on tanh units,

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, derived to use instead

48
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Topics of This Lecture

• Recap: Optimization
 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout

49
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Batch Normalization [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

 Complication: centering + normalization also needs to be done

at test time, but minibatches are no longer available at that point.

– Learn the normalization parameters to compensate for the expected

bias of the previous layer (usually a simple moving average)

• Effect

 Much improved convergence (but parameter values are important!)

 Widely used in practice
50

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training (a form of regularization).

 Change network architecture for each minibatch, effectively training

many different variants of the network.

 When applying the trained network, multiply activations with the

probability that the unit was set to zero during training.

 Greatly improved performance
51

B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

References and Further Reading

• More information on many practical tricks can be found in

Chapter 1 of the book

52
B. Leibe

G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.

http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf

9

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

References

• ReLu

 X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural

networks, AISTATS 2011.

• Initialization

 X. Glorot, Y. Bengio, Understanding the difficulty of training deep

feedforward neural networks, AISTATS 2010.

 K. He, X.Y. Zhang, S.Q. Ren, J. Sun, Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification,

ArXiV 1502.01852v1, 2015.

 A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks, ArXiV

1312.6120v3, 2014.

53
B. Leibe

P
e

rc
e

p
tu

a
l
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r

‘1
9

References and Further Reading

• Batch Normalization

 S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift, ArXiV

1502.03167, 2015.

• Dropout

 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.

Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks

from Overfitting, JMLR, Vol. 15:1929-1958, 2014.

54
B. Leibe

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

