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Machine Learning – Lecture 14

Optimization / Tricks of the Trade

04.12.2019

Bastian Leibe

RWTH Aachen
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Course Outline

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminants

 Support Vector Machines

 Ensemble Methods & Boosting

 Random Forests

• Deep Learning

 Foundations

 Convolutional Neural Networks

 Recurrent Neural Networks

3
B. Leibe

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Recap: Computational Graphs

 Forward differentiation needs one pass per node. Reverse-mode 

differentiation can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

4
B. Leibe

Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io
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Recap: Automatic Differentiation

• Approach  for obtaining the gradients

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the 

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
5

B. Leibe Image source: Christopher Olah, colah.github.io
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Recap: Choosing the Right Learning Rate

• Convergence of Gradient Descent

 Simple 1D example

 What is the optimal learning rate ´opt? 

 If E is quadratic, the optimal learning rate is given by the inverse of 

the Hessian

 Advanced optimization techniques try to

approximate the Hessian by a simplified form.

 If we exceed the optimal learning rate, 

bad things happen!
6

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Don’t go beyond

this point!
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Topics of This Lecture

• Optimization  
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
7

B. Leibe
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Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour 

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

9
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

10
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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The Momentum Method

• Idea

 Instead of using the gradient to change the position of the weight 

“particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has 

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high 

curvature by combining gradients with 

opposite signs.

 Build up speed in directions with a 

gentle but consistent gradient.

11
B. Leibe Image source: Geoff HintonSlide credit: Geoff Hinton
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The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject to a 

decay by ® < 1.

 Set the weight change to the current velocity

12
B. LeibeSlide credit: Geoff Hinton
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The Momentum Method: Behavior

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal 

velocity

– If the momentum ® is close to 1, this is much faster than simple 

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are stuck 

in a ravine, the momentum can be smoothly raised to its final value 

(e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent 

oscillations without the momentum.

13
B. LeibeSlide credit: Geoff Hinton
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights 

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight 

(determined empirically)
14

B. LeibeSlide adapted from Geoff Hinton
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Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for different 

weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign of the 

gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)). 

15
B. LeibeSlide adapted from Geoff Hinton

P
e

rc
e

p
tu

a
l 
a

n
d

 S
e

n
s

o
ry

 A
u

g
m

e
n

te
d

 C
o

m
p

u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in

te
r 

‘1
9

Other Optimizers

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less 

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

16
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Example: Behavior in a Long Valley

17
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp
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Example: Behavior around a Saddle Point

18
B. Leibe Image source: Alec Radford, http://imgur.com/a/Hqolp
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Visualization of Convergence Behavior

19
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn
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Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you may just have to wait...
20

B. Leibe Image source: Yoshua Bengio
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Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower/impossible after that.
21
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Slide adapted from Geoff Hinton
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Summary

• Deep multi-layer networks are very powerful.

• But training them is hard!

 Complex, non-convex learning problem

 Local optimization with stochastic gradient descent

• Main issue: getting good gradient updates for the early 

layers of the network

 Many seemingly small details matter!

 Weight initialization, normalization, data augmentation, choice of 

nonlinearities, choice of learning rate, choice of optimizer,…

 In the following, we will take a look at the most important factors 

22
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Topics of This Lecture

• Optimization  
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
23
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Shuffling the Examples

• Ideas

 Networks learn fastest from the most unexpected sample.

 It is advisable to choose a sample at each iteration that is most 

unfamiliar to the system. 

– E.g. a sample from a different class than the previous one.

– This means, do not present all samples of class A, then all of class B.

 A large relative error indicates that an input has not been learned 

by the network yet, so it contains a lot of information.

 It can make sense to present such inputs more frequently.

– But: be careful, this can be disastrous when the data are outliers.

• Practical advice

 When working with stochastic gradient descent or minibatches, 

make use of shuffling.
24
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Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

25
B. Leibe Image source: Lucas Beyer
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Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
26

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer
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Practical Advice

27
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Normalization

• Motivation

 Consider the Gradient Descent update steps

 From backpropagation, we know that

 When all of the components of the input vector yi are positive, all of 

the updates of weights that feed into a node will be of the same sign. 

 Weights can only all increase or decrease together.

 Slow convergence

28
B. Leibe
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Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs only, not for CNNs)

 Normalize all inputs that an input unit sees to zero-mean, 

unit covariance.

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion).

29
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Topics of This Lecture

• Optimization  
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
30
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Commonly Used Nonlinearities

• Sigmoid

• Hyperbolic tangent

• Softmax

31
B. Leibe
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Choosing the Right Sigmoid

• Normalization is also important for intermediate layers

 Symmetric sigmoids, such as tanh, often converge faster than the 

standard logistic sigmoid.

 Recommended sigmoid:

 When used with transformed inputs, the variance of the outputs will 

be close to 1.
32

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

Largest 

curvature at 1

tanh 𝑎 = 2𝜎 2𝑎 − 1
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Usage

• Output nodes

 Typically, a sigmoid or tanh function is used here.

– Sigmoid for nice probabilistic interpretation (range [0,1]).

– tanh for regression tasks

• Internal nodes

 Historically, tanh was most often used.

 tanh is better than sigmoid for internal nodes, since it is 

already centered.

 Internally, tanh is often implemented as piecewise linear function 

(similar to hard tanh and maxout).

 More recently: ReLU often used for classification tasks.

33
B. Leibe
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Effect of Sigmoid Nonlinearities

• Effects of sigmoid/tanh function

 Linear behavior around 0

 Saturation for large inputs

• If all parameters are too small

 Variance of activations will drop in each layer

 Sigmoids are approximately linear close to 0

 Good for passing gradients through, but...

 Gradual loss of the nonlinearity 

 No benefit of having multiple layers

• If activations become larger and larger

 They will saturate and gradient will become zero

34

Image source: http://deepdish.io/2015/02/24/network-initialization/
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Another Note on Error Functions

• Squared error on sigmoid/tanh output function

 Avoids penalizing “too correct” data points.

 But: almost zero gradient for confidently incorrect classifications! 

 Do not use L2 loss with sigmoid outputs (instead: cross-entropy)!

35
Image source: Bishop, 2006

Ideal misclassification error

Squared error

No penalty for

“too correct”

data points!

Small gradient!

zn = tny(xn)

Squared error on tanh
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Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Advantages

 Much easier to propagate gradients through deep networks.

 We do not need to store the ReLU output separately

– Reduction of the required memory by half compared to tanh!

 ReLU has become the de-facto standard for deep networks.
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Extension: ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Disadvantages / Limitations

 A certain fraction of units will remain “stuck at zero”.

– If the initial weights are chosen such that the ReLU output is 0 for the

entire training set, the unit will never pass through a gradient to change

those weights.

 ReLU has an offset bias, since its outputs will always be positive

37
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Further Extensions

• Rectified linear unit (ReLU)

• Leaky ReLU

 Avoids stuck-at-zero units

 Weaker offset bias

• ELU

 No offset bias anymore

 BUT: need to store activations
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𝑔 𝑎 = max 𝛽𝑎, 𝑎

𝑔 𝑎 = ቊ
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𝑒𝑎 − 1, 𝑥 ≥ 0

𝑔 𝑎 = max 0, 𝑎
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Topics of This Lecture

• Optimization  
 Momentum

 RMS Prop

 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
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Initializing the Weights

• Motivation

 The starting values of the weights can have a significant effect 

on the training process.

 Weights should be chosen randomly, but in a way that the sigmoid 

is primarily activated in its linear region.

• Guideline (from [LeCun et al., 1998] book chapter)

 Assuming that

– The training set has been normalized

– The recommended sigmoid                                              is used

the initial weights should be randomly drawn from a distribution 

(e.g., uniform or Normal) with mean zero and variance

where nin is the fan-in (#connections into the node).

42
B. Leibe

𝜎𝑤
2 = 1

𝑛𝑖𝑛
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Historical Sidenote

• Apparently, this guideline was either little known or 

misunderstood for a long time

 A popular heuristic (also the standard in Torch) was to use

𝑊~𝑈 −
1

𝑛𝑖𝑛
,
1

𝑛𝑖𝑛

 This looks almost like LeCun’s rule. However…

• When sampling weights from a uniform distribution [a,b]

 Keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 If we do that for the above formula, we obtain

𝜎2 = 1

12

2

𝑛𝑖𝑛

2
=

1

3

1

𝑛𝑖𝑛

 Activations & gradients will be attenuated with each layer! (bad)
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Glorot Initialization

• Breakthrough results

 In 2010, Xavier Glorot published an analysis of what went wrong in 

the initialization and derived a more general method for automatic 

initialization.

 This new initialization massively improved results and made direct 

learning of deep networks possible overnight.

 Let’s look at his analysis in more detail...

44
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X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep 

Feedforward Neural Networks, AISTATS 2010.
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Analysis

• Variance of neuron activations

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y. 

 What is the variance of Y ?

 If inputs and outputs have both mean 0, the variance is

 If the Xi and Wi are all i.i.d, then

 The variance of the output is the variance of the input, but scaled 

by n Var(Wi).
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𝑉𝑎𝑟 𝑊𝑖𝑋𝑖 = 𝐸 𝑋𝑖
2𝑉𝑎𝑟 𝑊𝑖 + 𝐸 𝑊𝑖

2𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

= 𝑉𝑎𝑟 𝑊𝑖 𝑉𝑎𝑟(𝑋𝑖)

𝑉𝑎𝑟 𝑌 = 𝑉𝑎𝑟 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛 = nVar Wi Var(Xi)

𝑌 = 𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑛𝑋𝑛
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Analysis (cont’d)

• Variance of neuron activations

 if we want the variance of the input and output of a unit to be the 

same, then n Var(Wi) should be 1. This means

 If we do the same for the backpropagated gradient, we get

 As a compromise, Glorot & Bengio proposed to use

 Randomly sample the weights with this variance. That’s it.
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jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
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Sidenote

• When sampling weights from a uniform distribution [a,b]

 Again keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 Glorot initialization with uniform distribution

𝑊~𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

 Or when only taking into account the fan-in

𝑊~𝑈 −
3

𝑛𝑖𝑛
,

3

𝑛𝑖𝑛

 If this had been implemented correctly in Torch from the beginning, 

the Deep Learning revolution might have happened a few years 

earlier…
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Extension to ReLU

• Important for learning deep models

 Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• We can also improve them with proper initialization

 However, the Glorot derivation was based on tanh units, 

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, derived to use instead
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Topics of This Lecture

• Recap: Optimization  
 Effect of optimizers

• Tricks of the Trade
 Shuffling

 Data Augmentation

 Normalization

• Nonlinearities

• Initialization

• Advanced techniques
 Batch Normalization

 Dropout
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Batch Normalization             [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

 Complication: centering + normalization also needs to be done 

at test time, but minibatches are no longer available at that point.

– Learn the normalization parameters to compensate for the expected 

bias of the previous layer (usually a simple moving average)

• Effect

 Much improved convergence (but parameter values are important!)

 Widely used in practice
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Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training (a form of regularization).

 Change network architecture for each minibatch, effectively training 

many different variants of the network.

 When applying the trained network, multiply activations with the 

probability that the unit was set to zero during training.

 Greatly improved performance
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References and Further Reading

• More information on many practical tricks can be found in 

Chapter 1 of the book
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G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.

http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf
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