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Abstract

We address Unsupervised Video Object Segmentation

(UVOS), the task of automatically generating accurate pixel

masks for salient objects in a video sequence and of track-

ing these objects consistently through time, without any in-

formation about which objects should be tracked. Towards

solving this task, we present UnOVOST (Unsupervised Of-

fline Video Object Segmentation and Tracking) as a simple

and generic algorithm which is able to track a large variety

of objects. This algorithm hierarchically builds up tracks

in five stages. First, object proposal masks are generated

using Mask R-CNN. Second, masks are sub-selected and

clipped so that they do not overlap in the image domain.

Third, tracklets are generated by grouping object propos-

als that are strongly temporally consistent with each other

under optical flow warping. Fourth, tracklets are merged

into long-term consistent object tracks using their temporal

consistency and an appearance similarity metric calculated

using an object re-identification network. Finally, the most

salient object tracks are selected based on temporal track

length and detection confidence scores. We evaluate our

approach on the DAVIS 2017 Unsupervised dataset and ob-

tain state-of-the-art performance with a mean J&F score

of 58% on the test-dev benchmark. Our approach further

achieves first place in the DAVIS 2019 Unsupervised Video

Object Segmentation Challenge with a mean of J&F score

of 56.4% on the test-challenge benchmark.

1. Introduction
Video Object Segmentation (VOS) aims at automatically

generating accurate pixel masks for objects of each frame in

a video, then associating those proposed object pixel masks

in the successive frames to obtain temporally consistent

tracks. VOS has been studied mostly as a semi-supervised

task which allows using the ground truth object masks that

are given in the first frame of the video sequences. However,

VOS can be also studied as an unsupervised task in which

object tracks are generated without any knowledge about

which objects or how many objects should be tracked. In

this paper, we present the UnOVOST (Unsupervised Offline

Video Object Segmentation and Tracking) method for the

unsupervised VOS task and evaluate it on the unsupervised
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DAVIS benchmark dataset [4]. An overview of UnOVOST

can be seen in Figure 1. Moreover, our method achieves the

first place in the DAVIS 2019 Unsupervised Video Object

Segmentation Challenge.

2. Related Work
Currently, many methods have been presented for semi-

supervised VOS with multiple objects [16, 26, 25, 24]

where the ground-truth of the first frame is given. Modern

deep learning based methods are able to approach this task

both accurately and efficiently. On the other hand, the deep

learning based unsupervised VOS methods mainly work on

videos with only a single object [12, 13, 11, 22, 23], with

a few methods tackling the multi-object task [2, 31, 6].

FSEG [11] and LVO [23] concatenate appearance and mo-

tion features from a two-stream FCNs, then segment videos

via a fusion model and a visual memory model, bidirec-

tional convolutional GRU, respectively. In the multi-object

scenario, [2, 31, 6] are based on motion segmentation.

CCG [2] develops a two-stage statistical model that esti-

mates piece-wise rigid motion, then merges rigid motion

into objects using semantic segmentation with CNNs. [6]

adapts a Mask R-CNN [7] architecture to the video ob-

ject segmentation domain by combining both appearance

and motion features to an RPN model. [31] predicts fore-

ground masks of moving objects using pixel-wise-features

extracted from appearance and motion cues, then learns and

clusters feature embeddings of the foreground masks to seg-

ment different objects. As seen, the proposed methods rely

on appearance and motion change throughout a video se-

quence; as a result, they are only able to segment the mov-

ing objects and omit the static objects.

3. Approach
We propose UnOVOST as a new method which tack-

les the unsupervised VOS task. Our approach consists of

five stages. The first stage is object proposal mask gen-

eration. Here, we use an instance segmentation network

to obtain a set of object proposals per frame without dis-

tinguishing objects as foreground and background objects

or static and moving objects. This is in contrast to pre-

vious approaches [31, 2, 6] which focus on finding fore-

ground objects and assume foreground objects are mov-

ing objects. Instead of using this assumption, we pursue a

broader approach to identify objects in the foreground and
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Figure 1. UnOVOST overview. Stage 1 generates object mask proposals. Stage 2 sub-selects and clips proposals to be non-overlapping.

Stage 3 generates temporally local tracklets. Stage 4 merges tracklets into long-term tracks. Stage 5 selects the final set of tracks.

background, both stationary and in motion. Our approach

is able to detect many objects from a large number of cat-

egories. This stage also shows that the already available

detectors are able to segment many object categories with-

out video or dataset specific fine-tuning. After generating

object proposal masks, in the second stage, an algorithm

is applied on overlapping proposal masks to sub-select and

clip a set of non-overlapping object proposals in the video

frame. In the third stage, the object proposal masks in suc-

cessive frames are connected using optical-flow warping to

generate tracklets that provide temporally consistent mask

identities throughout short sections of the video sequence.

However, these tracklets might not ensure long-term consis-

tency throughout the video sequence, i.e. the tracklets can

begin and terminate any time in the video. Therefore, we

present a merging algorithm in the fourth stage to merge

the tracklets for long-term consistency of object tracks. In

the final stage, the most salient object tracks are selected by

considering the temporal length of tracks and the detection

confidence score. This last step is only necessary because

the maximum number of object tracks per sequence is lim-

ited to 20 in the DAVIS 2019 Unsupervised VOS Challenge.

We observe that UnOVOST produces more than 20 object

tracks for many sequences which makes our method quite

generic. An overview of the stages of our algorithm can

be seen in Figure 1. In the following, the implementation

details of each of the stages are explained.

Object Mask Proposal Generation. Object proposal

masks are generated using a Mask R-CNN [7] implemen-

tation by [28] with a ResNet101 [8] backbone trained

on COCO [15]. This network produces masks, bounding

boxes, object categories and confidence scores for object

proposals as outputs. In our algorithm, we benefit from only

mask proposals and confidence scores. We extract proposal

masks with a confidence score greater than 0.1.

Proposal Sub-Selection and Clipping. We implement an

algorithm to prevent overlapping proposals in each frame.

All proposal masks in a frame are compared against one

another using their intersection over union (IoU) to detect

overlaps. If the IoU between two proposal masks is higher

than a 0.2 threshold, then the proposal mask with higher

confidence score is held and the other proposal mask is

clipped. In this way, we get more accurate and consistent

pixel masks for the next steps of our algorithm.

Tracklet Generation. To connect the object proposal

masks temporally, first each proposal mask in a frame is

warped to the next frame using optical flow calculated

with PWCNet [21]. Then, we create a complete bipartite
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Ours Oxford-CASIA SK T-Brain

U17
T-C

J&F Mean 56.4 56.2 51.6

J

Mean 53.4 53.5 48.7

Recall 60.9 61.3 55.1

Decay 1.5 -2.1 4.0

F

Mean 59.4 59.0 54.5

Recall 64.1 63.2 59.4

Decay 5.8 0.1 7.7

U17
T-D

J&F Mean 58.0 56.5 54.2

J

Mean 54.0 51.7 50.0

Recall 62.9 59.9 58.9

Decay 3.5 21.7 8.4

F

Mean 62.0 61.4 58.3

Recall 66.6 65.7 62.1

Decay 6.6 15.7 11.4

U17
Val

J&F Mean 67.0 - -

J

Mean 65.6 - -

Recall 75.5 - -

Decay 0.3 - -

F

Mean 68.4 - -

Recall 75.9 - -

Decay 3.7 - -

Table 1. Our results compared to the top two other com-

petitors in the 2019 Unsupervised DAVIS VOS Challenge on

the three DAVIS 2017 Unsupervised benchmark datasets: the

test-challenge set (U17 T-C), the test-dev set (U17 T-

D), and the val set (U17 Val).

graph whose nodes are the proposal masks in the succes-

sive frames and whose edge costs are IoU scores between

the warped proposal mask and the proposal mask in the

next frame. We then generate tracklets by solving a bi-

partite graph matching problem maximizing the total IoU

score, where each object proposal mask is matched with

only one proposal mask in the next frame. In order to solve

the matching problem, a greedy algorithm is used that only

considers pairs with a flow-warped IoU greater than 0.03. If

a proposal is not matched, this ends a tracklet. It is possible

that tracklets may span only a single frame.

Merging Tracklets. Our merging algorithm uses nearest

neighbour matching of proposals’ ReID embedding vectors.

The ReID embedding vector for each object proposal mask

is calculated using a network based on a triplet-loss pro-

posed in [18]. This network is a wide ResNet variant [29]

trained on COCO [15] and YouTube-VOS [32]. It is trained

using the batch-hard loss with a soft-plus margin [9]. This

network extracts a ReID embedding feature vector for each

proposal. The ReID vectors of the proposals in a tracklet are

averaged to obtain a tracklet ReID embedding vector used

as a similarity metric. We implement a merging algorithm

to merge tracklets that are similar to each other in terms

of the average ReID vector. Our merging algorithm starts

by finding a list of compatible tracklets for each tracklet.

Tracklet A is compatible with tracklet B if A ends before

U17
Val

U17
T-D

U17
T-C

Mask R-CNN 0.74 0.78 0.77

Optical Flow 0.10 0.14 0.12

ReID 0.10 0.15 0.11

UnOVOST Tracking 0.08 0.07 0.06

Total 1.02 1.15 1.06

Table 2. Runtime analysis of UnOVOST on the DAVIS 2017 Un-

supervised val, test-dev and test-challenge datasets.

Times are seconds per frame.
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Figure 2. Quality versus timing plot comparing UnOVOST to

state-of-the-art semi-supervised methods on DAVIS17 val. All

methods other than ours are ”semi-supervised” and use the given

first-frame ground-truth. Our methods obtains similar results

while working in an ”unsupervised” manner without using any

given information about which objects should be tracked.

the start of B or vise versa. We define the distance between

tracklets as the L2 distance of their ReID feature vectors.

For each tracklet, the preceeding tracklet with the lowest

L2 distance is linked with this tracklet. In this way, each

tracklet is only linked with one preceding tracklet.

However, a tracklet should be thought as a node with

the two links, the before-link and the after-link. Our link-

ing procedure assures that the before-link of a tracklet is

connected with only one tracklet, but a tracklet can be the

nearest compatible tracklet for multiple successor tracklets

resulting in multiple after-links. This link structure is rep-

resented in a forest with at least one tree whose root corre-

sponds to one of the tracklets with the earliest starting time

and each path in the tree is a possible object track. There-

fore, a selection strategy is needed to determine the best

possible object tracks.

We apply a greedy recursive track selection strategy.

Given a tree, we first consider only the paths from the root

node to the leaf nodes. Each of these paths are scored with

the sum of temporal gaps between the successive tracklets;

this is the number of frames between the finishing time of

the tracklet, the parent node, and the starting time of the

next tracklet, the child node. For each tree, we select the

path with the lowest sum of temporal gaps as the best ob-

ject track, and add this to the set of final object tracks. We

then create a new set of trees by removing all nodes belong-
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ing to this path from the tree, resulting in possibly multiple

child-trees being created. If a child-tree is created that is

only a single path, this is automatically added to the list of

final tracks. We apply this greedy path selection recursively

until there are no more trees. In this way, we select a set of

object tracks which do not include any overlapping tracklets

and have long-term temporal consistency.

Final Tracks Selection. A saliency score Ssal,i is calcu-

lated for each track using each tracklet tj in the track i:

Ssal,i =
∑

j

temp(tj) conf(tj) (1)

where temp(tj) is the temporal length of tracklet j and

conf(tj) is the average of the confidence scores of pro-

posal masks in tracklet tj . Finally, if there are more than

20 tracks, the 20 tracks with the highest saliency score are

selected as the final object tracks.

4. Experiments
We evaluate our algorithm on the DAVIS 2017 Unsu-

pervised benchmark datasets [4]. The DAVIS 2017 Un-

supervised datasets contain the video sequences for un-

supervised multi-object segmentation in the same way as

the DAVIS 2017 Semi-Supervised dataset [20] extends the

DAVIS 2016 [19] to multiple objects. The DAVIS 2017 Un-

supervised val set has the same sequences as the DAVIS

2017 Semi-Supervised val set. However, the test-dev

and test-challenge sets contain new videos intro-

duced for the DAVIS 2019 Unsupervised VOS Challenge.

All of the DAVIS 2017 Unsupervised datasets include mul-

tiple objects per video sequence. Table 1 shows our re-

sults on three DAVIS 2017 Unsupervised benchmarks. The

J&F metrics are used in the evaluation, more details on

these metrics can be found in [20]. We also perform a run-

time analysis for our algorithm, which can be seen in Table

2. Our algorithm gives better results on the test-dev

and test-challenge datasets than all other competi-

tors in the DAVIS 2019 Unsupervised VOS Challenge for

the J&F metric which is the mean of the J and F scores.

In Figure 2, we compare UnOVOST for both its speed an

accuracy on the DAVIS17 val benchmark to state-of-the-

art semi-supervised VOS methods. Even though UnOVOST

is an unsupervised method, without using any given infor-

mation about which objects are to be tracked, it is still able

to perform comparatively to many state-of-the-art methods

that do use the first frame as input.

5. Conclusion
In this paper, present the UnOVOST algorithm to tackle

the unsupervised VOS task. This achieves state-of-art re-

sults and wins the DAVIS 2019 Unsupervised Video Object

Segmentation Challenge.
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