Differentiable Soft-Masked Attention
Ali Athar, Jonathon Luiten, Alexander Hermans, Deva Ramanan, Bastian Leibe
RWTH Aachen University (Germany), Carnegie Mellon University (USA)

Motivation
An important component of Transformer architectures is the use of cross-attention. Recently, masked cross-attention was introduced in the Mask2Former architecture, limiting the attention to a specific region in the image in a binary fashion. This improves various image and video segmentation tasks.

We propose a new differentiable soft-masked attention variant with two advantages:
• It allows soft, non-binary masks
• It is fully differentiable with respect to the mask values

We demonstrate the effectiveness of this soft-masked attention in the context of weakly supervised video object segmentation (VOS).

HODOR Architecture

Video Object Segmentation Approach
We empirically show the benefits of the soft-masked cross attention within our approach for video object segmentation, HODOR: High-level Object Descriptors for Object Re-segmentation.

• It turns object masks into object descriptors that can be used to re-segment the objects in any frame.
• Encoder (HOD): Feature map + object masks → Object descriptors
• Decoder (OR): Feature map + object descriptors → Re-segmented objects

HODOR can make use of varying training setups and unlike most other methods can be trained on image annotations only, without the need for dense video annotations. It can also utilize cyclic consistency within videos for training.

Quantitative Results
Both when training on image or video datasets, our soft masking approach outperforms baselines without masking or hard masking (masking → adds to the attention matrix for areas outside of the binarized object mask).

• Surprisingly, no masking is on par or even better than hard masking
• The learned soft attention masking allows the network to learn how much context to use.

Compared to other methods trained on image annotations only, HODOR achieves state of the art results on relevant VOS datasets.

Differentiable Soft-Masked Cross-Attention
During cross-attention, every query is assigned a soft mask, which is used to condition the attention to a specific image region.

• A learnable factor \(\alpha_t \) is added to the attention matrix
• Each attention head is initialized with a different \(\alpha_t \)

\[
\text{softmax}(\frac{K^T \alpha M}{C}) \cdot V
\]

Conclusion
We propose a differentiable soft masked attention mechanism and demonstrate how it can be used to improve our video object segmentation approach.

We expect this to be a useful tool in many attention-based architectures, since it forces the network to focus on specific image regions, but also enables the network to learn to which extend this is meaningful.