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Abstract

In this paper, we address the challenging problem of si-
multaneous pedestrian detection and ground-plane estima-
tion from video while walking through a busy pedestrian
zone. Our proposed system integrates robust stereo depth
cues, ground-plane estimation, and appearance-based ob-
ject detection in a principled fashion using a graphical
model. Object-object occlusions lead to complex interac-
tions in this model that make an exact solution computa-
tionally intractable. We therefore propose a novel iterative
approach that first infers scene geometry using Belief Prop-
agation and then resolves interactions between objects us-
ing a global optimization procedure. This approach leads
to a robust solution in few iterations, while allowing ob-
ject detection to benefit from geometry estimation and vice
versa. We quantitatively evaluate the performance of our
proposed approach on several challenging test sequences
showing strolls through busy shopping streets. Compar-
isons to various baseline systems show that it outperforms
both a system using no scene geometry and one just relying
on Structure-from-Motion without dense stereo.

1. Introduction

Detecting pedestrians reliably from a moving platform
is a fundamental asset for obstacle avoidance and path plan-
ning with numerous applications in autonomous driving and
mobile robotics. In this paper, we consider a moving plat-
form, equipped with a stereo pair of forward-looking cam-
eras, driving through a busy pedestrian zone (Figure 1). The
detection task in this scenario is extremely challenging due
to a variety of factors. Firstly, images from unconstrained
video streams exhibit a much lower quality than their pho-
tographed counterparts due to motion blur, unbayering arti-
facts, and varying lighting conditions. Secondly, the large
number of independently moving objects, covering some-
times up to 50% of the image, leads to frequent partial
occlusions between pedestrians, which is problematic for
standard object detection and tracking techniques. Thirdly,
even state-of-the-art pedestrian detectors are challenged by

Figure 1. Pedestrian detection obtained using our system in a video
stream taken from a moving platform. Our system has to cope with
suboptimal imaging conditions and frequent partial occlusions.

the large range of scales, the multitude of viewpoints, and
the ambiguity of side vs. semi-frontal views of pedestrians.
Finally, the suboptimal camera placement dictated by con-
straints on the platform (approx. 90 cm above ground) has
adverse effects on the accuracy of depth measurements (e.g.
for an object 20 meters away, a localization error of 1 pixel
in y direction equals about 1 meter in depth in the scene).
Building a reliable system in such highly dynamic scenes
thus calls for a tight interaction between multiple cues.

In this paper, we will focus on the robust detection of
pedestrians in a single video frame. Using input from
pedestrian detection and dense stereo, we want to jointly
estimate scene geometry and object locations. The different
cues are integrated in a graphical model, allowing inference
in all directions (Figure 2). However, to correctly model the
problem, interactions between object detections have to be
taken into account. As overlapping detections may be based
on the same image pixels, they lead to implicit loops over
the image I that are very hard to resolve using Belief Propa-
gation. Thus inference may be biased by an accumulation of
strong detections in some image region, even though only a
subset of them would be consistent with each other. Resolv-
ing those interactions in the graphical model would require
an infeasible modelling of the scene on the pixel level. More
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importantly, hard exclusion cannot be adequately modelled
in such a framework.

We suggest to solve this problem using an iterative two-
step process: Belief Propagation for inference over the
ground plane and object bounding boxes supported by it,
followed by a global optimization stage that selects a con-
sistent set of hypotheses under the constraint that each pixel
can only contribute to a single object hypothesis.

Our main contributions are: 1) We simultaneously es-
timate scene geometry and detect objects in a challeng-
ing real-world scenario (from video input), in particular
integrating cues from dense stereo, object detection, and
ground-plane estimation. 2) We model this integration in
a principled fashion using a graphical model that allows
depth measurements to benefit from object detection and
vice versa. 3) For inference in this model, we propose a
novel iterative procedure that combines Belief Propagation
and global optimization to account for object-object interac-
tions. 4) We experimentally validate the proposed approach
on challenging real-world data with a total of 2,293 video
frames containing 10,958 pedestrian annotations. We make
this data available to the community.1

The structure of the remaining paper is as follows: af-
ter summarizing related work, we present our scenario and
motivate our choice for its solution in Section 2. Section 3
details the construction of the graphical model used for for-
malizing the problem. All important parameters are ob-
tained through training, as shown in Section 4. A novel
two-stage process for inferring the MAP estimate is intro-
duced in Section 5. The paper is concluded by an extensive
set of experiments on challenging real-world data in Sec-
tion 6.

Related Work. In recent years, object detection has reached
a level where it becomes interesting for practical applica-
tions, e.g. for detecting pedestrians in real-world scenes
[1, 9, 11, 19, 18, 20]. Still, pedestrian detection remains
a very difficult task due to the large degree of intra-category
variability, changing scale, articulation, and frequent partial
occlusion. The importance of context for reliable object de-
tection has therefore been widely recgonized [17, 13, 15].
In a recent publication, Hoiem et al. [6] showed how geo-
metric context can be inferred from a single image in con-
junction with object detection. We build upon these ideas
and extend them for our scenario, with a considerable scale
range in detections, frequent partial occlusions, and inte-
grating stereo depth. Most importantly, our novel two-step
process resolves ambiguities between interacting pedestri-
ans that cannot be handled in Hoiem’s framework.

In another related system, Leibe et al. [8] detect objects
from a moving vehicle, integrating detection and Structure-
from-Motion. In their imagery, objects typically appear in a

1http://www.vision.ee.ethz.ch/∼aess/iccv2007/

well-contained scale range. They fit a ground plane through
past wheel contact points and then fix it for the detection
stages. Such a fitting required temporal look-ahead in our
experiments. In contrast, our framework integrates multiple
cues to explain the scene causally, i.e. using only informa-
tion from the current and previous frames.

The use of depth cues for improving detections suggests
itself in systems equipped with camera pairs. The most
notable recent systems taking advantage of depth include
the ones by Giebel et al. [5] and Gavrila and Munder [4].
However, their pedestrian tracking systems work with the
assumption of a fixed groundplane, interactions between
pedestrians are not modelled, and no results for busy scenes
are shown. In the test sequence of [4], only 1,000 out of
20,000 test images contain pedestrians—often, only one.
Here, we consider among others a sequence with 5,500 an-
notated pedestrians in 1,000 frames.

2. Problem Formulation

Given pedestrian detections in a single video frame I
and its corresponding depth map D as inputs, we are in-
terested in simultaneously inferring the ground plane and
the set of valid pedestrian hypotheses. The hypotheses o i

are obtained from a standard pedestrian detector. Geomet-
ric reasoning is conducted over the scene’s ground plane
π and the object bounding boxes. The latter are automati-
cally adapted by our algorithm for better scene explanation.
Depth cues di are introduced in a robust way, such that the
system can cope with faulty depth maps. These components
and their interactions are formalized in a graphical model,
which is generated on a per-frame basis. To handle interac-
tions between objects in a computationally feasible way, we
split the reasoning into two stages. We first obtain an initial
estimation of the scene geometry, disregarding overlapping
hypotheses. Next, the obtained MAP estimates are passed
to a global optimization stage that handles interactions on a
pixel level. The obtained results can then be fused between
the stereo cameras and used for tracking-by-detection; this
is however not a subject of this paper.

3. Graphical Model

Figure 2 shows the graphical model we use for inference
over object hypotheses oi, depth cues di, and the ground
plane π using evidence from the image I, the depth map
D, and the depth map’s ground plane evidence πD . The
dashed box indicates repetition of the contained parts for the
number of objects n. Inference in this model is performed
as follows:

P (π, oi, di, πD,D, I) = P (π)P (πD|π)
n∏
i

Oi (1)

Oi = P (oi|π)P (I|oi)P (di|oi, π)P (D|di).
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Figure 2. Graphical model for the fusion of object and ground
plane detection with the aid of a depth map. The shaded areas in-
dicate implicit loops that are solved in a novel two-stage approach.

Note that the model is loopy: first, there are the obvious
cycles between π, oi and di. More important, however, are
the interactions between overlapping object hypotheses o i

that are implicitly introduced by the reliance on a common
image I. Those are hard to solve using Belief Propagation,
where there is no principle of exclusion. See Section 5 for
the method we propose to resolve this problem.

In the following, all 3D calculations are executed in cam-
era coordinates, i.e. the projection matrix is P = [K|0]. This
simplifies parameterizations and keeps the set of possible
ground planes in a range that can be trained meaningfully.

Ground Plane. As shown in previous publications [6, 8, 4],
the ground plane helps substantially in constraining object
detection to meaningful locations. It is defined in the cur-
rent camera frame as π = (n, π4), with the normal vector
n(θ, φ) parameterized by spherical coordinates. We con-
sider a combination of a prior, object bounding boxes, and
the ground plane evidence πD for inferring π. Therefore,
our system is not critically dependent on any of these cues
individually.

Inference is adapated on a per-frame basis using infor-
mation obtained from D. Specifically, we consider the ro-
bust, depth-weighted median residual between π and D,

r(π,D) = medx∈D‖d⊥(π,x)‖Cd
, (2)

with x∈D the 3D points inferred fromD, d⊥(·, ·) the signed
plane-point distance, and ‖·‖Cd

the Mahalanobis distance for
d⊥(·, ·), inferred from a 3D point’s uncertainty. We formu-
late the probability that the real ground plane generated the
depth map evidence by means of a 1D Gaussian,

P (πD|π) ∝ N (r(π,D); 0, σ2
D), (3)

where σD models the trust in D. Again, even though less
than 50% of D might belong to π, we are not dependent on
this cue alone. The prior P (π) is learned from a training set
(see Section 4).

Object Hypotheses. Object hypotheses oi = {vi, ci}
(i = 1 . . . n) are created from the output of a detector on
a per-frame basis (typically, n≈ 70–90). They consist of a

validity flag vi ∈ {0, 1} and a 2D center point with scale
ci = {x, y, s}. Given a specific c and a standard object size
(w, h) at scale s = 1, a bounding box can be constructed.
From the box’s base point b = (x, y + s h

2 , 1) in homoge-
neous image coordinates, its world counterpart is found as

B = − π4K−1b
n�K−1b

. (4)

The object’s depth is thus d(oi) = ‖Bi‖. Its height Bh
i is

obtained in a similar fashion. Because of the large view-
point variability, the detector’s output for center and scale
are only taken as estimates, denoted x̂i, ŷi, and ŝi. Taking
these directly may yield misaligned bounding boxes, which
in turn can result in wrong estimates for distance and size.
We therefore try to compensate for detection inaccuracies
by considering a set of possible bounding boxes bbox {k,l}

i

for each oi. These boxes are constructed from a set of pos-
sible real centers ci ={yi, si} (fixing xi = x̂i due to its neg-
ligible influence), which are obtained by sampling around
the detection, yi = ŷi + kσy ŝi, si = ŝi + lσsŝi. The num-
ber of samples, i.e. the range of {k, l}, is the same for every
object. In the following, we omit the superscripts for read-
ability. The object term is decomposed as

P (oi|π) = P (vi|ci, π)P (ci|π). (5)

By means of Eq. (4), P (ci|π) ∝ P (Bh
i )P (d(oi)) is ex-

pressed as the product of a distance and a size prior for the
corresponding world object. We formulate the probability
for a hypothesis’ validity based on this, P (vi = 1|ci, π) =
maxP (ci|π).

Depth Map. The depth mapD is a valuable asset for scene
understanding that is readily available in a multi-camera
system. However, stereo algorithms fail frequently, espe-
cially in untextured regions. We thus integrate depth cues
into our framework in a robust manner. For each object
hypothesis, we consider a depth flag di ∈ {0, 1}, indicat-
ing whether the depth map for a bounding box is reliable
(di = 1) or not. The depth cue term P (di|oi, π) is rear-
ranged as follows:

P (di|oi, π) ∝ P (vi|ci, di, π)P (ci|di, π)P (di), (6)

assuming a uniform object prior P (oi). We consider two
measurements. Firstly, we evaluate the depth measured in-
side bbox i and its consistency with d(oi) as an indicator for
P (ci|di =1, π). Secondly, we test whether this depth infor-
mation can be considered largely uniform, which reflects
our expectation in case a pedestrian is present. This can be
used for defining P (vi =1|ci, di =1, π).

The measurements are defined as follows: the median
depth inside a bounding box, d(d i) = medp∈bboxiD(p),
yields a robust estimate of the contained object’s depth.
D(p) denotes the depth of pixel p. Assuming additive white
noise with covariance C2D on pixel measurements, we find
the variance σ2

di of d(di) using error backpropagation,
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2
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−1, (7)

where Fj
i are the Jacobians of a projection using camera ma-

trix j. Thus, σ2
di = Ci(3, 3). This yields

Pdi(x) ∝ N (x; d(di), σ2
di). (8)

For reasoning about depth uniformity, we consider the
variation of depth in bbox i, V ={D(p)−d(di)|p∈bbox i},
specifically taking V ’s interquartile range [LQ ,UQ ] as a ro-
bust estimator. Our measure of uniformity is the normalized
count of pixels that are within the depth confidence σdi,

qi =

∣∣{x ∈ [LQ ,UQ ]
∣∣ − σdi < x < σdi}

∣∣
UQ − LQ

. (9)

This robust “depth inlier percentage” serves as basis for
learning P (vi|ci,di =1, π), as is shown in Section 4.

P (oi|di =0) is assumed to be uniform, as an inaccurate
depth map gives no information about the object’s presence.
We force di =0 on image borders, where there is no image
overlap and hence no depth information.

4. Training

Data is recorded at a resolution of 640×480 pixels (Bay-
ered) at 15 FPS, with a camera baseline of 0.4 meters. The
system’s parameters have been trained on a video with 490
frames, containing 1,578 annotations. For the ground plane
prior, we consider an additional 1,600 frames from a few
selected environments with hardly any moving objects.

Ground Plane. In imagery with few objects, D can be
used to directly infer the ground plane using Least-Median-
of-Squares (LMedS) by means of Eq. (2),

π = min
πi

r(πi,D). (10)

Related but less general methods include e.g. the v-disparity
analysis [7]. All such methods break down if less than 50%
of the pixels in D support π. For training, we use the esti-
mate from Eq. (10), with bad estimates discarded manually.

For reasons of tractability, (θ, φ, π4) are discretized into
a 6× 6× 20 grid, with bounds inferred from the training
sequences. The discretization is chosen such that quantiza-
tion errors are below 0.01 for θ and φ. In our tests, the errors
ensuing the discretization of π were below 0.05 meters in
depth for a pedestrian 15 meters away.

The training sequences are also used for constructing the
prior distribution P (π). Figure 3 visualizes P (π) in two
projections onto π4 and (θ, φ).

Object Hypotheses. Object hypotheses are detected using
a single-category ISM detector [9], trained on frontal and
side views of pedestrians. The detector is run without the
final global optimization stage, thus retaining flexibility in
our system. The range of detected object scales is 60–400
pixels. Other detectors can be included in our system, as
long as they provide confidence maps.
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Figure 3. Learned priors for (θ, φ) (left) and π4 (right), marginal-
ized over π4 and (θ, φ), respectively.
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Figure 4. Center distributions normalized by detected scale ŝ (left:
center (ŷ − y)/ŝ, right: scale (ŝ − s)/ŝ), learned from 1,578 an-
notations. We approximate these using normal distributions.

Figure 5. Example depth maps. Often, useful cues can be inferred
(left), but robust measures have to account for faulty depth maps,
e.g. missing ground plane (right).

As the original detection centers x̂, ŷ, ŝ, and hence the
bounding boxes, may not always be sufficiently accurate for
reliable depth estimation, we model the variance between
real and detected object centers by Gaussians. For this, we
collect detections over the training sequence and compare
them to ground-truth annotations. Figure 4 shows the re-
sulting scale-normalized measurements (ŷ−y)/ŝ, (ŝ−s)/ŝ
used to learn (σy, σs). As can be seen from the figure, the
Gaussian approximation is justified.

The height distribution is chosen as P (Bh|h) ∼
N (1.7, 0.122) (meters), though we consider different stan-
dard deviations σh in a first systematic experiment in Sec-
tion 6. This is mainly to account for remaining discretiza-
tion errors due to the sampling of ci, as well as the occa-
sional occurence of children in the sequences. The depth
distribution P (d(oi)) is assumed uniform in our system’s
operating range, i.e. 0.5–30 meters distance.

Depth Cues. The depth map D for each frame is obtained
using a publicly available version of Belief Propagation-
based stereo [3]. See Figure 5 for two example depth maps.

The true distribution of P (ci|di = 1, π), given the ob-
ject’s depth d(oi) and the robust depth map estimate d(di),
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Figure 6. Distribution of robust depth inliers for correct (left) and
incorrect (right) detections, learned from 1,578 annotations and
1,478 negative examples.

is very intricate to find. It involves many factors: firstly,
the uncertainty of the object’s center propagated to its dis-
tance. Due to the sampling of ci, we can neglect this factor.
Secondly, it depends on Pdi as defined in Eq. (8). Finally,
using a fixed set of disparities introduces a quantization er-
ror, which is only to some extent covered by Pdi.

In Section 6, we compare two ways for modelling
P (ci|di = 1, π). The first option uses a non-parametric
distribution P (vi|d(oi)−d(di)), learned from the training
sequence. The second option models it using the dominat-
ing factor Pdi(d(oi)) only.

For learning P (vi|ci, di = 1, π), we find the percentage
qi of pixels that can be considered uniform in depth for cor-
rect and incorrect bounding boxes using Eq. (9). As can be
seen in Figure 6, qi is a good indicator of an object’s pres-
ence. Using logistic regression, we fit a sigmoid to arrive
at P (vi|ci, di = 1, π). In Section 6, we also test the use of
P (vi = 1|ci, di = 1, π) = maxP (ci|di = 1, π). Using the
training set, we found P (di =1)≈0.96.

5. Inference

The exact modelling of interactions between different
hypotheses is of paramount importance in highly dynamic
scenarios, where pedestrians overlap frequently and com-
pete for the same pixels. To overcome the missing notion
of exclusion in a Belief Propagation framework, we suggest
a novel two-stage procedure that first infers geometric con-
text using possibly overlapping bounding boxes and then
applies a global optimization step that models interactions
between different objects on a pixel level, using the detec-
tor’s confidence maps.

Belief Propagation. The graph of Figure 2 is constructed
in Matlab using the BayesNet toolbox [12], with all vari-
ables modelled as discrete entities and their conditional
probability tables defined as described above. Inference is
conducted using Pearl’s Belief Propagation [16]. Due to the
loopy nature of our model, this yields only an approximate
solution. We found this to be more than sufficient in our
application, which is also confirmed by other researchers’
experience [14].

Global Optimization. As stated above, the reliance of

object hypotheses on a common image introduces implicit
loops in our graphical model, since overlapping detections
cannot be considered independent. Intuitively, each im-
age pixel can only be explained by a single object, there-
fore some detections are mutually exclusive. The idea of
our approach is to make this dependence explicit and use
a Quadratic Boolean Optimization formulation to select a
subset of object detections that are mutually consistent.

Starting from the validity flags vi ∈ {0, 1}, we want to
optimize the function

max
v

v�Qv = max
v

v�

⎡
⎢⎣

q11 · · · q1n

...
. . .

...
qn1 · · · qnn

⎤
⎥⎦v, (11)

where the interaction matrix Q contains individual merit
terms in the diagonal elements qii and (negative) interac-
tion terms in the off-diagonal elements {qij , qji}.

Using a similar derivation as in [9, 10], we express a
detection’s score in terms of the pixels p it occupies (nor-
malized by the detection scale),

P (oi|π, di, I) =P (oi|π, di)P (oi|I) (12)

∼P (oi|π, di)
∏
p∈oi

P (p|oi),

with P (oi|π, di) the MAP estimate from Belief Propaga-
tion. Let Li = log P (oi|π, di) and Fi(p) = P (p|oi). We
define the cost of a detection by its log-likelihood in a first-
order approximation,

S = log

[
P (oi|π, di)

∏
p∈oi

Fi(p)

]
=Li +

∑
p∈oi

log Fi(p)(13)

= Li−
∑
p∈oi

∞∑
n=1

1
n

(1−Fi(p))n ≈ Li−N +
∑
p∈oi

Fi(p) .

Following [9], we thus arrive at the following merit terms

qii =−κ1 +
∑
p∈oi

((1−κ2) + κ2Fi(p)) − κ2Li, (14)

where κ2 is a regularization term to compensate for unequal
sampling and κ1 is a counterweight. Two object detections
oi and oj interact if they compete for the same pixels. In this
case, we subtract the support of the detection ok ∈ {oi, oj}
that is farther away from the camera in the overlapping im-
age area, assuming it is partially occluded:

qij =−1
2

( ∑
p∈oi∩oj

((1−κ2) + κ2Fk(p)) + κ2Lk

)
. (15)

Using this formulation, we implement the following itera-
tive procedure. We initialize the Quadratic Problem with the
MAP estimate P (oi|π, di) and then solve it using standard
optimization techniques [9, 10]. This results in a subset of
mutually consistent detections {o∗

i }, which are then again
used to obtain a more stable ground plane estimate. In our
experiments, this procedure converged to a stable solution
in only few iterations.



6. Experimental Results

We experimentally validate our system on 3 test se-
quences of busy shopping streets, taken on different days
and under different weather conditions. In the following,
we describe the data, perform systematic experiments to un-
derline some design choices and then apply the system with
fixed parameters. For a detection to be counted as correct, it
has to overlap with an annotation by more than 50% using
the intersection-over-unionmeasure [2]. Only one detection
per annotation is counted as correct. For the experiments,
only the left camera is evaluated. Performance could be im-
proved further by integrating the right camera and adding
temporal smoothing [5, 8], which is not yet done here.

Data. Data has been recorded at a resolution of 640×480
pixels (Bayered) and 15 FPS using a stereo pair of cam-
eras mounted on a children’s stroller. The streams suffer
from unbayering artifacts, slight motion blur, and some-
times missing contrast. All frames are completely anno-
tated up to a distance of ≈25m, resulting in a total of 2,293
frames and 10,958 annotations. The training sequence con-
tains 490 frames with 1,578 annotations, and shows a walk
over a fairly busy square on a cloudy day. The first test se-
quence (999 frames and 5,193 annotations) was taken under
similar weather conditions, strolling on a sidewalk. Its main
challenges are a large number of trees and dust bins that
result in false positives (FP) from object detection, persons
getting off public transport, as well as reflections from shop-
ping windows. The second test sequence (450 frames, 2,359
annotations) shows a stroll over a busy square, with people
moving in all directions. The square lies in the shade, re-
sulting in low contrast and thus increased difficulty for the
detector. Furthermore, the depth map is in many instances
completely unusable for estimating P (πD|π), see Figure 5
(right). The third test sequence (354 frames, 1,828 annota-
tions) was taken on a sunny day on a sidewalk, and contains
a large number of shadows and reflections.

Systematic Experiments. The experiments in this section
are performed on the training sequence and are used to de-
termine the remaining parameters for the test sequences.

Firstly, we consider the sampling steps {k, l} for ci,
along with the standard deviation σh of the size prior. We
consider no sampling, 3×3 (k, l ∈ {−1, 0, 1}), and 5×5
(k, l ∈ {−1,−0.5, 0, 0.5, 1}) sampling. Figure 7 shows the
resulting detection performance. As expected, a higher σh

yields better precision at first, but recall grows too slowly.
Due to the increased number of choices in Belief Propaga-
tion, the use of 5×5 sampling steps has also a negative effect
on the performance. By just fixing the object center, recall
is limited, as the algorithm cannot compensate for misad-
justed bounding boxes. A 3×3 sampling with σh = 0.12
thus seems a good compromise.

Secondly, we experimentally establish how to integrate
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the depth cues into our system. For P (ci|di = 1, π),
we consider either the learned, non-parametric distribution
P (vi|d(oi) − d(di)) (“npar”) or a normal distribution in-
ferred from Eq. (8) (“par”). As can be seen from the
result plot (Figure 8), the non-parametric distribution for
P (ci|di = 1) performs worse. This is mostly due to a rela-
tively small number of samples (especially at larger depths)
for creating the necessary tables, as well as to a bias intro-
duced by annotations and the training ground plane.

Experimental Validation. With all parameter choices mo-
tivated in the previous sections, we now apply the pro-
posed system to a set of challenging test sequences of strolls
through busy pedestrian passages. In these experiments, we
also compare our system to a set of baseline configurations
emulating other approaches from the literature (Figure 10):
“detector” refers to the output of the pedestrian detector,
without its global optimization stage. This is the input to our
system. “det.+opt” includes the optimization and is there-
fore a fair baseline comparison. Neither of these two ap-
proaches use scene geometry. The setup “det.+real GP” is
motivated by [8]. It does not consider depth cues and is



obtained by preselecting a ground plane for each frame (de-
termined using robust, LMedS-based plane fitting through
reconstructed wheel contact points), with a temporal look-
ahead corresponding to a travelling distance of ≈5m. Note
that without this look-ahead, we could not get usable esti-
mates for the ground plane using our hardware setup. “GM”
stands for the MAP estimate obtained using Belief Propaga-
tion, “full sys.” is the final output of our proposed approach,
including the global optimization. For the first sequence, we
also consider the full system without the depth uniformity
cue, “full sys. (no dv)”.

Figure 10 shows performance plots. On its own, the
detector’s precision is low, as its score is not distinctive
enough. Slightly better results are obtained by including the
global optimization. Substantially better results however
ensue from including scene and depth information using the
graphical model (resulting in an 8% gain in recall at 1.5
FP/image). This still disregards object-object interactions.
The baseline “det.+real GP” considers these, but relies on
a preselected groundplane, yielding an advantage compared
to the detector, with a slight improvement over the MAP es-
timate. Compared to this baseline, the full system increases
recall by a significant 19% at 1.5 FP/image. By replacing
the depth uniformity cue with P (vi = 1|ci, di = 1, π) =
maxP (ci|di = 1, π), performance drops by 7%, showing
that this additional depth information is indeed beneficial.
The plots for sequences #2 and #3 corroborate the advan-
tage of our approach. Some example detections on those
test sequences are displayed in Figure 11.

Depth Dependency. Note that even at the chosen low
threshold for the pedestrian detector, with many false pos-
itives, only a recall of about 70% is reached. The reason
for this is our challenging test set with significant partial
occlusions and many pedestrians appearing at small scales.
To further investigate the influence of a pedestrian’s dis-
tance on recognition performance, Figure 9 shows the av-
erage distance distribution of annotated pedestrians in the
first test sequence together with the agreeing detections (top
left/right). For distant pedestrians, the detector becomes
less reliable. For the bottom plot, we fixed the operating
point at 1 resp.1.5 FP/image on the global curve, and plot
recall and FP/image over depth (full system). Recall is con-
siderably higher for distances up to 15m and rapidly de-
creases after that, which coincides with the number of avail-
able detections.

7. Conclusion
We have presented a system that integrates depth and

appearance information for robust pedestrian detection and
simultaneous ground-plane estimation from video streams.
Based on input cues from pedestrian detection and depth
maps, it constructs a graphical model and resolves it in
a novel two-stage process. We conducted a comprehen-
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Figure 9. Top: Distribution of pedestrians over distance. Left: an-
notations, Right: correct detections. Bottom: Recall and FP/image
at globally fixed operating points over distance in seq. #1.

sive set of experiments on challenging videos from busy
shopping streets that underline the advantage of our inte-
grative approach. The key message of our experiments is
that, given a reasonable pedestrian detector, our algorithm
gives it a considerable boost in performance. This is due to
the integration of spatial constraints in the form of robust
depth cues and the ground plane, and our system’s ability
to compensate for inaccuracies of the detector, and to re-
solve object-object interactions. So far, temporal context
and the second camera are ignored, but the results could ob-
viously be improved by taking advantage of those. In addi-
tion, we plan to evaluate depth information for recognizing
other kinds of obstacles.
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