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Abstract. We propose a new approach for integrating geometric scene
knowledge into a level-set tracking framework. Our approach is based
on a novel constrained-homography transformation model that restricts
the deformation space to physically plausible rigid motion on the ground
plane. This model is especially suitable for tracking vehicles in automo-
tive scenarios. Apart from reducing the number of parameters in the
estimation, the 3D transformation model allows us to obtain additional
information about the tracked objects and to recover their detailed 3D
motion and orientation at every time step. We demonstrate how this in-
formation can be used to improve a Kalman filter estimate of the tracked
vehicle dynamics in a higher-level tracker, leading to more accurate ob-
ject trajectories. We show the feasibility of this approach for an applica-
tion of tracking cars in an inner-city scenario.

1 Introduction

Object tracking from a mobile platform is an important problem with many po-
tential applications. Consequently, many different approaches have been applied
to this problem in the past, including tracking-by-detection [1–4], model-based
[5, 6], template-based [7, 8] and region-based [9, 10] methods. In this paper, we
focus on the latter class of approaches, in particular on level-set tracking, which
has shown considerable advances in recent years [9, 11].

Level-set tracking performs a local optimization, iterating between a seg-
mentation and a warping step to track an object’s contour over time. Since both
steps only need to be evaluated in a narrow band around the currently tracked
contour, they can be implemented very efficiently [9]. Still, as all appearance-
based approaches, they are restricted in the types of transformations they can
robustly handle without additional knowledge about the expected motions.

In this paper, we investigate the use of geometric constraints for improv-
ing level-set tracking. We show how geometric scene knowledge can be directly
integrated into the level-set warping step in order to constrain object motion.
For this, we propose a constrained-homography transformation model that rep-
resents rigid motion on the ground plane. This model is targeted for tracking
vehicles in an automotive scenario and takes advantage of an egomotion estimate
obtained by structure-from-motion (SfM).

An advantage of our proposed approach, compared to pure 2D tracking, is
that it restricts the deformation space to physically plausible rigid-body mo-
tions, thus increasing the robustness of the estimation step. In addition, the 3D
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transformation model allows us to directly infer the tracked object’s detailed 3D
motion and orientation at every time step. We show how this information can
be used in a higher-level tracker, which models the vehicle dynamics in order to
obtain smooth and physically correct trajectories. The additional measurements
provided by our geometrically constrained level set tracker make the estimation
more robust and lead to smoother trajectories. We demonstrate our approach on
several video sequences for tracking cars on city roads under viewpoint changes.

The paper is structured as follows. The next section gives an overview of
related work. Section 2 then presents the details of our proposed level-set tracking
approach and Section 3 shows how its results can be integrated with a high-level
tracker. Section 4 finally presents experimental results.

Related Work. Tracking-by-detection approaches have become very popular
recently, since they can deal with complex scenes and provide automatic re-
initialization by continuous application of an object detector [1–4]. However,
for elongated objects with non-holonomic motion constraints, the raw detection
bounding boxes often do not constrain the object motion sufficiently, making
robust trajectory estimation difficult. Model-based tracking approaches try to
obtain more information about the tracked objects by estimating their precise
pose [5, 6]. However, they require a 3D model of the target object, which makes it
hard to apply them for complex outdoor settings where many different objects
can occur. The complexity can be reduced by limiting pose estimation to a
planar region, for which efficient template-based tracking schemes can be used
[7]. By decomposing the homography estimated from the template deformation,
information about the 3D object motion can be obtained [8]. However, this
approach heavily relies on sufficient texture content inside the tracked region,
which restricts it mainly to tracking fiducial regions.

In the context of region-based tracking, little work has been done in order to
incorporate dedicated 3D scene constraints. [12] explore affine motion models in
order to track multiple regions under 3D transformations. [13] and [14] propose
different ways of combining level-set tracking with direct 3D pose estimation.
However, they both assume a detailed 3D model of the target object to be
available, which is not the case in our application. [10] propose a globally optimal
approach for contour tracking which is also applied to an automotive scenario,
but this approach does not use knowledge about the geometric meaning of the
changed contour.

2 Approach

2.1 Level-Set Tracking

We use a probabilistic level-set framework for segmentation and tracking similar
to the one introduced by [11]. The target object is first segmented, then tracked
through the subsequent image frames. In the following, background denotes the
area around and foreground the area containing the object. The object’s contour
is represented implicitly by the zero level-set of the embedding function Φ(x)
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Fig. 1. Detection box (green), foreground initialization (red) and object frame (white)
with foreground and background pixels and the corresponding evolved level set embed-
ding function Φ.

(see Fig. 1). The color y of pixels x is used to build foreground and background
models Mf and Mb, in our case color histograms.

Segmentation. To obtain a segmentation of an object, the level set is evolved
starting from an approximate initialization, e.g . a bounding box provided by an
object detector. We use a variational formulation with three terms which penalize
the deviation from Mf and Mb [11], the deviation from a signed distance function
[15] (a constraint on the shape of the embedding function), and the length of
the contour (to reward a smoother contour, similar so [15]). Eq. 1 shows the
gradient flow used to optimize the segmentation:
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(1)

where P (xi|Φ,p,yi) = Hε(Φ(xi))Pf + (1−Hε(Φ(xi)))Pb, ∇2 is the Laplacian
operator, Hε is a smoothed Heaviside step function, δε a smoothed Dirac delta
function and Ω denotes the pixels in the object frame.

Pf and Pb are the pixel-wise posteriors for pixels’ probabilities of belonging
to the foreground and background. During segmentation, Mf and Mb are rebuilt
in every iteration; during the later tracking stage the models are only slightly
adapted to achieve high robustness while still adapting to lighting changes.

Tracking. In the following frames the obtained contour is tracked by perform-
ing a rigid registration, i.e. by warping its reference frame to another position
without changing the contour’s shape. Similar to inverse compositional image
alignment [16] the content of the new frame is warped such that it looks more
like the old frame. The inverse of the resulting warp with parameters ∆p can in
turn be used to warp the contour onto the new frame.

∆p=

[
N∑
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1
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[
Pf
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with J = δε(Φ(xi))∇Φ(xi) ∂W∂∆p , where ∂W
∂∆p is the Jacobian of the warp.
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(a) Coordinate Systems (b) Transformation Model

Fig. 2. Visualization of the coordinate systems and the proposed transformation model
used in our approach.

2.2 Geometric Transformation Model

In addition to the image based tracking approach as described above, we model
the 3D position of a tracked object. This allows us to make assumptions about
an object’s movement by the projective distortions that arise on the 2D image.

Coordinate Systems. Figure 2(a) shows the used coordinate systems. The
image itself consists of a number of pixels with 2D coordinates. The colors of
these pixels correspond to points in the world which were projected onto the
image plane. The 3D coordinates of those points cannot however be inferred
directly from one image without additional depth information. We use a ground
plane, which was obtained with structure-from-motion (SfM), to estimate the
base point of a detected object. We approximate the object to be a plane in
world coordinates that is orthogonal to the ground plane. This object plane can
be described with a point q0 and two direction vectors q1 and q2.

xi=

xiyi
wi

=Pxw=PQxo, with Q=
[
q1 q2 q0

0 0 1

]
, xo =

xoyo
1

 , xw=


xw
yw
zw
1

 (3)

where xo is a 2D point on the object plane and xw are its corresponding world
coordinates. The point xi in the image that corresponds to this world point can
be obtained by projection with the camera matrix P.

3D Transformation Model. The level-set tracking framework requires us to
specify a family of warping transformations W that relate the previous object
reference frame to the current one. In the following, we show how this warp can
be used to incorporate scene knowledge by enforcing geometric constraints on
the object motion.

Our target scenario is an automotive application where the goal is to track
other vehicles’ motions relative to our own vehicle. In this scenario, we can
assume that the tracked object parts are approximately planar and that the
target objects move rigidly on the ground plane. This means that their 3D shape
will not change between two frames; only their position relative to the camera
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will. The resulting projective distortions in the image can therefore be modeled
by a homography. However, an unconstrained homography has many degrees of
freedom, which makes it hard to keep the tracking approach robust. Instead, we
propose to use the available scene knowledge by modeling W as a constrained
homography that requires fewer parameters and can be estimated more robustly.

Figure 2(b) illustrates our proposed transformation model. We represent
object motion by a 3D homography, consisting of a rotation Wα around an
axis orthogonal to the ground plane and a translation Wt along the vector
t = [tx, ty, tz]

T. In order to compare the object points with the stored level-set
contour of the previous frame, we then project the object into the image using
an estimated camera matrix P obtained by SfM. Finally, we compute a 2D ho-
mography Wobj which warps the content of the object window (defined by the
projections of its four corner points) onto the level-set reference frame.

W = Wobj P WtWαQ

xoyo
1

 (4)

Wα can be computed as a sequence of several transformations: a translation
TP moving the rotation axis into the origin; a rotation Rxz into the xz-plane;
another rotation Rz onto the z-axis; and finally a rotation Rz(α) about the
z-axis with the desired angle α, followed by the inverse of the first three steps.

Wα=T−1
P R−1

xz R−1
z Rz(α)RzRxzTP , Wt=

[
I t
0 1

]
(5)

In the above formulation, we have assumed a general translation Wt. In prin-
ciple, this could be restricted further to only allow translations parallel to the
ground plane. However, the estimated ground plane is not always completely ac-
curate and in any case does not account for uneven ground, especially at farther
distances. We have therefore found that allowing a small movement component
in the direction of the ground plane normal is necessary to achieve robustness.

Optimizing for the Transformation. The tracking framework uses the
Gauss-Newton method to optimize the warp between two image frames. This
requires the Jacobian of the overall warp W, which contains the partial deriva-
tives of W with respect to the parameters α, tx, ty and tz.

∂W
∂∆p

with ∆p =
[
α tx ty tz

]T (6)

The parameters ∆p available for optimization restrict the possible movements of
the contour and the gradient ∂W

∂∆p indicates the effect a certain parameter value
has on the position of the contour in the image. (6) is substituted into (2) and is
evaluated for every point x in the band around the contour which is determined
by δε(Φ). In this way, pixel locations with a low probability of belonging to
the foreground contribute a warp towards the outside of the contour and vice
versa. A lower probability results in a larger step and the total step size is thus
determined automatically. The algorithm has converged when the step size has
become sufficiently small.
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(a) frame i (b) frame i+1 (c) frame i+1

Fig. 3. (a) 3D position and synthetic view of object frame. (b) Before warp: 3D position
as in frame i. (c) After warp: tracked 3D position. Notice how the contour moved in 3D
and its projection onto the image plane changed accordingly; its shape did not change.

Final Tracking Algorithm. Putting the above steps together, we can sum-
marize the proposed tracking algorithm as follows:

1. Initialize the object position, e.g . using a detection bounding box.
2. Apply the level-set segmentation (in our implementation for 200 iterations).
3. Compute the object plane’s world coordinates Q by projecting the detection

box base points onto the ground plane. (This box does not need to be aligned
with the image borders and can also be used to initialize rotated objects).

4. For the following frames: Track the object’s shape, i.e. compute ∆p for the
warp between two images i and i+1 :
(a) Assume the object is still located at the same 3D position. Interpolate

synthetic views for both object frames (Fig. 3(a), 3(b)) with Wi
obj ,W

i+1
obj .

(b) Use eq. (2) with eq. (6) to find a set of parameters ∆p such that the
contour in the warped object frame i+1 better matches object frame i.

(c) Use the inverse of the estimated homography (WtWα)−1 to warp the
modeled 3D coordinates of the object and obtain a new 3D position
estimate of the object in frame i+1 (Fig. 3(c)). (E.g . if image i+1 needs
to be warped “closer” to the camera in order to look like image i, the
object in fact moved to the back.)

(d) Use the new 3D coordinates to obtain an improved synthetic view of the
object in frame i+1.

(e) Repeat steps (b) to (d) until the step size is small enough: ‖∆p‖ < ε.
(f) Apply the level-set segmentation for 1 iteration to update the contour.

The results of this procedure are a level-set contour and a bounding box for each
frame, as well as the estimated 3D position and orientation of the object.

3 Integration with a High-Level Tracker

The level-set tracking approach described in the previous section can robustly
follow an individual object over time. However, it requires an initialization to pick
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out objects of interest, and it does not incorporate a dynamic model to interpret
the observed motion. For this reason, we integrate it with a high-level tracker.
In this integration, the task of the level-set tracker is to generate independent
tracklets for individual objects, which are then integrated into a consistent scene
interpretation with physically plausible trajectories by the high-level tracker.

System Overview. We apply a simplified version of the robust multi-hypothe-
sis tracking framework by [3]. Given an estimate of the current camera position
and ground plane location from SfM, we collect detected vehicle positions on the
ground plane over a temporal window. Those measurements are then connected
to trajectory hypotheses using Extended Kalman Filters (EKFs). Each trajec-
tory obtains a score, representing the likelihood of the assigned detections under
the motion and appearance model (represented as an RGB color histogram). As
a result, we obtain an overcomplete set of trajectory hypotheses, from which we
select the best explanation for the observed measurements by applying model
selection in every frame (Details can be found in [3]).

Motion Model. For modeling the vehicle trajectories, we use an EKF with the
Ackermann steering model (e.g . [17]), as shown in Fig. 4(a). This model incor-
porates a non-holonomic motion constraint, enforcing that the velocity vector
is always perpendicular to the rear wheel axis. The state vector is given as
st = [xt, yt, ψt, vt, δt, at], where (x, y) is the position of the car, ψ the heading
angle, δ the steering angle, v the longitudinal velocity, and a the acceleration.
The prediction step of the Kalman filter is then defined as follows:

st+1 =



xt + vtcos(ψt)∆t+ 1
2atcos(ψt)∆t2

yt + vtsin(ψt)∆t+ 1
2atsin(ψt)∆t2

ψt + vt

L tan(δ)∆t
vt + at∆t

δt

at


+



0
0
0
0
nδ
na


. (7)

L is the distance between the rear and front wheel axes and is set to a value
of 3.5m. Multi-vehicle tracking-by-detection using a similar motion model was
demonstrated by [4] based on a battery of object detectors with discretized
viewing angles. We use a similar coarse discretization of the viewing angle with
three separate, HOG-style [18] vehicle detectors in order to initialize our level-set
tracker (Fig. 4(b)). However, after this initialization, we only use the observations
provided by the low-level tracker and integrate them into the motion model.

Discussion. Our proposed approach has several advantages. Compared to
a pure tracking-by-detection approach, the level-set tracker yields much finer-
grained measurements of the viewing angle at which the target vehicle is seen.
In addition, the level-set tracker can continue tracking objects even when they
partially leave the image and the object detector would fail. Compared to a level-
set tracker with a simpler 2D transformation model (i.e., just using translation
and scale, without ground plane constraints), our model has the advantage of
being able to estimate the target vehicle’s location and its current orientation.
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Fig. 4. (a) Ackermann steering model used for modeling the motion of the vehicle (as-
sumes rolling without slippage). (b) Discretization of the the detected viewing angles.

This orientation estimate is beneficial in two respects. It allows us to extrapolate
from the tracked car trunk location and infer the true object center, resulting
in better position estimates (which is especially important for elongated objects
such as cars). And it enables the use of orientation as observed quantity in the
motion model, resulting in better predictions. All of those factors contribute to
more robust tracking performance, as will be demonstrated in the next section.

4 Experimental Results

Data. We demonstrate our approach on three parts of a challenging sequence
from the Zurich Mobile Car corpus, generously provided by the authors of [4].
The sequence was captured using a stereo setup (13-14 fps and 640×480 resolu-
tion) mounted on top of a car. We use SfM and ground plane estimates provided
with this data set, but restrict all further processing to the left camera stream.

Qualitative Results. Fig. 5 shows qualitative results of our approach on three
test sequences which contain cars turning corners, demonstrating its capability
to accurately track vehicles under viewpoint changes. (The corresponding result
videos are provided on www.mmp.rwth-aachen.de/projects/dagm2010). As can be
seen, the estimated vehicle orientation from the level-set tracker enables the
high-level tracker to compute smooth vehicle trajectories.

Comparison with Baseline Approach. Fig. 6 presents a comparison of our
3D estimation approach with the results of our level-set tracker using only a 2D
(translation + scale) transformation model. As can be seen from those results,
our approach achieves better tracking accuracy and manages to closely follow
the target vehicles despite considerable viewpoint changes. In contrast, the 2D
baseline method slips off the car in all cases, since the 3D position of the car’s
center is incorrectly estimated, resulting in a wrong trajectory.

5 Conclusion

In conclusion, we have presented an approach for incorporating geometric scene
constraints into the warping step of a level-set tracker. Our approach allows to
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Fig. 5. Tracking results of our approach on three test sequences. The integrated 3D
estimation results of the high-level tracker show that it is able to accurately follow cars
turning corners and to produce smooth trajectories.

estimate both the location and orientation of the tracked object in 3D, while at
the same time restricting the parameter space for more robust estimation. As we
have shown, the estimation results can be used to improve the performance of a
higher-level multi-hypothesis tracker integrating the measurements with vehicle
dynamics into physically plausible trajectories. A possible extension could be to
incorporate detections for different vehicle orientations, as well as stereo depth
information, in order to initialize tracking also for other vehicle viewpoints.
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