
Int J Comput Vis (2011) 94:175–197
DOI 10.1007/s11263-010-0342-x

Fast PRISM:
Branch and Bound Hough Transform for Object Class Detection

Alain Lehmann · Bastian Leibe · Luc Van Gool

Received: 21 September 2009 / Accepted: 9 April 2010 / Published online: 28 April 2010
© Springer Science+Business Media, LLC 2010

Abstract This paper addresses the task of efficient object
class detection by means of the Hough transform. This ap-
proach has been made popular by the Implicit Shape Model
(ISM) and has been adopted many times. Although ISM
exhibits robust detection performance, its probabilistic for-
mulation is unsatisfactory. The PRincipled Implicit Shape
Model (PRISM) overcomes these problems by interpreting
Hough voting as a dual implementation of linear sliding-
window detection. It thereby gives a sound justification
to the voting procedure and imposes minimal constraints.
We demonstrate PRISM’s flexibility by two complemen-
tary implementations: a generatively trained Gaussian Mix-
ture Model as well as a discriminatively trained histogram
approach. Both systems achieve state-of-the-art perfor-
mance. Detections are found by gradient-based or branch
and bound search, respectively. The latter greatly benefits
from PRISM’s feature-centric view. It thereby avoids the un-
favourable memory trade-off and any on-line pre-processing
of the original Efficient Subwindow Search (ESS). More-
over, our approach takes account of the features’ scale value
while ESS does not. Finally, we show how to avoid soft-
matching and spatial pyramid descriptors during detection
without losing their positive effect. This makes algorithms

A. Lehmann (�) · L. Van Gool
Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
e-mail: lehmann@vision.ee.ethz.ch

L. Van Gool
e-mail: vangool@vision.ee.ethz.ch

B. Leibe
UMIC Research Centre, RWTH Aachen, Aachen, Germany
e-mail: leibe@umic.rwth-aachen.de

L. Van Gool
ESAT-PSI/IBBT, KU Leuven, Leuven, Belgium

simpler and faster. Both are possible if the object model is
properly regularised and we discuss a modification of SVMs
which allows for doing so.

Keywords Object detection · Hough transform ·
Sliding-window · Branch and bound · Soft-matching ·
Spatial pyramid histograms

1 Introduction

Object detection is the problem of joint localisation and cat-
egorisation of objects in images. It involves two tasks: learn-
ing an accurate object model and the actual search for ob-
jects, i.e., applying the model to new images. While learning
accurate models is not time critical (as it is done off-line),
speed is of prime importance during detection. As a matter
of fact, the structure of the model has a direct impact on the
efficiency of the detection. Therefore, object detection in-
volves an additional, third task: modelling the problem such
that it allows for efficient search. This task, which precedes
both others, and the subsequent acceleration of object de-
tection is the focus of this paper. A central aspect towards
this goal is to move as much computation as possible to the
off-line training stage where runtime is not critical.

Most state-of-the-art object detectors are based on ei-
ther the sliding-window paradigm (Viola and Jones 2004;
Schneiderman and Kanade 2004; Dalal and Triggs 2005;
Ferrari et al. 2007; Felzenszwalb et al. 2008; Maji et al.
2008) or the Hough transform (Ballard 1981; Opelt et al.
2006; Leibe et al. 2008; Liebelt et al. 2008; Maji and Ma-
lik 2009). Sliding-window considers all possible sub-images
of an image and a classifier decides whether they contain an
object of interest or not. For reasons of efficiency, mostly lin-
ear classifiers are used, although fast non-linear approaches

mailto:lehmann@vision.ee.ethz.ch
mailto:vangool@vision.ee.ethz.ch
mailto:leibe@umic.rwth-aachen.de

176 Int J Comput Vis (2011) 94:175–197

have been proposed recently (Maji et al. 2008). Moreover,
advanced search schemes based on branch and bound have
been designed to overcome the computationally expensive
exhaustive search (Lampert et al. 2009). In this work we fo-
cus on the second aforementioned paradigm, i.e. the Hough-
transform, and show that it can also—and even more—
benefit from branch and bound search.

The Hough transform was originally introduced for line
detection, while the Generalised Hough Transform (Ballard
1981) presented modifications for finding predefined shapes
other than lines. More recently, the Implicit Shape Model
(ISM) (Leibe et al. 2008) has shown how the underlying idea
can be extended to object category detection from local fea-
tures. It is this extended form which we refer to in this paper.
In ISM, processing starts with local feature extraction and
each feature subsequently casts probabilistic votes for pos-
sible object positions. The final hypothesis score is obtained
by marginalising over all these votes. In our opinion, such
bottom-up voting schemes seem to be more natural than the
exhaustive sliding-window search paradigm.

Indeed, object class detectors based on ISM’s idea have
become increasingly popular (Liebelt et al. 2008; Opelt et
al. 2006; Maji and Malik 2009; Gall and Lempitsky 2009;
Chum and Zisserman 2007). However, we argue that the
commonly used ISM formalism is unsatisfactory from a
probabilistic point of view. In particular, the summation over
feature likelihoods is explained by marginalisation. How-
ever, the extracted features co-exist and are not mutually
exclusive. Thus, marginalising over them is meaningless
which will be detailed in Sect. 2.3. Nevertheless, ISM em-
pirically demonstrates robust detection performance. Fur-
thermore, the summation is crucial for the voting para-
digm. Hence, the question is: “How else can this summa-
tion be justified?”. We set out to give a sound answer to
this question by formulating Hough-based object detection
as a dual implementation of linear sliding-window detec-
tion (Lehmann et al. 2009b). As a result, PRISM brings to-
gether the advantages of both paradigms. On the one hand,
the sliding-window reasoning resolves ISM’s deficiencies,
i.e., PRISM gives sound justification for the voting proce-
dure and also allows for discriminative (i.e., negative) vot-
ing weights (which was not possible before). This contribu-
tion plays out on the level of object modelling and motivates
the name PRISM: PRincipled Implicit Shape Model. On the
other hand, we will show that the feature-centric view of the
Hough-transform leads to computational advantages at de-
tection time.

The central aspect of our PRISM framework (Lehmann
et al. 2009b) is to consider the sliding-window and the
Hough paradigms as two sides of the same coin. This du-
ality is exploited to define the object score from a sliding-
window point of view, while the actual evaluation follows
the Hough transform. The core concept which allows the fu-
sion of the two paradigms is a (visual) object footprint. It

represents all features in a canonical reference frame which
is defined through invariants. This compensates for (geo-
metric) transformations of the object. Object hypotheses are
then scored by comparing their footprint to a linear object
model. The latter is compulsory for the Hough transform,
but most sliding-window detectors do likewise for reasons of
efficiency. Contrary to spatial histogram-based approaches
(Dalal and Triggs 2005; Lampert et al. 2009), we keep track
of each individual feature. This leads to a feature-centric
score which is crucial for a Hough transform like algo-
rithm. Moreover, it is this feature-centric score which can
be exploited to improve the runtime properties of Efficient
Subwindow Search (Lampert et al. 2009). In particular, we
show significant memory savings and avoid any on-line pre-
processing.

Efficient Subwindow Search (ESS) (Lampert et al. 2008,
2009) is an elegant technique to overcome exhaustive search
of sliding-window systems. It thereby allows for sub-linear
search time. Central to this approach is the use of bounds
on sets of hypotheses, embedded in a branch and bound
search scheme. Such branch and bound algorithm have al-
ready proven their effectiveness in earlier work on geometric
matching (Keysers et al. 2007; Breuel, 1992, 2002). How-
ever, ESS also has its downsides, which are mainly due
to the integral image representation used during detection.
More precisely, ESS uses two integral images per spatial bin
of its (histogram) object model. These are very memory de-
manding as they scale with the input image size. Hence, a
single-class detector with 10 × 10 histogram bins (as pre-
sented in Lampert et al. 2009, Fig. 8), but without spatial
pyramid) already consumes on the order of 235MB mem-
ory for moderately sized 640 × 480 images.1 Due to this
memory issue, ESS uses only 2D integral images although
features actually reside in a 3D scale space. Hence, ESS
chooses to ignore the feature scale. This limits the modelling
capabilities, i.e., small/large-scale feature cannot be distin-
guished. Furthermore, this may cause a bias towards larger-
scale detections as we will discuss later. Depending on the
application, the problem may be less the memory usage, but
more the fact that memory has to be filled with data immedi-
ately prior to the actual search. This on-line pre-processing
step may cancel the sub-linear runtime. In any case, as the
number of bins scales with the number of classes, ESS will
not scale well to large images and many classes. Adapt-
ing the ESS idea to the Hough-inspired PRISM framework
avoids all of these problems. In particular, we present a sys-
tem which assigns different weights to small/large-scale fea-
tures. Therefore, it has no bias towards larger detections.

12 integral images · 640 × 480 pixel · 100 bins · 4 bytes ≈ 235 MB. Us-
ing the 10 level pyramid increases memory usage to about 900 MB. As
we argue later, the pyramid proposed in Lampert et al. (2009) is not
needed at detection time as it causes model regularisation which can
be integrated into the training procedure.

Int J Comput Vis (2011) 94:175–197 177

Fig. 1 (Color online) High-level illustration of PRISM’s main con-
cepts. The goal of object detection is to recover a semantic description
of a scene (e.g. “a car at position λ”) while we only have access to
a visual description, i.e., the image pixels. Both visual and seman-
tic description are scene-dependent and cannot be accessed during
training (as they do not exist then). Our object footprint couples them
and allows for computing a scene-independent object description for
each object hypothesis. This footprint compensates for (geometric)

object transformations by means of invariants. This generalises the
usual “windowing” of sliding-window detectors. The explicitly de-
fined invariants induce an invariant space which is scene-independent.
This space thus emerges during training which makes learning possi-
ble. The footprint’s coupling is exploited during detection to combine
the input (i.e., the visual description) with knowledge (i.e., the object
model) to, eventually, infer the semantics of the scene

Furthermore, no on-line pre-computation is needed. Hence,
detection directly starts with the adaptive branch and bound
search. Both memory usage and runtime are sub-linear in the
size of the search space and linear in the number of features.
In our opinion, both dependencies are very natural, which
we will discuss.

A rather complementary contribution of our work tack-
les the common practice of soft-matching and spatial pyra-
mid descriptors. These techniques improve detection qual-
ity, but lead to additional cost at detection time. The for-
mer has been acknowledged by many authors (Grauman
and Darrell 2005; Lazebnik et al. 2006; Ferrari et al. 2007;
Ommer and Buhmann 2007; Leibe et al. 2008; Philbin et
al. 2008), while this paper shows how to avoid the latter.
We argue that both techniques cause model regularisation.
This is a concept of learning and does not belong to the de-
tection stage. We demonstrate that soft-matching is indeed
not needed during detection if the model is properly reg-
ularised. Moreover, we integrate spatial pyramids directly
into Support Vector Machines (SVMs) by modifying their
usual L2-norm regularisation. This makes the connection to
regularisation explicit. Interestingly, the modified problem
can be solved efficiently in the primal form (Chapelle 2007;
Sandler et al. 2008). As a result, fast nearest-neighbour
matching and flat histograms are sufficient during detection.
This makes detection algorithms simpler (without sacrific-
ing quality) and faster, which is the focus of this paper.

In summary, this paper tackles the task of object mod-
elling and efficient search. It combines elements of what
is currently the state-of-the-art in both sliding-window and
Hough-based object detection, as it is indebted to both ESS
(Lampert et al. 2009) and ISM (Leibe et al. 2008). It puts
ISM on a well-grounded mathematical footing and shows

that the ESS principle can also be applied in a different,
feature-centric manner. Depending on the parameters of the
problem at hand (such as the number of classes, number of
extracted features, image size, etc.), one may be served bet-
ter by taking this alternative view. Moreover, we will actu-
ally show that the traditional ESS bound is encompassed by
our framework. This said, and as a disclaimer, the paper is
not about learning better model parameters and, hence, not
about improving object detection rates.

The structure of the paper is as follows: The PRISM
framework (Lehmann et al. 2009b) is introduced and dis-
cussed in Sect. 2. Two implementations of this framework
are presented in Sects. 3 and 4, respectively. Both algorithms
achieve state-of-the-art performance and are complemen-
tary to each other, i.e., the two sections can be read inde-
pendently. The former builds on Gaussian Mixture Models,
which allow for efficient gradient based search. The com-
bination of PRISM with branch and bound (Lehmann et al.
2009a) is demonstrated in Sect. 4 along with a detailed dis-
cussion and a comparison to ESS. Section 5 describes how
soft-matching and spatial pyramids can be moved to the
training stage, thereby allowing for fast NN-matching and
flat histograms during recognition. Section 6 gives conclud-
ing remarks.

2 The PRincipled Implicit Shape Model (PRISM)

Object detection can be formulated as a search problem:
Given a newly observed image I and a trained object

178 Int J Comput Vis (2011) 94:175–197

Fig. 2 Computations in the object detection pipeline. Clearly, fea-
ture extraction (FE) and branch and bound (BNB) search depend on
the newly observed image. Hence, they cannot be avoided in the
detection stage. However, PRISM’s feature-centric view allows for
pre-computing integral images (II) off-line during training, whereas
ESS needs to compute them during detection. This is a clear advantage
as speed is of prime importance during detection, while the off-line
training stage is not time critical. Furthermore, spatial pyramid de-
scriptors (PYR) can be avoided during detection by using SVMs with
a modified regularisation term (RSVM)

model W , the goal is to find the best hypothesis

λ∗ =
searching
︷ ︸︸ ︷

arg max
λ∈�

modelling
︷ ︸︸ ︷

S
(

λ|I, W
︸︷︷︸

learning

)

, (1)

where S is a score function and � is the search space of all
potential object hypotheses. Furthermore, this formulation
reveals the three tasks involved, i.e., modelling, learning,
and searching. In this section, we are concerned with the
modelling problem, i.e., the design of the score function S.

In general, there are no restrictions on the score function.
However, the structure of S plays an important role when it
comes to defining efficient search algorithms. As the search
space is large, quickly finding the best-scoring hypothesis is
of great importance. We believe that feature-centric scores
(as introduced in ISM (Leibe et al. 2008)) offer a powerful
approach. In particular, it allows us to perform certain pre-
computations off-line during training (c.f. Fig. 2). In such a
framework, local features are matched to a visual vocabulary
and cast votes for possible object positions (the score being
the sum of votes). However, ISM’s probabilistic model has
various shortcomings and also does not allow for discrimi-
native voting weights, i.e., votes which can be negative and,
thus, penalise certain hypotheses.

In the sequel, we will present the PRISM framework
which resolves these problems. We pick up the reasoning of
the sliding-window paradigm, but derive a feature-centric,
Hough-like score in Sect. 2.1. A high-level illustration of
PRISM’s main concepts is shown in Fig. 1. The duality
of the sliding-window and the Hough paradigms are high-
lighted in Sect. 2.2. The shortcomings of ISM and related
work are discussed in Sects. 2.3 and 2.4, respectively. Com-
ments on multiple object detection follow in Sect. 2.5.

2.1 Feature-Centric Score Function

The central element of PRISM (Lehmann et al. 2009b) is a
footprint φ(λ, I) for a given object hypothesis λ extracted

from the image I . This footprint maps all detected features
into a canonical reference frame. In our implementation, it
describes an object independently of its location and scale
in the image. Intuitively, it crops out a sub-image, which is
the key idea of the sliding-window paradigm (c.f. Fig. 1).
Unlike general (non-linear) sliding-window scores, PRISM
uses a linear score function. Such a linear model is compul-
sory for the Hough transform. Hence, the hypothesis score
is computed by the inner product

S(λ|I,W) = 〈φ(λ, I),W 〉 (2)

of the footprint φ and a weight function W , i.e., the object
model. Classical sliding-window detectors (Dalal and Triggs
2005; Felzenszwalb et al. 2008; Lampert et al. 2009) repre-
sent all features in an object-centric coordinate frame. More-
over, the relative feature position is often discretised which
leads to a histogram representation (Dalal and Triggs 2005)
for φ and W . Contrary to previous work, we focus on the
definition of the mapping function φ and avoid the discreti-
sation. This allows us to switch from the sliding-window to a
feature-driven, Hough-transform algorithm. This change of
views is central to our framework and is the main reason for
the favourable properties of our branch and bound algorithm
(in Sect. 4).

Image-Object Invariants. An important aspect of the foot-
print is that it relates objects and features in an invariant
way. In order to define invariant expressions, we first have to
specify the image representation and hypothesis parametri-
sation. For the image representation we consider a set of fea-
tures F . Each feature is characterised by a descriptor, posi-
tion, and scale, i.e., f = (fc, fx, fy, fs). In this work, we
use local features (Mikolajczyk and Schmid 2004) and fc

is an index to the best-matching visual word in a learned
vocabulary. For the sake of completeness, a feature may be
modulated with a factor fm > 0 which accounts for e.g. the
quality of the match to the vocabulary. In the sequel, we will
refer to this factor as the feature mass. As object hypothe-
sis parametrisation we use λ = (λx, λy, λs), i.e., the object’s
position and size, respectively. This is equivalent to a bound-
ing box with fixed aspect ratio. Finally, possible mappings
of these scene-dependent variables (λ,f) into a translation-
and scale-invariant space are e.g.

If =
[

λx − fx

fs

, log
λs

fs

]

or Iλ =
[

fx − λx

λs

, log
fs

λs

]

,

(3)

where the y-coordinate is analogous to x and is dropped for
brevity’s sake. Using the logarithm accounts for the multi-
plicative nature of the scale ratio and will be helpful later
in Sect. 3.1. If considers a feature-centric coordinate frame,

Int J Comput Vis (2011) 94:175–197 179

Fig. 3 (Color online) From Sliding-Window (top) to the Hough Trans-
form (bottom). Shift-invariant 1D-example with four extracted features
(c) quantised into two visual words (blue rectangle and cyan circle).
Sliding-window reasoning (top): A single hypothesis λ∗ is fixed (red).
Its footprint (a) is a sum of Dirac pulses which are positioned accord-
ing to the invariant I(λ∗, f) = f − λ∗ (depicted in (a, c) for f 1). This
aligns the features to the object model. The inner product with the
weight function (b) results in a sum of point evaluations (red dots). Fea-
tures falling into the range where the weight function is zero (shaded)
do not affect the score. Hough-Transform view (bottom): all features
are considered simultaneously. Extracted features (c) cast voting pat-
terns (d) which, summed up, result in the final hypothesis score (e). The
voting patterns are transformed (e.g., mirrored and shifted) versions of
the weights W . Their intersections with the red line corresponds to the
red dots in the sliding-window setting (b). The solid green curve (e)
shows the overall hypothesis score and one can identify λ∗ as a local
maximum. The alternation of greedy search and feature suppression
(c.f. Sect. 2.5) implements a matching pursuit like algorithm to recover
the sparse semantic description (i.e., “a car at position λ∗”) from the
blurry semantic reconstruction (e)

while Iλ opts for a classical object-centric one, i.e., reg-
istering feature position relative to the object center (c.f.
Fig. 5 (left)). The implications of using one or the other will
be discussed later in Sect. 3.2.

Object Footprint. Given an invariant I, we define the joint
mapping of an object-feature pair (λ,f) as a weighted Dirac
delta function fmδfc,I(λ,f). It is zero everywhere but at the
4D-point [fc, I(λ,f)] and integrates to fm. The entire ob-
ject footprint is defined as the superposition of all features,
i.e.

φ(λ, I) =
∑

f ∈F
fmδfc,I(λ,f). (4)

Figure 3 illustrates the footprint as well as the change to the
Hough transform, which is discussed in the sequel. In clas-
sical sliding-window systems, this 4D footprint (function)
is discretised and represented by a histogram. We avoid the
discretisation and plug it directly into the score (2). Thus,
the inner product of the two functions yields a score S for

hypothesis λ as

S(λ) = 〈φ(λ, I),W 〉 =
∑

f ∈F
fmW(fc, I(λ,f)), (5)

i.e., as point evaluations of the weight function (c.f. Fig. 3(b)).
This form makes the connection to the feature-driven
Hough-transform explicit. The summand fmW(fc, I(·, f))

represents the “vote” cast by each feature which is illustrated
in Fig. 3(d). Although no longer really visible, this formu-
lation is equivalent to a standard sliding-window classifier
(e.g., Dalal and Triggs 2005) when considering the object-
centric invariant Iλ and a histogram for W . We are however
not restricted to this choice. Any representation for W is
possible and also more general invariants than (3) can be
used. They may account for e.g. variable aspect ratio, view-
point changes, etc. A nice property of our framework is that
the modelling of such geometric transformations is made
explicit (i.e., through the definition of I) and is decoupled
from the rest of the system.

Non-Contributing Features. Objects are compact and have
a finite extent. Hence, unless contextual information is mod-
elled, the weight function W has compact support and is
zero outside that range (Fig. 3(b), shaded region). As a con-
sequence, many (far away) features do not contribute to the
score, i.e., W(fc, I(λ,f)) = 0. Thus, cropping out a sub-
image in sliding-window approaches is a consequence of
the learned model, i.e., the weight function W . In prac-
tice, identifying and excluding such features reduces run-
time significantly. Doing that properly is not a detail, but
an important aspect of an algorithm. As it strongly depends
on the search algorithm, we postpone further discussions to
Sects. 3.3 and 4.5, respectively.

2.2 Bottom-up? Sliding-Window vs. Hough-Transform

Sliding-window detectors are usually considered fundamen-
tally different from Hough-transform like approaches. The
former are said to reason in a top-down fashion, while the
latter are considered to work bottom-up. Actually, previ-
ous work has shown that both paradigms can co-exist in
a single detection system (Schneiderman 2004; Chum and
Zisserman 2007). Schneiderman (2004) detects objects by
cascades of classifiers and uses the feature-centric Hough
approach in the first cascade levels. This allows for shar-
ing feature among different hypotheses and is reported to
be much faster. Later stages follow the sliding-window ap-
proach and new features are extracted for each tested hy-
pothesis. Chum and Zisserman (2007) also start with the
Hough-transform. They use it to quickly find good starting
points for a sliding-window based, gradient refinement algo-
rithm. However, both works treat the two concepts as com-
plementary. An attempt to bring them into a closed relation-
ship has been investigated by Williams and Allan (2006),

180 Int J Comput Vis (2011) 94:175–197

Fig. 4 Pseudo-code for sliding-window and Hough transform. We use
the shortcut W̄ (λ,f) := fmW(fc, I(λ,f)). Sliding-window detectors
process all hypotheses sequentially. For each hypothesis, the entire
score function is evaluated at once which involves finding contribut-
ing features. Contrarily, the Hough transform is feature driven and
processes all objects in parallel: each feature adds its non-zero con-
tributions to the corresponding objects, i.e., an accumulation of voting
patterns in the search space

whose approach relies on a Taylor approximation. In our
framework, the duality of the two approaches emerges very
naturally, as can be seen from (5). The left-hand side repre-
sents the object-centric view taken by sliding-window detec-
tors. There, the complete footprint φ (usually a histogram)
is extracted and compared to the model. The right-hand
side expresses the feature-centric formulation of Hough-
transform based systems. Note that both views are equiv-
alent. The actual difference is more of an algorithmic na-
ture, i.e., how the score is evaluated for all possible object
hypotheses. This difference can be explained by an inter-
change of loops as illustrated in Fig. 4. Thus, in our opinion,
both approaches follow the same top-down reasoning and
only feature extraction (as pre-processing) should be seen
as a bottom-up process. In summary, Hough transform based
object detectors are a sub-class of sliding-window detectors,
i.e., the sub-class which pre-computes all features and which
scores hypotheses with a linear detection model.

2.3 The Implicit Shape Model (ISM)

As mentioned in the introduction, ISM (Leibe et al. 2008)
bears various problems which we will discuss now. The
score function of ISM2 is defined as a probability density
over the whole search space, i.e.

p(λ|I) =
∑

f ∈F
p(λ|f)p(f |I). (6)

We argue that marginalisation (i.e., the sum over features)
is not justified. It implies that all features f are possible re-
alisations of a single random variable. In other words, they
would be mutually exclusive and only one feature could be
observed. However, we do observe/extract all these differ-
ent features concurrently, i.e., they co-exist. Hence, they are

2The Minimum Description Length (MDL) post-processing is not con-
sidered here as it is not part of the Hough voting procedure.

all facts3 and marginalisation over (uncertainty-free) facts
is not meaningful. Thus, each feature should be modelled
with a separate random variable, i.e., p(λ,f1, f2, . . . , fn),
as done correctly in other probabilistic setups (Sudderth et
al. 2005). This allows for computing the likelihood of the
observed evidence. For tractability, features are often as-
sumed to be independent which leads to the factorisation
p(λ)

∏

i p(fi |λ), i.e., a multiplicative combination instead
of the additive one in ISM. The summation is however cru-
cial for the voting concept. Moreover, as pointed out by Kit-
tler et al. (1998), additive combination of evidence is more
robust than a multiplicative one, which is in line with the
empirically observed robust detection performance of ISM.
Thus, the question is how to still justify the summation.

A second problem is the normalisation constraint of the
density p(λ|I). This (global) normalisation implies that
every feature affects the score of every hypothesis. Un-
less contextual information is explicitly modelled (which
is not the case), such long-range interactions are not justi-
fied. Furthermore, the ISM formulation involves only scene-
dependent variables (c.f. Fig. 1) which causes another prob-
lem. Namely, the occurrence distribution p(λ|f) is a func-
tion (defined on the scene-dependent search space �) which
makes statements about the absolute position of objects in
an image. Thus, this function is not defined if the image of
interest is not yet observed, which is the case during train-
ing. Hence, strictly speaking, the function p(λ|f) cannot be
learned off-line during training. In other words, the ISM for-
malism implicitly assume the use of invariants which encode
the relative offset of feature and object locations. ISM’s for-
mulation thus leaves open some ambiguity as there is not
only one single possible invariant (c.f. (3)). Moreover, we
will show later (Sect. 3.2 and Fig. 5) that the choice of the
invariant can have significant implications on the final algo-
rithm.

PRISM (Lehmann et al. 2009b) overcomes these is-
sues by a sliding-window based reasoning. The scene-
independent invariant space adds an intermediate repre-
sentation which makes clean learning possible. Moreover,
each hypothesis is scored independently, i.e., there is no
global normalisation, and the compact support of W en-
sures that the features have only local influence. The sum-
mation of feature contributions results from the definition of
the footprint and the linear model. Both are valid modelling
choices and are compulsory to obtain a Hough transform al-
gorithm. PRISM imposes minimal constraints as there are
no further restrictions on the function W . Therefore, we are

3Feature matching may be formulated probabilistically. Then, each
feature’s visual word id fc is a random variable which expresses the
probabilistic matching (to the vocabulary). Marginalising over these
random variables is perfectly valid as visual words are mutually exclu-
sive and only one visual word should be activated. This marginalisation
would lead to an additional summation in (6).

Int J Comput Vis (2011) 94:175–197 181

free to choose any suitable representation and learning al-
gorithm. In particular, discriminative voting weights (i.e.,
giving positive and/or negative contributions to the score)
can be learned which was not possible in ISM. We demon-
strate this potential in Sect. 4.5 by means of SVM learning
(Shawe-Taylor and Cristianini 2004).

2.4 Related Work

To the best of our knowledge, there has not been previous
work which addressed the problem of giving a sound jus-
tification to ISM’s voting procedure. Yet, there are exten-
sions to ISM which aim at discriminative learning. They
are however less general than PRISM and in fact only re-
inforce the need for such a justification. Fritz et al. (2005)
present a discriminative validation procedure which reuses
information from the voting stage. However, it is only a
post-processing and is not integrated into the voting pro-
cedure itself. Such validation can be applied to any detec-
tion system. More recently, a maximum-margin framework
(Maji and Malik 2009) was introduced which learns a per-
visual-word re-weighting. This is less general than PRISM
as each spatial position encounters the same re-weighting
and the final weights are all still restricted to positive val-
ues. Moreover, they also adopt the questionable marginali-
sation argument. Gall and Lempitsky (2009) present a prob-
abilistic model based on randomised forests. They introduce
the “event” of an object being at a certain position. This
actually implements the sliding-window paradigm. Unfor-
tunately, their probabilistic formulation restricts the voting
weights to be positive and they admit the lack of a sound
probabilistic interpretation of the summation over features.
However, a very interesting contribution of their work is to
learn spatial position and visual appearance jointly. In other
words, they avoid the common two-step procedure where
one first clusters a visual vocabulary, followed by estimat-
ing the voting weights. PRISM does not prevent such joint-
learning. This would be achieved by learning a weight func-
tion W : f × λ �→ W(f, I(λ,f)) which directly takes the
continuous feature descriptor (or the observed image patch)
as first argument instead of a discrete visual word identifier.
Nonetheless, we stick to the classical two-step learning pro-
cedure here.

In summary, PRISM imposes minimal restrictions on the
model. This offers great flexibility. The only restriction is
that the features contribute linearly and independently of
each other. Both are necessary for the Hough transform.
However, this is not a huge burden since most (fast) de-
tectors rely on such linear models (Lampert et al. 2009;
Felzenszwalb et al. 2008; Dalal and Triggs 2005; Leibe et
al. 2008).

2.5 Multiple Objects

Detection of multiple objects is another point where, in our
opinion, the sliding-window reasoning (of our framework)
offers a cleaner solution. ISM’s probabilistic model (without
MDL, i.e. (6)) answers the question “Where is the object?”
and completely ignores the important questions “Is there
an object?”4 or “How many objects are there?”. Sliding-
window reasoning, on the other hand, answers for each po-
sition independently if it contains an object or not. It post-
pones model selection (i.e. “How many objects are there?”)
to later components in the object detection pipeline. Such
model selection may be implemented via e.g. the Minimum
Description Length (MDL) principle as nicely demonstrated
in ISM (Leibe et al. 2008).

Although sliding-window allows for multiple detections,
it does not account for already explained evidence. Hence, it
tends to re-detect the same object. A possible way to resolve
this problem is to limit each feature to support only one
single object. In this work, we consider a greedy strategy:
once the best hypothesis is found, we eliminate all features
which explain this object and restart the search for more ob-
jects. This procedure automatically suppresses the score of
nearby hypotheses and relates to the usual non-maximum
suppression post-processing. Clearly, the MDL based opti-
misation strategy implemented in ISM (Leibe et al. 2008)
is more powerful as all hypotheses compete for evidence
(in a pair-wise fashion). This is an advantage in situations
with strongly overlapping objects. However, MDL is applied
as post-processing and only considers hypotheses found by
greedy detection.

At first sight, our alternation of greedy search and lo-
cal suppression seems to be a heuristic. However, it is
actually closely related to the well-established and thor-
oughly analysed matching pursuit (MP) algorithm (Mal-
lat and Zhang 1993), which gives a sound justification for
our multi-object detection approach. MP decomposes a sig-
nal into a linear expansion of functions which are selected
from a redundant, over-complete dictionary. The signal is
assumed to be sparse (w.r.t. this dictionary) and MP aims
at recovering the non-zero elements. Unfortunately, find-
ing an optimal decomposition is NP-complete which makes
approximate algorithms like MP inevitable. In our context,
each hypothesis yields one dictionary item which is a trans-
lated and scaled version of the model. The signal corre-
sponds to the extracted low-level features and the hypothesis
score measures the match of each dictionary item. Sparsity
follows from the semantic nature of the dictionary, i.e., each
real object causes one non-zero dictionary item. The main
difference to a proper MP algorithm is that our dictionary is

4Assuming that an object is present may be reasonable in a tracking
context, but not for object detection.

182 Int J Comput Vis (2011) 94:175–197

not complete. This is because we only model objects, i.e.,
things and not stuff (Heitz and Koller 2008) and we are not
interested in reconstructing the image.

3 Gaussian Mixture Model & Gradient Search

So far, we have presented an abstract framework. To ob-
tain a concrete object detection system, we need to spec-
ify the geometric invariant, the representation of the weight
function W , and the search algorithm. In this section, we
closely follow the ideas of ISM (Leibe et al. 2008) in order
to show how pure ISM can be modelled within our frame-
work. Moreover, this makes a direct comparison possible.
As model representation, we use Gaussian Mixture Models
(GMMs) which are presented in Sect. 3.1. The choice of the
geometric invariant and proper scale-adaptation is discussed
in Sect. 3.2, followed by algorithmic details in Sect. 3.3. The
system is evaluated in Sect. 3.4 and is shown to compare
well with the state-of-the-art. We further demonstrate that
the GMM makes it possible to speed up the search with no,
or only little loss of accuracy.

3.1 Gaussian Mixture Model

The Implicit Shape Model follows a generative object mod-
elling approach, where the weight function is given by a den-
sity estimator

W(c, I(λ,f)) = pc(I(λ,f)) ∀c (7)

for each visual word c, i.e., the occurrence distributions in
ISM terminology. We do likewise in this section, but con-
sider Gaussian Mixture Models (GMMs) instead of non-
parametric kernel density estimators as used in ISM. The
disadvantage of kernel density estimators is their strong
dependence on the training data (in terms of storage and
computation time) which is unfavourable for large training
sets. Our GMM approach avoids this downside. Modelling
the ratio of scales in a logarithmic space, i.e., logλs/fs ,
is important in such a GMM setup. Otherwise, the posi-
tivity constraint λs/fs > 0 could not be satisfied with infi-
nitely supported Gaussians. Learning is performed by map-
ping all features of all training objects into the invariant
space, where the distributions are estimated. We use an
Expectation-Maximisation (EM) implementation which au-
tomatically adapts the number of mixture components us-
ing a split/merge criterion (Baggenstoos 2002). The analytic
structure of GMMs allows for computing the derivatives of
the score function, i.e., ∂S(λ)

∂λ
. Thus object localisation can be

done by means of efficient gradient-based search (Carreira
Perpiñán 2000), which relates to the mean shift algorithm
in ISM. Such a local refinement strategy may be of particu-
lar interest if one already has prior knowledge about objects
(e.g. from object tracking). The initialisation of the search
(i.e. finding starting points) will be discussed in Sect. 3.3.

Modified GMM. Contrary to the ISM (Leibe et al. 2008),
we are not forced to use densities pc(I). We exploit this free-
dom and consider a simple re-scaling of the weight function,
i.e. W(c, I) = ηcpc(I) with ηc = 1/(maxI pc(I))), which
shows significant performance improvements. The goal of
this step is that the maximal weight (of every visual word)
is one.5 An intuitive explanation is as follows. The maxi-
mal weight of multi-modal occurrence distributions tends
to be smaller than the one of rather peaked distributions.
Thus, depending on which visual words are activated, the
object score may be lower, which is undesirable. A more
sophisticated re-scaling strategy is explored by Maji and
Malik (2009). They present a maximum margin framework
which allows for learning good re-weighting factors ηc in a
discriminative fashion. The fact that both their and our re-
weighting yields performance improvements suggests that
pure density estimation is not an optimal choice.

3.2 Invariants and Voting

We introduced two possible invariants for translation- and
scale-invariant object recognition, i.e., Iλ and If (3). Al-
though they achieve invariance under the same transforma-
tion group, there are differences which impact on the algo-
rithm and thus require some analysis. The two invariants are
related by the difference of object and feature location, i.e.,

(

fsIf,x

If,s

)

︸ ︷︷ ︸

=
(

λx − fx

logλs − logfs

)

︸ ︷︷ ︸

= −
(

λsIλ,x

Iλ,s

)

,

︸ ︷︷ ︸

def= If (f) λ − f
def= Iλ(λ)

(8)

where the subscripts x and s refer to the first and second
coordinate of the invariants, respectively. Despite the close
relation, there is a subtle difference due to the dependency
on fs or λs , which suggests the preferable usage: predicting
objects λ ∼ If (f) + f given a feature f or sampling fea-
tures f ∼ Iλ(λ) + λ to verify an object hypothesis λ.6 The
former approach is taken by the Generalised Hough Trans-
form (e.g. Ballard 1981; Leibe et al. 2008), while the lat-
ter corresponds to a sliding window classifier scenario (e.g.,
Dalal and Triggs 2005; Lampert et al. 2009). In both cases,
it is a simple scaling and translation of the model. The con-
verse use, on the other hand, is unfavourable, due to com-
plicated couplings (e.g., λx = fx − fs exp(−Iλ,s)Iλ,x), but
not impossible. The feature-centric invariant If has clear
advantages for voting, as illustrated in Fig. 5. On the one

5We actually approximate the rescaling factor by the mixing factor of
the dominant mixture component. Thus, the maximal weight will only
be approximately one.
6Informally, we interpret I as a random variable where the probabil-
ity of a particular value is proportional to the corresponding weight
W(fc, I) = pc(I(λ,f)).

Int J Comput Vis (2011) 94:175–197 183

Fig. 5 (Color online) Illustration of the two invariants (3). (Left): Visu-
alisation of the established coordinate frame(s). Features are shown in
yellow, while object-related elements are in green. The object-centric
invariant Iλ (top) attaches a single coordinate frame (arrows) to the
object and registers the relative position of every feature. The feature-
centric invariant If (bottom) attaches a coordinate system to every fea-
ture, each of which records the objects reference point (green dot). (The
arrow length accounts for the feature/object scale.) (Middle): Contour
lines of a single Gaussian (of a learned mixture model) in the induced

invariant space. Due to the non-linear relation of the two spaces, it is
not possible to define Gaussians which represent the same informa-
tion. (Right): Result of the voting process given two features f 1 and
f 2 (black dots). The mapping into the hypothesis space strongly de-
pends on the chosen invariant. In case of If (bottom), the resulting
contours are still elliptic (i.e., again a Gaussian), while Iλ (top) leads
to complicated, non-linear distortions which make explcit parametric
voting impossible

hand, each mixture component in the invariant space can
be mapped into the hypothesis space by simply adapting
mean and covariance of each Gaussian. This is the actual
voting. Such (explicit) voting is not possible with Iλ, be-
cause its non-linear distortion breaks the algebraic structure
of a Gaussian (i.e., the contour lines are no longer elliptic,
see Fig. 5). On the other hand, also the computation of the
(score-)gradient (with respect to λ) is simpler than with Iλ.

The above analysis actually nicely connects to the early
development of ISM (Leibe and Schiele 2004). In order to
cope with scale-invariant object detection, a modified, scale-
adaptive version (Comaniciu et al. 2001) of mean-shift had
to be used. This scale-adaptation implements the above-
mentioned scaling, which results naturally in our frame-
work. In other words, ISM implicitly operates in the invari-
ant space (which is not defined in ISM (Leibe and Schiele
2004)) instead of the hypothesis space. Further note that the
scaling only affects the covariance matrix of a Gaussian, not
its mixture weight. Thus, while the per-feature GMM is a
density in the invariant space, it no longer is one in the hy-
pothesis space, i.e., it does not integrate to one.

3.3 Implementation

In essence, this object detector works by performing gradi-
ent ascent on a sum of weighted Gaussians. This has been
well studied by Carreira Perpiñán (2000), but certain algo-
rithmic details should be considered in practice. On the one
hand, we exploit the spatial locality of features by lists of
contributing features. On the other hand, we have to start
the search from multiple starting points in order to escape
local maxima and to find multiple objects. These points are

managed by a list of candidates which leads to some kind of
pseudo-parallel version of multiple starts.

Contributing Features. As discussed earlier, not every fea-
ture contributes to every hypothesis. Identifying such con-
tributing features (and ignoring others) positively affects the
algorithm’s runtime. In this GMM setup, the voting pattern
of each feature is a linear combination of Gaussians. Thus,
the idea of contributing features can be refined to contribut-
ing Gaussians.7 To accelerate evaluation, we keep a coarse
3D-(location, scale) grid over the hypothesis space. Each
grid cell keeps a list of contributing mixture components.
Thus, to compute the hypothesis score we only have to con-
sider the Gaussians which are listed in the same grid bin the
hypothesis falls into.

Candidate Generation. The grid structure from the last
paragraph can also be used to initialise the local gradient
based search. Note that each cell of this grid corresponds
to a set of object hypotheses. We adopt the idea of com-
puting score bounds on such sets (Lampert et al. 2009) to
initialise the local search. We consider a crude estimate by
summing the peak contribution (i.e., the value at the mean)
of each Gaussian in a given bin. Local maxima of this bound
serve as starting points for the gradient-based, local refine-
ment (Carreira Perpiñán 2000).

Algorithm. Our algorithm keeps a list of candidates that is
populated as described above. After gradient-based refine-

7We assume that a Gaussian contributes significantly within two times
the standard deviation.

184 Int J Comput Vis (2011) 94:175–197

ment, the best candidate is reported as detection, and can-
didates with a score below a threshold are removed from
the list. As detailed in Sect. 2.5, features with a significant
contribution to the detected object are eliminated from the
system (i.e., the corresponding Gaussians are removed from
the cells and the bound is updated). Then, the algorithm
restarts to find more objects. Keeping a list of candidates
helps saving computation in subsequent iterations. The rea-
son is that feature removal only changes the score function
locally. Hence, the refinement of most candidates is likely
to converge quickly.

3.4 Experiments

Datasets. We evaluate our system on two benchmark
datasets consisting of motorbikes (Fritz et al. 2005) and side
views of pedestrians (Leibe et al. 2008). The former includes
153 training and 115 test images, whereas the latter consists
of 426 training and 205 test images (Fig. 6 (top)). In order
to compare our results to the published baseline, we use the
same evaluation criterion as in Fritz et al. (2005), Leibe et al.
(2008). A detection is accepted as correct if its bounding box
overlap with the ground-truth annotation is above 50%; mul-
tiple detections on the same object are counted as false posi-
tives. Performance is measured using precision-recall curves
which is the common measure for these datasets. As im-
age representation, we consider Hessian-Laplace (Mikola-
jczyk and Schmid 2004) interest points and compute Shape-
Context descriptors (Mikolajczyk and Schmid 2005) for
each of these. We choose fm inversely proportional to the
distance of the descriptor to the best-matching visual word.

GMM vs. modified GMM. The probabilistic argument
given in Leibe et al. (2005) defines the sum of densities
as the objective function to hypothesise object positions.
This roughly corresponds to the GMM without modifica-
tion. Figure 6 (center) evaluates the effect of using the mod-
ified GMM. The results are reported along with the base-
line performance from (Fritz et al. 2005; Leibe et al. 2005,
2008). The difference between the two objective functions
is actually fairly small, i.e. only a rescaling of each den-
sity function by a factor. Looking at the effect of this little
change on the performance, an astonishing impact can be
observed. Namely, the modified GMM based objective func-
tion clearly outperforms the density based one and yields
comparable performance to (motorbikes) or even improves
(pedestrians) on the baseline. It has to be stressed at this
point that, compared to the baseline systems, our approach
does not perform a final MDL or SVM verification of the
hypotheses.

Runtime. The last experiment measures the runtime of our
system (measured on a 3 GHz Intel Core 2). For this exper-
iment we use an external Hessian-Laplace feature extractor

from (Mikolajczyk and Schmid 2004), which takes about
0.6 s on a typical motorbike image (340×255) and 1.2 s on a
pedestrian image (480 × 360). This can be reduced dramati-
cally by changing to similar SURF features (Bay et al. 2008)
which allows GPU-implementations (Cornelis and Van Gool
2008) which run at about 100 Hz. Thus, feature extraction is
negligible compared to the rest of our algorithm. Moreover,
the structure of our parametric model allows for a simple
heuristic to improve detection time. Let us denote the peak
contribution of mixture component i by γi . Then, we drop
all mixture components whose peaks are smaller than β per-
cent of the maximal peak, i.e., γi < β maxk γk . The average
detection time, as well as the achieved performance at equal
error rate are reported in Fig. 6 (bottom) for both datasets.
We see that for values up to β = 0.1 and 0.15, respectively,
the computation time (ignoring feature extraction) can be
reduced by about a third without decrease in accuracy. This
yields a detection time of about 0.35 s for a motorbike image
and 0.75 s for pedestrians. If runtime is of prime importance,
we can also sacrifice some accuracy in favour of speed. On
the pedestrians, for example, we can increase the threshold
to β = 0.35, which yields the same equal error rate as the
baseline. Doing so, the detection time decreases from ini-
tially 1.25 s to only 0.25 s. This simple, but very effective
heuristic exploits the structure of our parametric model and
would not be easily realisable in a non-parametric frame-
work (Leibe et al. 2008).

4 Feature-Centric Efficient Subwindow Search

In this section, we develop an alternative detection system
(Lehmann et al. 2009a) which is complementary to the pre-
vious GMM approach. The focus is on advanced search
strategies that have been developed to speedup sliding-
window detectors. The duality elaborated in Sect. 2 allows
us to transfuse such techniques to our Hough-based PRISM
framework. The feature-centric view of the latter is shown to
yield improved runtime properties. Moreover, we switch to
an SVM-based training procedure to show that discrimina-
tive voting weights are possible. We thus change model rep-
resentation, search strategy, and learning procedure, thereby
emphasising the versatility of the PRISM framework.

4.1 Related Work

Ignoring large parts of the search space with only little effort
is a crucial factor for efficient search strategies. Cascades
of (increasingly complex) classifiers (Viola and Jones 2004)
have proven their effectiveness. The idea is to reject most hy-
potheses with a cheap criterion. Subsequently, more costly
but also more accurate classifiers are evaluated on hypothe-
ses which have not yet been rejected. Hypotheses that pass

Int J Comput Vis (2011) 94:175–197 185

Fig. 6 (Color online) Quantitative evaluation on two benchmark
datasets of motorbikes (left) and pedestrians (right). (Top): Sample im-
ages of the datasets along with detections. (Middle): Performance com-

pared to published baseline; (bottom): Detection time and recognition
performance with our reduced model. The detection time can be re-
duced significantly at the cost of only a small decrease in accuracy

all cascade levels are reported as detections. Such cascades
drastically reduce computation, but still process the search
space exhaustively (at least with the first cascade level).

Branch and bound provides a nice alternative. It avoids
processing every hypothesis individually, and thus skirts ex-
haustive search without missing the global optimum. The

key idea is to examine entire sets of hypotheses by means
of an upper bound on their score. This allows the algorithm
to focus on promising sets and to ignore low-scoring hy-
potheses early on (without touching each of them individu-
ally). Breuel (1992) demonstrated the potential of this tech-
nique in the context of geometric matching of point sets.

186 Int J Comput Vis (2011) 94:175–197

Keysers et al. (2007) apply that scheme to image match-
ing using patch-based image representations. Only recently,
Lampert et al. (2008) extended this scheme from image-to-
image to image-to-class matching using a learned object-
class model. However, as outlined in the introduction, ESS
makes an unfavourable memory trade-off and needs an on-
line pre-processing step. Furthermore, ESS ignores the fea-
tures’ scale value which may cause problems as we will
discuss later. These issues can be avoided when applying
branch and bound for image-to-class matching in a feature-
centric context, which is a key contribution of this work.

Breuel (2002) distinguished two different branch and
bound strategies in his comparison paper. One is based on
matchlists while the other makes use of point location data
structures to efficiently compute bounds. Our approach im-
plements the matchlist strategy whereas ESS is closer re-
lated to the point location data structure variant. In that
sense, our approach completes the picture of branch and
bound for image-to-class matching by the matchlist strategy.
Clearly, we are not the first who adopt the ESS principle and
other extensions have already been published in the litera-
ture.

ESS with a bag-of-words model actually tackles the max-
imum sub-matrix problem, i.e., finding the sub-matrix whose
sum of elements is maximal. It’s 1D counterpart, the max-
imum sub-array problem, can be solved in linear time us-
ing Kadane’s algorithm (Bentley 1984). An et al. (2009)
combine this dynamic programming technique with ESS’s
branch and bound. They present two algorithms which have
better worst-case guarantees and empirically converge much
faster than ESS. However, their bag-of-words model is re-
strictive and an extension to spatial histograms seems not
straightforward. Moreover, some downsides of the origi-
nal ESS are inherited. Firstly, the sub-matrix formulation
ignores the feature scale. Secondly, their algorithms strongly
relies on prefix-sums which (similar to integral images) need
to be computed at detection time and are expensive in terms
of memory.

Yeh et al. (2009) focus on multi-class (specific instance)
detection and more general bounding regions, i.e., compos-
ite bounding boxes and bounding polygons. The aim of the
latter is to have better bounding regions (than just rectan-
gles). Thus, non-object regions are ignored and do not im-
pair the object score. Unfortunately, their flexible bound-
ing regions are restricted to the bag-of-words model. Again,
generalisations to account for spatial information (within
these flexible bounding regions) seem difficult. Conversely,
a spatial histogram model easily allows one to ignore fea-
tures which do not lie on the object (by setting bin weights
to zero), but those clutter regions must be known in ad-
vance. Hence, such flexible bounding regions are of partic-
ular interest for structureless, texture-defined objects. Yeh
et al. (2009) also take a feature-centric view like we do in

this work. However, their bound construction is closer re-
lated to ESS than ours. Moreover, they do not account for
the feature scale. Although possible, the overhead in such
a flexible bounding region setup seems to be high. They
further present a technique called data dependent sampling
which yields a significant speedup in their system. It exploits
the fact that in a bag-of-words model the optimal bounding
box corners coincides with feature point locations. This no
longer holds in a spatial histogram model, however. Further-
more, the positive effect gets smaller when increasing the
sampling density, which is a common tendency for robust
object detection.

We now show how to fuse the ESS principle and our
PRISM framework originally presented in Lehmann et al.
(2009a). This allows for spatial histogram models which
properly account for the features’ scale value. Furthermore,
it avoids any pre-computation at detection time. Section 4.2
presents a rather generic class of bounds which makes no
assumption about the weight function and encompasses the
traditional ESS bound (Lampert et al. 2009). From that, we
derive a concrete bound in Sect. 4.3 which exploits the his-
togram structure. This feature-centric bound is complemen-
tary to ESS’s bound as it makes different trade-offs. A de-
tailed comparison of the two bounds is given in Sect. 4.4.
The branch and bound algorithm is revisited in Sect. 4.5,
while experiments are shown in Sect. 4.6.

4.2 Score Function on Hypothesis Sets

We start by extending the definition of the score (5) to en-
tire sets of hypotheses
 ⊂ �. Jensen’s inequality yields the
generic upper bound

S(
)
def:= max

λ∈

S(λ) ≤

∑

f ∈F
fm max

λ∈

W(fc, I(λ,f)), (9)

where equality holds if all features attain the maximum for
the same hypothesis. This is possible, although unlikely. The
max term has the following geometric interpretation (c.f.
Fig. 7). Given a feature f , a hypothesis set
 (in the hy-
pothesis space) maps to a region
̄f = {I(λ,f)|λ ∈
} (in
the invariant space). For brevity’s sake, we drop the feature
index, i.e.
̄. Then, we are interested in the maximum of
the function W |
̄, i.e., W restricted to the domain
̄. This
can be interpreted as a maximum query: in such a context
the weight function W can be considered to play the role
of a “database” and
̄ that of a query. The goal is to de-
sign a method which answers such queries efficiently. It is
worth noting that there is no restriction on the representation
of W . Moreover, facilitating helper structures (e.g. integral
images) to answer such queries efficiently can be computed
off-line during learning because the weight function W does
not dependent on the test data. The next subsection shows a
concrete implementation of such maximum queries.

Int J Comput Vis (2011) 94:175–197 187

Fig. 7 (Color online) Given (two example) features f i , a hypothesis
set
 is mapped to the invariant space by means of the invariant I.
Both the original set
 and the mapped one
̄ are coloured in green.
The weight histogram W (only one slice corresponding to the matching
visual word) is shown in red. Feature f 1 is contributing, as the mapped
region overlaps with W , while f 2 is not. The actual contribution of f 1

is the maximal value within W ’s bins falling into the green region. The
axis-aligned extension (blue rectangle) allows for fast evaluation of a
bound on this maximum using integral images

4.3 Maximum Query Using Integral Images

A possible method to efficiently process the maximum
queries of (9) is by means of integral images. We discre-
tise the weight function W and represent it by a spatial his-
togram. This is a common setup (Dalal and Triggs 2005;
Felzenszwalb et al. 2008; Lampert et al. 2009) where learn-
ing can be accomplished using discriminative methods (e.g.
linear SVMs). The histogram assumption lets us rephrase
the geometric interpretation: The hypothesis set
 maps to
a region
̄ which intersects with some bins of the histogram
(c.f. Fig. 7). Thus, we can think of W |
̄ as a set of values,
i.e., the weights of the intersecting bins. The task is then
to efficiently find the maximum of these values or an up-
per bound, respectively. In this work, we construct an upper
bound for the maximum using mean μ and variance σ 2, i.e.,

maxW |
̄ = μ(W |
̄) + (

max(W |
̄) − μ(W |
̄)
)

≤ μ(W |
̄) + g(|
̄|)σ (W |
̄) (10)

with a fixed correction factor g(n) and n = |
̄| the num-
ber of intersecting bins. The worst-case is that all values but
the maximal one are equal which gives rise to the correc-
tion g(n) = √

n − 1.8 In general, this is overly pessimistic
and leads to slow convergence. Due to smoothness in W ,
this worst-case is very unlikely and approximations are dis-
cussed in the experiments (Sect. 4.6). As the region
̄ has a
complicated boundary (green polygon in Fig. 7), we slightly
loosen the bound by expanding the region to the smallest en-
closing rectangle. Hence, keeping integral images for F =
∫

W and F2 = ∫

W 2 allows for computing μ = F(
̄)/|
̄|
and σ 2 = F2(
̄)/|
̄| − μ2 efficiently. These integral im-
ages are defined on the scene-independent invariant space

8Without loss of generality, assume the maximum is M and all other
values are −M/(n − 1) which yields μ=0 and σ 2=(1 · M2 + (n − 1)

· M2/(n − 1)2)/n = M2/(n − 1). Thus, g = (max−μ)/σ = √
n − 1.

(c.f. Fig. 1) and depend only on the weight function (and not
on the observed image). Thus, they can be pre-computed
during learning (c.f. Fig. 2) and are only as large as the
weight function itself. This is an important difference to the
original ESS approach and is a consequence of the feature-
centric view. Hence, although we also rely on integral im-
ages, our approach differs from ESS in various ways. We
will briefly revisit ESS’s bound in order to discuss these dif-
ferences thereafter. For a detailed description of ESS, we
refer to the original authors’ papers (Lampert et al. 2008,
2009).

4.4 Efficient Subwindow Search (ESS)

A central aspect of ESS’s bound is to split the weights
into positive and negative ones, i.e., W = W+ − W− with
W± > 0. Moreover, the weights are represented by his-
tograms. The following description is accompanied by the
visualisation in Fig. 8. Let us denote a (spatial) bin of a his-
togram by b and, its back-projection onto the image grid
(given a hypothesis λ) by b(λ) = {f | I(λ,f) ∈ b}, i.e., all
features that fall into bin b. ESS rewrites the score (5) as

S(λ) =
∑

f ∈F
fmW(fc, I(λ,f))

=
∑

b

∑

f ∈F
fm[W+(fc, b) − W−(fc, b)]1I(λ,f)∈b

=
∑

b

Q+
b (b(λ)) −

∑

b

Q−
b (b(λ)), (11)

where Q±
b (q) = ∑

f [fmW±(fc, b)]1f ∈q and 1 is an indi-
cator which is 1 if f ∈ q and 0 otherwise. The change of the
indicator’s index follows from the equivalence f ∈ b(λ) ⇔
I(λ,f) ∈ b. The expressions Q±

b are (weighted) range sum
queries. They can be evaluated in constant time using in-
tegral images if the query region q := b(λ) is rectangular.
However, this efficient evaluation procedure makes an un-
favourable trade-off, since the integral images are defined
on the scene-dependent feature space (i.e. the image plane,
c.f. Fig. 1). Firstly, they are as large as the input image. Sec-
ondly, there are two of them per spatial histogram bin, i.e.,
one for each Q±

b . Thus, memory requirements scale with the
product of image size and spatial histogram resolution. Last
but not least, the integral images must be computed during
detection (c.f. Fig. 2) as they depend on the observed image.

ESS’s Upper Bound. The upper bound of ESS is obtained
by considering upper bounds on Q+

b and lower bounds on
Q−

b . The upper bound on Q+
b is achieved by counting all

features that fall into bin b(λ) for at least one hypothe-
sis λ ∈
. Hence, Q+

b is queried with the union q+
b :=

188 Int J Comput Vis (2011) 94:175–197

Fig. 8 (Color online) 1D illustration of ESS’s bound computation. The
setup shows a shift-invariant detector with a fine (dark blue) and a
coarse histogram (light blue). For visibility, we show just one single
feature f (green) and consider the set of hypotheses
 = [λ1 . . . λ2]
(red). (a): Alignment of the spatial histogram with the image plane (i.e.,
classical sliding window thinking). (b, c): Projection of the bins b onto
the image plane for hypothesis λ1 and λ2, resp. (d, e): Bin union q+

b

and intersection q−
b of all tested hypotheses, i.e. the query regions for

the positive (negative) weights. Note that the intersections are empty
for the fine histogram. (f): The invariant space along with the mapped
hypothesis set
̄ (red). As
̄ is entirely within bin one of the coarse
histogram, the feature falls into the corresponding intersection query
region (i.e., q−

1)

⋃

λ∈
 b(λ).9 In the case of Q−
b , the feature has to fall into

b(λ) for all λ ∈
. Thus, the query for Q−
b is just the inter-

section q−
b := ⋂

λ∈
 b(λ), which may be empty. Therefore,
the bound computed by ESS is

SESS(
) =
∑

b

Q+
b

(

⋃

λ∈

b(λ)

)

−
∑

b

Q−
b

(

⋂

λ∈

b(λ)

)

.

(12)

Comparison. We now compare our bound (i.e., (9, 10)) to
the one of ESS (12). Contrary to ESS, our integral images
do not depend on the size of the test image, but only on
the discretisation of the weight function W . Thus, they use
less memory and can be pre-computed offline, while ESS
has to compute them on-line prior to the actual search (c.f.
Fig. 2). A second difference concerns the evaluation cost
of the bounds: while ESS needs two integral image evalu-
ations per (spatial) bin, our bound requires two evaluations
per (contributing) feature. As a consequence, we refer to
ESS as the bin-centric bound, and to ours as the feature-
centric one. Depending on the choice of features and the
resolution of the spatial histogram, one or the other may
be advantageous. We want to emphasise however that one
should not neglect the cost for computing the integral im-
ages in the case of ESS. Comparison of memory usage is
postponed to Sect. 4.6, where we show our feature-centric

9Actually, the smallest enclosing rectangle is used to make fast integral
image evaluation possible.

system can get along with 25× less memory than traditional
ESS. Last but not least, there is the question about the qual-
ity of these bounds. This is a crucial aspect as it strongly af-
fects the convergence speed of branch and bound. Hence, its
analysis is important. A theoretical comparison is given in
the next paragraph, while a quantitative evaluation is shown
in the experiments.

Feature-Centric View of ESS. Interestingly, ESS’s bound
can be expressed within our feature-centric framework. This
makes a direct comparison possible. Recall the geometric
interpretation:
̄ denotes the mapping of a hypothesis set

 into the invariant space given a feature f . Then, this
feature falls into the following query regions (c.f. Fig. 8):
f ∈ q+

b if b ∩
̄ �= ∅ and f ∈ q−
b if
̄ ⊂ b. The latter im-

plies that
̄ does not intersect with any other bins, as all
bins are non-overlapping. Hence, the contribution of such
a feature is simply the weight of that single bin, no mat-
ter if it is positive or negative. If
̄ covers n > 1 bins, the
contribution to the bound is the sum of all positive weights,
i.e.,

∑

b∩
̄ �=∅ W+(fc, b) = nμ(W+|
̄). Thus, ESS’s bound
is equivalent to using

max
λ∈

W =
{

n · μ(max(W |
̄,0)), n > 1,

W(fc,B), n = 1
(13)

(instead of (10)), where B denotes the single bin if n = 1.
There are various points worth noting. First of all, if n > 1,
the negative weights (i.e., penalties) are completely ignored.
They affect the bound only close to convergence. Thus, too
fine a discretisation of the histogram has negative effects
in ESS: it makes the evaluation more expensive and nega-
tive contributions set in later. Note that the discretisation has
no effect on our bound. Moreover, ESS only uses the mean
(plus point evaluations if n = 1), while our bound incorpo-
rates mean and variance. Thus, we expect our bound to be
more powerful. A quantitative comparison will be given in
Sect. 4.6.

4.5 Implementation

We now give implementation details of our algorithm, which
is to be seen mainly as an illustration of the feature-centric
ESS idea, a key contribution of this work. As mentioned ear-
lier, our system is similar to ESS, as we use a histogram
representation as well as the object-centric invariant Iλ.10

Furthermore, we also employ branch and bound to search
for objects, but use the feature-centric bound (9, 10) instead
of ESS’s bin-centric one (12). Consequently, our approach
avoids any online pre-processing, which is a clear advan-
tage. In the sequel, we discuss the following three aspects.

10The drawbacks of Iλ indicated in Sect. 3.2 do not apply here as we
neither perform explicit voting nor do we compute score-gradients.

Int J Comput Vis (2011) 94:175–197 189

Fig. 9 (Color online) Adaptive subdivision of the search space. The
object center serves as hypothesis parametrisation. Each yellow box
corresponds to a set of hypotheses (which comprises objects whose
center is within the box). The discretisation around object centers is
much finer than on background regions

Firstly, we briefly revisit the branch and bound algorithm
and explain the subdivision strategy. Secondly, the handling
of contributing features is explained, which is an important
step to avoid unnecessary computations. Finally, we discuss
how our system is extended to properly detect multiple ob-
jects in an image.

Branch and Bound. Branch and bound adaptively subdi-
vides the search space. It keeps a priority queue, each ele-
ment of which represents a set of hypotheses. Initially, the
whole search space is entered into the queue as a single el-
ement. A bound is used as ordering criterion to gradually
split the most promising hypothesis set into two halves. We
split along the dimension with the largest extent. This leads
to a kD-tree like partitioning of the search space which en-
ables sub-linear search time. Each node in the queue corre-
sponds to a leaf node of the kD-tree (yellow boxes in Fig. 9).
Eventually, the size of a hypothesis set becomes very small,
i.e., we converge to a single object which is reported as de-
tection. Note that the dimensions of the mapped hypothesis
set
̄ (using Iλ) can be interpreted as a measure of locali-
sation precision (relative to the object size). Thus, a natural
scale-invariant convergence criterion is to stop whenever the
extent of
̄ in each dimension is less then a threshold (e.g.
0.01).

Contributing Features. An important aspect for efficiency
is to ignore non-contributing features, i.e., those where
̄

falls completely outside the discretisation range of W (see
Fig. 7). The sub-divisive nature of the algorithm enables
us to efficiently determine such features: if a feature is not
contributing to a set
, it will not contribute to any subset

′ ⊂
. Thus, we keep a list of active features for every leaf
node in the kD-tree. On each split, we have to determine the
features which no longer contribute and remove them from
the list (of the new leaves). Such lists were called match-

lists in previous work on geometric matching (Breuel 1992,
2002; Keysers et al. 2007).

Multiple Objects. As detailed in Sect. 2.5, we stick to a
rather simple approach to detect multiple objects. We limit
each feature to explain only one single object. This leads to
a greedy matching pursuit like algorithm (Mallat and Zhang
1993): We seek for the best object hypothesis and elimi-
nate all features which contribute positively to it. Then, the
search for more object is restarted. Thus, upon each restart,
the list of active features and the bound of every node needs
to be updated. This can be done efficiently by recording not
only the active features, but also their actual contribution
(i.e., 1 int + 1 float = 8 Bytes per feature). Hence, updating
involves no new integral image computations. Such feature
removal is not easily possible in ESS (Lampert et al. 2009),
as all integral images would have to be recomputed from
scratch.

4.6 Experiments & Discussion

We evaluated our algorithm on two benchmark datasets. As
in Lampert et al. (2009), we use the UIUC cars database
(Agarwal et al. 2004) and focus on the multi-scale subset.
It consists of car side-views with 1050 training images and
107 test images (containing 139 cars). Moreover, we con-
sider the TUD motorbikes dataset (Fritz et al. 2005) which
includes 153 training images and 115 test images. In or-
der to compare our results to the published baseline perfor-
mance, we use the same evaluation criterion as in Agarwal et
al. (2004), Fritz et al. (2005). Both datasets provide ground
truth annotation and evaluation software. Detections are ac-
cepted as correct if the overlap of their bounding box and
the ground-truth annotation is above 50%; multiple detec-
tions on the same object are counted as false positives. Here,
we use SURF (Bay et al. 2008) features and set fm = 1.
The model weights W are learned using Support Vector Ma-
chines (SVMs), which we will discuss in more detail later in
Sect. 5.

Recognition Performance. For UIUC cars, the equal error
rate of our systems is 2.2%, which compares well with the
results in the literature (ESS 1.4% (Lampert et al. 2009)
and ISM 5% (Leibe et al. 2008)). On TUD motorbikes
we achieve an equal error rate of 19%, i.e. close to the
18% reported by the original authors (Fritz et al. 2005). Al-
though we demonstrate state-of-the-art performance on both
datasets, we would like to emphasise that the contribution of
this section is about efficient search, and not about learning
robust models, e.g. (Blaschko and Lampert 2008). In the se-
quel, we focus on the analysis of runtime properties and on
the comparison to ESS (Lampert et al. 2009).

190 Int J Comput Vis (2011) 94:175–197

Fig. 10 (Color online) Confidence P (
max−μ

σ
< g(n)|n) in the bound

(10) given g(n). For fixed n, we can estimate this cumulative density
by examining all possible rectangular sub-regions of W consisting of n

bins. The iso-probability lines (as function of n) are colour coded with
high (low) confidence in red (blue). (Black, solid): The rather loose
worst-case upper bound

√
n − 1. (Black, dotted): The correction term

α 3
√

n − 1 approximates the iso-probability lines rather well. Thus, its
likelihood is almost independent of n. Best viewed in colour

Approximate Correction Term. As mentioned in Sect. 4.3,
the worst-case correction term g(n) = √

n − 1 is very pes-
simistic. It completely ignores the dependency of spatially
adjacent histogram bins. We now seek a more optimistic
choice which accelerates convergence, but does not degrade
performance. Given a learned model, we can estimate the
probability that some g̃(n) < g(n) leads to a correct upper
bound. Figure 10 shows the estimation for our UIUC cars
model. Clearly visible, the guaranteed bound obtained with√

n − 1 is loose, especially for larger n. Interestingly, the
correction term g̃(n) := α

3
√

n − 1 seems to approximate the
iso-probability lines (of the UIUC cars model) rather well.
Thus, the confidence in such a “probabilistic bound” is (al-
most) independent of n, which is why we choose g̃(n) for
all following experiments. Choosing an appropriate α will
be discussed in the next paragraph. Plugging all elements
together, the complete, feature-centric bound of our system
reads as

SFC(
) =
∑

f ∈F
fm

[

μ(W |
̄) + σ(W |
̄)α
3
√

|
̄| − 1

]

. (14)

Runtime Comparison. We evaluate the probabilistic bound
in terms of quality and speed. The quality is measured in
terms of performance at equal error rate, while speed is mea-
sured in number of iterations relative to the baseline. As
baseline we consider a system which has access to the true
maximum of (10). The results for both datasets are reported
in Fig. 12. As the behaviour is similar for both datasets, we
limit our discussion to UIUC cars (i.e. Fig. 12(left)). For
comparison, we emulate the bound of ESS in our frame-
work. ESS performs as well as the baseline, but needs about

Fig. 11 (Color online) Branch and bound search using the mean (i.e.,
g(n) = 0) instead of an upper bound. The splitting process is shown
on top: green solid lines represent hypotheses sets which are refined,
while red dotted lines have low priority and are not split any further.
The actual priority (i.e., mean value) of each set is shown in the bottom
graph. Here, the search converges to the best maximum, but there is no
guarantee for this behaviour

1.7× more iterations. On the other hand, our probabilistic
bound with α ≈ 0.82 requires the same number of itera-
tions as the baseline. This choice corresponds to a bound
guarantee of about 60%. Thus, the over-/under-estimation
roughly compensate, which intuitively explains why there is
no loss in performance. However, the performance at equal
error rate is stable for values as low as α = 0.2. Thus, we
have no loss of performance for α > 0.2. For a safe choice
of α = 0.3, the number of iterations is only 6% compared
to the baseline. At this setting, the average number of iter-
ations is 185, and our Matlab implementation11 detects ob-
jects in about 0.8 s. It is rather astonishing that there is no
loss in performance, as such a bound holds with very low
probability. We provide two arguments which may explain
this phenomenon. First of all, we ignored the inequality of
(9) in our reasoning. This compensates for a slight underes-
timation of the max term (10). Secondly, branch and bound
does not break down completely if we use a priority func-
tion which is not an upper bound. Figure 11 gives a simple
example to reinforce the claim that a weaker criterion may
be sufficient, but further investigations are necessary.

Scaling Behaviour. To demonstrate that our algorithm
scales with the amount of information rather than the im-
age resolution, we show the impact on runtime when the
images are upscaled. Figure 13 reports the increase of it-
erations relative to the unscaled image for scale factors of
1 to 4 (averaged over the whole dataset). As reference, we
show the growth inherent in an exhaustive, sliding-window
based search, which is linear in the number of pixels and
thus quadratic in the scale factor. As can be seen, the im-
pact on our adaptive search is significantly lower. In general,
we believe that our algorithm exhibits very natural scaling
behaviour. Both runtime and memory consumption scale
sub-linearly with the size of the entire hypothesis space |�|

11Available at www.vision.ee.ethz.ch/lehmanal/iccv09.

http://www.vision.ee.ethz.ch/lehmanal/iccv09

Int J Comput Vis (2011) 94:175–197 191

Fig. 12 (Color online)
Evaluation of the probabilistic
bounds in terms of performance
at equal error rate (top), and
number of iterations relative to
the baseline (bottom). As
baseline we consider a system
which has access to the true
maximum in (10). The results
are shown for UIUC multi-scale
cars (left) and TUD motorbikes
dataset (right). From the top
plots we see that our
probabilistic bound performs
well for values α > 0.2 and
breaks down for smaller values.
For a safe choice of α = 0.3, the
number of iterations is just
about 6% (left) and 8% (right)
compared to the baseline
system. In comparison, ESS’s
uses a true bound which
converges slower than the
baseline by a factor of about 1.7
and 1.5, respectively

Fig. 13 (Color online) Runtime/memory dependence on image reso-
lution: Our adaptive search (green) versus quadratic growth of classical
sliding-window search (red)

and linearly with the (average) number of (contributing) fea-
tures F̄ . Formally, that is O(sl(|�|) · F̄) where sl(·) denotes
sub-linearity. This feels natural as the number of features is
affected by the visual content, i.e., more complicated scenes
require more work.

Interestingly, neither the model size (i.e., number of bins)
nor the image resolution affect runtime directly. Both are
desirable properties as increasing the spatial resolution of
the object model should not make the localisation task any
harder. The same argument holds when we get a higher res-
olution image for the same image content. The additional in-

formation should not impair the algorithm’s runtime. How-
ever, ESS’s runtime (Lampert et al. 2009; An et al. 2009)
does depend on both these parameters due to a necessary
pre-processing step. To be fair, both approaches rely on fea-
ture extraction which scales with the image resolution. Par-
allel architectures like GPUs enable us to extract features
very quickly (e.g. Cornelis and Van Gool 2008), though, and
this initial cost is alleviated when thinking about multi-class
setups where features are shared among different classes.

Memory Comparison. Both ESS and our approach use in-
tegral images. However, there is a crucial difference due to
the feature-centric versus bin-centric definition of the score
bound. In our system, the integral images depend only on
the model, while in ESS, they depend on the model and
the observed image jointly. Thus, our integral images can
be computed off-line and detection directly starts with the
adaptive search. In contrast, ESS needs an (unadaptive) on-
line pre-processing (to build the integral images) prior to
the search. Moreover, the memory consumption of these in-
tegral images is much higher. Considering the experiment
from Fig. 13, the 4× scaled images have a size of 8602

on average. The memory requirement of ESS (assuming a
10 × 10 histogram) scales with the input image size and
would be 8602 × 102 × 2 × 4 B ≈ 564 MB. On the other
hand, our system stores 2 × 4 Bytes per contributing feature
and it requires about 1.8 × 106 integral image evaluations.
Thus we use roughly 20 MB, i.e. 25 times less memory.

192 Int J Comput Vis (2011) 94:175–197

True Scale-Invariance. An implication of the memory bot-
tleneck is that ESS uses only 2D (instead of 3D) integral
images for its range queries. This is an issue as features
live in a 3D scale-space (Lindeberg 1994) and not only in
the 2D image plane. Using only 2D integral images corre-
sponds to using Iλ and a histogram which extends infinitely
in the scale-ratio dimension (Iλ,s). That implies that the fea-
ture scale fs is completely ignored. This is a limitation, as
assigning different weights to (relatively) large-/small-scale
features is desirable. In particular, setting the weight to zero
is important to ignore too small/large features. Otherwise,
detection at a larger scale will have more contributing fea-
tures. This may result in a tendency for higher scores and
thus a bias towards larger detections. Properly accounting
for the feature scale would require discretising the feature
scale-space. That would increase the memory consumption
even further. Dealing with the feature scale properly is not a
problem in our framework and there is no such bias towards
larger detection windows. Thus, in contrast to ESS, our ap-
proach makes no further model restrictions than the ones of
the Hough transform, i.e., the linear model constraint. In the
experiments we actually use a histogram with 10 × 10 × 3
bins.

Multi-Class. Finally, assume a multi-class setup. That is
accomplished by adding an additional class dimension to
the weight function W . Consequently, the footprint maps
each feature f to a Dirac pulse at the (4 + 1)D-point
[fc, I(λ,f), λc], where λc denotes the class of an object λ.
Apart from minor changes, the algorithm remains the same.
It processes all classes simultaneously and thus still scales
sub-linearly, i.e., O(sl(|�|C)F̄), where C denotes the num-
ber of classes (and views). Hence, the number of classes af-
fects runtime/memory only through the size of the (multi-
class) search space, where we expect sub-linear scaling. In
contrast, runtime of ESS scales as O(|I |BC + sl(|�|C)B),
where B denotes the number of spatial bins. Thus, the pre-
processing introduces a linear dependency (in C) which can-
cels the sub-linear behaviour of the actual search. Moreover,
it emphasises the memory bottleneck since memory usage
scales with O(|I |BC + sl(|�|C)). We conclude that ESS
may be faster when lots of features are extracted, but its
memory trade-off gets prohibitive when it comes to multi-
class/multi-view setups.

5 Model Regularisation for Fast Detection

The previous section dealt with efficient object search where
we showed the advantages of PRISM’s feature-centric view.
However, there are also considerations during learning
which allow for accelerating object detection. More pre-
cisely, we show that certain computations during detection

lead to model regularisation. Such computation can thus be
avoided if sufficient regularisation has already been applied
to the model during training.

Two examples of such computations are spatial pyra-
mid descriptors and soft-matching. These two techniques
are commonly used and, as acknowledged by many au-
thors (Leibe et al. 2008; Lazebnik et al. 2006; Ommer and
Buhmann 2007; Philbin et al. 2008; Ferrari et al. 2007;
Grauman and Darrell 2005), improve detection quality. Un-
fortunately, their downside is an increase of computation
cost during detection where speed is of prime importance.
We claim that this may well be unnecessary and show how
to avoid it. As already mentioned, the effect of both can be
interpreted as model regularisation, which is a concept of
learning. As such, it should be applied during learning only,
thereby making fast nearest neighbour matching and flat his-
togram representations during detection possible.

5.1 Soft-Matching

Soft-matching is a heuristic where a feature activates mul-
tiple codewords from the visual vocabulary, instead of
just the best-matching one. We now show how to move
soft-matching to the training stage, thus allowing for NN-
matching during detection, where runtime is of prime im-
portance.

In PRISM, a footprint which accounts for soft-matching
has multiple Dirac pulses (per feature) instead of a single
one (at the best-matching visual word, c.f. (4)). Each Dirac
pulse is weighted according to the quality of the match. This
weight decreases as a function of the distance of the feature
descriptor from the visual word representative. That allows
us to interpret soft-matching as a diffusion which blurs the
Dirac pulse of the best-matching visual word. Hence, soft-
matching can be implemented in PRISM by a blurred foot-
print Dφ where D denotes the blurring operator.

However, instead of applying the blur to the footprint,
we may equally well apply it to the model, i.e. 〈Dφ,W 〉 =
〈φ,DT W 〉. The latter incorporates soft-matching com-
pletely into the training stage (where we can pre-compute
DT W) and avoids it during detection. More precisely, we
apply stronger blurring during learning and NN-matching
during recognition. Hence, the system benefits from soft-
matching’s robustness without having the computational
overhead during recognition. We validate this claim by an
experiment with our GMM detector on the motorbikes data-
base (as described in Sect. 3.4). In Fig. 14, we see the result
of using {1,3,5}-NN during detection in addition to 6-NN
during learning. Additional soft-matching clearly degrades
the performance. In other words, applying soft-matching
twice leads to an over-smoothing which causes under-fitting.

Int J Comput Vis (2011) 94:175–197 193

Fig. 14 (Color online) The consequence of applying additional
soft-matching during recognition. During learning, the soft-matching
is fixed to 6-NN matching while we vary between 1 to 5 NN during
recognition. The performance clearly drops when deviating form the
hard-NN matching rule

Benefits. Moving soft-matching entirely to the learning
stage has clear advantages. On the one hand, NN-matching
during recognition is much simpler and faster. In the above
example, changing from 5-NN to 1-NN yields a speedup of
approximately 4. On the other hand, stronger soft-matching
during learning causes more occurrences which makes den-
sity estimation more stable. Contrary to non-parametric den-
sity estimators (Leibe et al. 2008), our GMM compresses
the increased number of occurrences. Hence, the overhead
of soft-matching during recognition is very low. In sum-
mary, soft-matching causes model regularisation which is
controlled by the degree of soft-matching. Moving it entirely
to the training stage makes fast nearest-neighbour matching
during detection possible.

5.2 Spatial Pyramid Descriptors

Spatial pyramid descriptors (Grauman and Darrell 2005;
Lazebnik et al. 2006) consist of multiple histogram lay-
ers, each of which has a different spatial resolution. We
can avoid such pyramids during detection by a similar ar-
gument as before. Taking an approach like ESS (Lampert
et al. 2009), this leads to significant memory savings (c.f.
footnote 1), but also runtime benefits.

As a matter of fact, certain multi-layer pyramid represen-
tations x̃ can be computed from a flat histogram x by means
of a mapping P : x �→ x̃.12 For example, consider a 1D his-
togram with 4 bins, i.e., x ∈ R4. The corresponding pyramid

12To avoid confusions later on, we use the symbol x for the footprint
instead of φ, as the latter has a different meaning in the SVM literature.

with 1, 2, and 4 bins per level can be computed by the trans-
form

x̃ = Px ∈ R7 with P T =

⎛

⎜

⎜

⎝

1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1

⎞

⎟

⎟

⎠

.

(15)

Such mappings exist if the bin boundaries of coarser his-
tograms coincide with those of the highest resolution (flat)
histogram x. This seems to be a restriction, but the point is
that a more general pyramid (e.g. with 1,2,3, and 4 bins per
layer) effectively samples at a higher resolution than just 4
bins, which is not necessarily desired. We now assume that
the flat histogram x has the highest effective histogram res-
olution (i.e., considering all bin boundaries arising in the
pyramid), in which case the above mapping exists. Any-
way, the explicit mapping is only needed for the following
argumentation and our final learning algorithm (17) allows
for more general regularisation strategies as we will demon-
strate in Sect. 5.4.

As in the last subsection, instead of computing the
pyramid representation for each hypothesis, it is possi-
ble to apply P T once to the pyramidal model w̃,13 i.e.,
〈Px, w̃〉 = 〈x,P T w̃〉. This is computationally attractive as
it is done once, off-line during training. The back-transform
P T w̃ compresses the learned model back into a lower-
dimensional, flat histogram. Thus, the pyramid is not needed
during detection which reduces algorithmic complexity and
runtime.

5.3 Explicit Regularisation

Interestingly, we can avoid the pyramid representation al-
together, i.e. we do not have to learn a pyramid represen-
tation, followed by computing its low-dimensional counter-
part (i.e., w = P T w̃). Instead, we integrate P into the learn-
ing algorithm which then directly returns the flat histogram
w. This enables us to exploit the structure of P during train-
ing and it will make the connection to regularisation explicit.

Let us start with the linear SVM optimisation problem
for the pyramid representation. The training data consists of
a label yi ∈ {−1,+1} and a pyramid descriptor x̃i = Pxi for
each sample i. Then, the pyramid model w̃ is obtained by
solving

max
w̃,ξi

‖w̃‖2 +
∑

i

ξi s.t. ∀i : yiw̃
T x̃i ≥ 1−ξi, ξi ≥ 0 (16)

where ξi are the usual, per-sample slack variables.

13We use lower case letters w, w̃ to denote the discretised histogram
representation of the continuous weight function W defined in Sect. 2.

194 Int J Comput Vis (2011) 94:175–197

It is well-known that the dual of (16) can be written en-
tirely in terms of inner products of the samples, which al-
lows for the kernel trick. Actually, our particular case, i.e.,
x̃T
i x̃j = xT

i P T Pxj = κ(xi, xj), can be interpreted in the
dual as a kernelised SVM working on the flat histograms
xi . This so-called semantic similarity kernel (Shawe-Taylor
and Cristianini 2004) is defined by a similarity matrix M =
P T P which is positive (semi-)definite. Thus, without loss
of generality, P can be thought to be the Cholesky factor
of M , i.e. a square matrix (instead of rectangular, c.f. (15)).
We now assume that M (and thus P) are also invertible.
Therefore, the model post-processing from the last section

w = P T w̃ can be inverted, i.e., w̃ = (P T)
−1

w. Applying
this variable substitution to the regularisation term yields

w̃T w̃ = wT P −1(P T)
−1

w = wT (P T P)−1w = wT M−1w,
and the data term simplifies. Hence, one obtains an equiv-
alent optimisation problem in terms of the low-dimensional,
flat histogram variables xi , i.e.

max
w,ξi

wT M−1w +
∑

i

ξi

s.t. ∀i : yiw
T xi ≥ 1 − ξi, ξi ≥ 0. (17)

The difference to ordinary SVMs is the modified regulari-
sation term which causes the positive effects of the pyramid
representation. This thus demonstrates that pyramids (and
similarly soft-matching) can be interpreted as model regu-
larisation. Moreover, (17) can be solved efficiently in this
primal form (Chapelle 2007; Sandler et al. 2008), which di-
rectly yields the desired flat histogram w (instead of w̃).

Discussion. The optimisation problem (17) bears various
advantages over mapping to the pyramid representations ex-
plicitly (i.e. (16)) or applying the semantic similarity ker-
nel in the dual. On the one hand, explicit feature mapping
increases the dimensionality and breaks the sparsity inher-
ent in bag-of-visual-words representations. This increases
memory usage and computation time. On the other hand,
solving the kernelised dual formulation is discouraging for
two reasons. Firstly, the evaluation of the semantic kernel is
quadratic (instead of linear) in the number of (non-zero) ele-
ments. Secondly, optimisation of linear SVMs in the primal
has been reported to be faster than solving the dual problem
(Chapelle 2007). In summary, solving (17) directly avoids
the pyramid representation altogether without losing its reg-
ularising effect. Moreover, it fully accounts for sparsity in
the data and bypasses an increase in the representation’s di-
mensionality.

5.4 Explicit Spatial Regularisation

In the last subsection, we showed that SVMs with the modi-
fied regularisation matrix M−1 = (P T P)−1 yield a solution

equivalent to one we could have obtained by training on the
pyramid descriptors. This leads to a spatially smoothed, reg-
ularised solution. In our opinion, however, the use of such
pyramids is just a heuristic which showed to work well in
practice. Instead (17) enables us to explicitly define the reg-
ularisation matrix R = M−1. This not only gives better con-
trol over the regularisation, it can also lead to computational
advantages in the optimisation (which we will show).

Sandler et al. (2008) also tackled this problem, but in the
context of document processing with bag-of-words models.
They first compute a graph over words where the edges be-
tween words account for their similarity. These similarities
are estimated from a given text corpus and the regularisation
matrix R is then deduced from the graph. That regularisation
relates to soft-matching in our context, whereas we focus on
spatial regularisation in this work. Compared to the work of
Sandler et al. (2008), we are facing a much more structured
problem since a 3D (x, y, scale) spatial histogram corre-
sponds to a regular 3D grid graph. Thus, we do not have to
construct a graph explicitly.

The basic idea of our spatial regularisation is simple. In
addition to the ordinary SVM regularisation (i.e.,

∑

i w
2
i =

wT w), we also penalise the difference of neighbouring his-
togram bin weights, i.e.,

∑

i∼j ‖wi −wj‖2 where ∼ denotes
neighbouring bins. The new term can be written in matrix
form as wT Lw where L denotes the graph Laplacian ma-
trix. As we will see later, this matrix is highly structured and
very sparse in our 3D grid case. Actually, minimising such a
Laplacian term leads to a heat diffusion like process (Perona
and Malik 1990) where positive (negative) training samples
correspond to heat sources (sinks).

Simply taking a weighted combination of the two regu-
larisations, i.e., R := αI + βL, is possible but not recom-
mended. In that form, the mixing factors α and β would
depend on the histogram resolution, i.e., the number of bins.
This is undesirable and can be avoided rather easily. Recall
that the histogram w is a discretisation of the continuous
weight function W from Sect. 2. Consequently, the regu-
larisation matrix defined above can be derived as a finite-
differences implementation of
∫

R3
α‖W‖2 + β‖∇W‖2dV (18)

where the integration is over the invariant space and ∇ de-
notes the gradient operator. Defining the mixing factors α

and β in this continuous formulation leads to the desired
resolution-independence. Let us assume a discretisation grid
with Nx , Ny , and Ns bins, respectively. This yields a to-
tal of N = NxNyNs bins with volume dV = N−1. More-
over, the gradient is approximated by e.g. (wi − wj)/δx

where δx = N−1
x is the inter-bin distance. Taking the square

leads to N2
x (w2

i − 2wiwj + w2
j). Thus, there is a correc-

tion factor N2
x which is probably hard to guess without con-

sidering the continuous form (18). Furthermore, to better

Int J Comput Vis (2011) 94:175–197 195

Fig. 15 (Color online) Precision-recall curve on the UIUC cars data-
base with and without spatial regularisation

cope with the different nature of each dimension, we use
a per-dimension weighting factor βx,y,s . Thus, our final,
resolution-independent regularisation matrix reads as

Rij =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

α
N

+ 2
(βxN2

x

N
+ βyN2

y

N
+ βsN

2
s

N

)

, i = j,

−βdN2
d

N
, i

d∼ j,

0, else,

(19)

where
d∼ denotes neighbours along dimension d ∈ {x, y, s}.

Compared to a dense matrix (e.g. (P T P)−1) with N2 ele-
ments, this matrix has only 7N non-zeros, which saves com-
putation time.

We use the UIUC cars database (c.f. Sect. 4.6) to exper-
imentally validate the effect of such spatial regularisation.
Fig. 15 reports the performance of our UIUC cars detector
when trained with and without spatial regularisation. In this
experiment, we first fixed β = 0 (i.e., no spatial regulari-
sation) and optimised α for optimal detection performance.
Then, we kept this optimal α fixed and adjusted β . As can
be seen, adding spatial regularisation results in a clear im-
provement of the precision-recall curve. The performance at
equal-error rate increases by 3.6%.

Summarising this section, we showed that soft-matching
and spatial pyramids can be avoided during detection with-
out loss of performance. This leads to simpler and faster
detection algorithms. The central insight is that both tech-
niques cause model regularisation. Thus, they can—and ac-
tually should—be implemented entirely in the training pro-
cedure since regularisation is a concept of learning. Fur-
thermore, we presented a concrete approach how to inte-
grate spatial regularisation directly into the SVM optimisa-
tion problem. Finally, experimental results have been shown
which support our claims.

6 Conclusion

The PRincipled Implicit Shape Model (PRISM) (Lehmann
et al. 2009b) is a versatile framework for object detection.
It overcomes various issues of ISM’s probabilistic formu-
lation and gives a sound explanation to the voting proce-
dure. We highlighted the duality of the Hough transform
and linear sliding-window detectors, which is at the core of
this unifying framework. The fusion of the two paradigms
becomes possible through the concept of object footprints.
This footprint nicely decouples the modelling of geometric
object transformations by means of invariants. Such explicit
modelling of transformations becomes of particular inter-
est in multi-view setups. The fusion of sliding-windows and
the Hough paradigm lets PRISM benefit from the advan-
tages of both, while imposing minimal model constraints.
We demonstrated this flexibility with a generatively trained
semi-parametric model and a discriminatively trained his-
togram model.

The former approach builds on Gaussian Mixture Mod-
els which allow for efficient gradient-based search. We dis-
cussed scale-adaptation and the effects of different invari-
ants. Moreover, a simple model post-processing was shown
to yield a significant speedup. With the histogram model,
we showed that discriminative voting weights (trained us-
ing SVMs) are possible. This was not the case in ISM’s
probabilistic formulation and is a benefit of the sliding-
window reasoning. In return, the Hough-inspired, feature-
centric score leads to advantages in a branch and bound set-
ting. Compared to the original Efficient Subwindow Search
(ESS), our approach (Lehmann et al. 2009a) avoids any
pre-processing during detection. Such on-line computation
is not adaptive and may cancel the sub-linear search time.
Moreover, our system uses considerably less memory and it
is truly scale-invariant, while ESS was not. It further allows
for efficient feature removal (which is helpful to e.g. detect
multiple objects). We showed theoretical and practical com-
parisons of the two systems, which lead to the following
conclusion: While ESS may be more efficient in cases with
lots of features, we expect our approach to be more scal-
able to multiple classes and views. In summary, our system
leverages elements of what is currently the state-of-the-art
in sliding-window (Lampert et al. 2009) and Hough-based
(Leibe et al. 2008) object detection. This fusion leads to
favourable properties during detection.

A complementary contribution of this work was the
study of commonly used soft-matching and spatial pyra-
mid descriptors. They both improve detection quality, but
increase computational cost during detection, where speed
is of prime importance. We showed how this can be avoided.
We argued that both can be interpreted as model regularisa-
tion, which clearly is a concept of learning. Consequently,
they can—and should—be applied during training only. We

196 Int J Comput Vis (2011) 94:175–197

demonstrated how soft-matching and pyramid descriptors
can be integrated entirely into the training procedure. In par-
ticular, spatial pyramids can be emulated by a minor change
to the usual SVM regularisation term. Interestingly, such
modified SVMs can be efficiently optimised in the primal
form. Moving both regularisation techniques to the train-
ing stage has clear advantages. It allows for fast nearest-
neighbour matching and flat histogram representations dur-
ing detection without loss of recognition performance. This
claim was experimentally verified. Hence, we lowered the
algorithmic and computational complexity of the detector
without sacrificing quality. This in turn leads to faster detec-
tion, which was the key focus of this paper.

Future work will aim at deepening the understanding of
the approximate bound and improving the splitting strat-
egy of the branch and bound algorithm. The latter becomes
important in multi-class setups where different dimensions
(of the search space) are not comparable anymore. In other
words, how to deal with the ordinal nature of the class “di-
mension”? Furthermore, combining spatial smoothing with
regularisation over visual words is another topic of interest.
Sandler et al. (2008) already provided a solid foundation for
normal (text) words, which are discrete. However, we think
that the continuous nature (of the visual descriptor) underly-
ing visual words could be exploited to design more sophis-
ticated approaches.

Acknowledgements The authors wish to thank the Swiss National
Fund (SNF) for support through the CASTOR project (200021-
118106).

References

Agarwal, S., Awan, A., & Roth, D. (2004). Learning to detect objects
in images via a sparse, part-based representation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(11),
1475–1490.

An, S., Peursum, P., Liu, W., & Venkatesh, S. (2009). Efficient algo-
rithms for subwindow search in object detection and localization.
In Proceedings of the IEEE conference on computer vision and
pattern recognition.

Baggenstoos, P. M. (2002). Statistical modeling using Gaussian
mixtures and hmms with Matlab. Tech. rep., Naval Undersea
Warfare Center, Newport, RI, http://www.npt.nuwc.navy.mil/Csf/
software.html.

Ballard, D. (1981). Generalizing the hough transform to detect arbi-
trary shapes. Pattern Recognition, 13(2), 111–122.

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Surf: Speeded
up robust features. Computer Vision and Image Understanding,
110(3), 346–359.

Bentley, J. (1984). Programming pearls: algorithm design techniques.
Communications of the ACM, 27(9), 865–873.

Blaschko, M. B., & Lampert, C. H. (2008). Learning to localize objects
with structured output regression. In Proceedings of the European
conference on computer vision.

Breuel, T. M. (1992). Fast recognition using adaptive subdivisions of
transformation space. In Proceedings of the IEEE conference on
computer vision and pattern recognition.

Breuel, T. M. (2002). A comparison of search strategies for geomet-
ric branch and bound algorithms. In Proceedings of the European
conference on computer vision.

Carreira Perpiñán, M. Á. (2000). Mode-finding for mixtures of
Gaussian distributions. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(11), 1318–1323.

Chapelle, O. (2007). Training a support vector machine in the primal.
Neural Computation, 19(5), 1155–1178.

Chum, O., & Zisserman, A. (2007). An exemplar model for learning
object classes. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition.

Comaniciu, D., Ramesh, V., & Meer, P. (2001). The variable bandwidth
mean shift and data-driven scale selection. In Proceedings of the
IEEE international conference on computer vision.

Cornelis, N., & Van Gool, L. (2008). Fast scale invariant feature detec-
tion and matching on programmable graphics hardware. In Pro-
ceedings of the computer vision and pattern recognition (CVPR)
workshop.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition.

Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discrim-
inatively trained, multiscale, deformable part model. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition.

Ferrari, V., Jurie, F., & Schmid, C. (2007). Accurate object detection
with deformable shape models learnt from images. In Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion.

Fritz, M., Leibe, B., Caputo, B., & Schiele, B. (2005). Integrating rep-
resentative and discriminant models for object category detection.
In Proceedings of the IEEE international conference on computer
vision.

Gall, J., & Lempitsky, V. (2009). Class-specific hough forests for object
detection. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition.

Grauman, K., & Darrell, T. (2005). The pyramid match ker-
nel:discriminative classification with sets of image features. In
Proceedings of the IEEE international conference on computer
vision.

Heitz, G., & Koller, D. (2008). Learning spatial context: Using stuff to
find things. In Proceedings of the European conference on com-
puter vision.

Keysers, D., Deselaers, T., & Breuel, T. M. (2007). Geometric match-
ing for patch-based object detection. Electronic Letters on Com-
puter Vision and Image Analysis, 6(1), 44–54.

Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998). On combining clas-
sifiers. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 20(3), 226–239.

Lampert, C. H., Blaschko, M. B., & Hofmann, T. (2008). Beyond slid-
ing windows: Object localization by efficient subwindow search.
In Proceedings of the IEEE conference on computer vision and
pattern recognition.

Lampert, C. H., Blaschko, M. B., & Hofmann, T. (2009). Efficient sub-
window search: A branch and bound framework for object local-
ization. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 99(1).

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene cat-
egories. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (Vol. 2, pp. 2169–2178.

Lehmann, A., Leibe, B., & Van Gool, L. (2009a). Feature-centric effi-
cient subwindow search. In Proceedings of the IEEE international
conference on computer vision.

Lehmann, A., Leibe, B., & Van Gool, L. (2009b). Prism: Principled im-
plicit shape model. In Proceedings of the British machine vision
conference.

http://www.npt.nuwc.navy.mil/Csf/software.html
http://www.npt.nuwc.navy.mil/Csf/software.html

Int J Comput Vis (2011) 94:175–197 197

Leibe, B., & Schiele, B. (2004). Scale-invariant object categorization
using a scale-adaptive mean-shift search. In Proceedings of the
DAGM symposium.

Leibe, B., Seemann, E., & Schiele, B. (2005). Pedestrian detection in
crowded scenes. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition.

Leibe, B., Leonardis, A., & Schiele, B. (2008). Robust object de-
tection by interleaving categorization and segmentation. Interna-
tional Journal of Computer Vision, 77(1–3), 259–289.

Liebelt, J., Schmid, C., & Schertler, K. (2008). Viewpoint-independent
object class detection using 3D feature maps. In Proceedings of
the IEEE conference on computer vision and pattern recognition.

Lindeberg, T. (1994). Scale-space theory in computer vision. Amster-
dam: Kluwer Academic.

Maji, S., & Malik, J. (2009). Object detection using a max-margin
hough transform. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition.

Maji, S., Berg, A. C., & Malik, J. (2008). Classification using intersec-
tion kernel support vector machines is efficient. In Proceedings of
the IEEE conference on computer vision and pattern recognition.

Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency
dictionaries. IEEE Transactions on Signal Processing, 41(12),
3397–3415.

Mikolajczyk, K., & Schmid, C. (2004). Scale and affine invariant in-
terest point detectors. International Journal of Computer Vision,
60(1), 63–86.

Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of
local descriptors. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(10), 1615–1630.

Ommer, B., & Buhmann, J. M. (2007). Learning the compositional
nature of visual objects. In Proceedings of the IEEE conference
on computer vision and pattern recognition.

Opelt, A., Pinz, A., & Zisserman, A. (2006). A boundary-fragment-
model for object detection. In Proceedings of the European con-
ference on computer vision.

Perona, P., & Malik, J. (1990). Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(7), 629–639.

Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2008).
Lost in quantization: Improving particular object retrieval in large
scale image databases. In Proceedings of the IEEE conference on
computer vision and pattern recognition.

Sandler, T., Talukdar, P. P., Ungar, L. H., & Blitzer, J. (2008). Regu-
larized learning with networks of features. In Proceedings of the
advances in neural information processing systems.

Schneiderman, H. (2004). Feature-centric evaluation for efficient cas-
caded object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition (Vol 2, pp. 29–36).

Schneiderman, H., & Kanade, T. (2004). Object detection using the sta-
tistics of parts. International Journal of Computer Vision, 56(3),
151–177.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern
analysis. Cambridge: Cambridge University Press.

Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2005).
Learning hierarchical models of scenes, objects, and parts. In Pro-
ceedings of the IEEE international conference on computer vi-
sion.

Viola, P. A., & Jones, M. J. (2004). Robust real-time face detection.
International Journal of Computer Vision, 57(2), 137–154.

Williams, C. K. I., & Allan, M. (2006). On a connection between object
localization with a generative template of features and pose-space
prediction methods (Tech. Rep. 0719). University of Edinburgh.

Yeh, T., Lee, J. J., & Trevor, Darrell T. (2009). Fast concurrent object
localization and recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition.

	Fast PRISM: Branch and Bound Hough Transform for Object Class Detection
	Abstract
	Introduction
	The PRincipled Implicit Shape Model (PRISM)
	Feature-Centric Score Function
	Image-Object Invariants.
	Object Footprint.
	Non-Contributing Features.

	Bottom-up? Sliding-Window vs. Hough-Transform
	The Implicit Shape Model (ISM)
	Related Work
	Multiple Objects

	Gaussian Mixture Model & Gradient Search
	Gaussian Mixture Model
	Modified GMM.

	Invariants and Voting
	Implementation
	Contributing Features.
	Candidate Generation.
	Algorithm.

	Experiments
	Datasets.
	GMM vs. modified GMM.
	Runtime.

	Feature-Centric Efficient Subwindow Search
	Related Work
	Score Function on Hypothesis Sets
	Maximum Query Using Integral Images
	Efficient Subwindow Search (ESS)
	ESS's Upper Bound.
	Comparison.
	Feature-Centric View of ESS.

	Implementation
	Branch and Bound.
	Contributing Features.
	Multiple Objects.

	Experiments & Discussion
	Recognition Performance.
	Approximate Correction Term.
	Runtime Comparison.
	Scaling Behaviour.
	Memory Comparison.
	True Scale-Invariance.
	Multi-Class.

	Model Regularisation for Fast Detection
	Soft-Matching
	Benefits.

	Spatial Pyramid Descriptors
	Explicit Regularisation
	Discussion.

	Explicit Spatial Regularisation

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

