Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03), Madison, USA, June 2003.

Analyzing Appear ance and Contour Based M ethods for Object Categorization

Bastian Leibe and Bernt Schiele
Perceptual Computing and Computer Vision Group, ETH Zurich, Switzerland
{leibe,schiele} @inf.ethz.ch

Abstract

Object recognition has reached a level where we can iden-
tify a large number of previously seen and known objects.
However, the more challenging and important task of cat-
egorizing previously unseen objects remains largely un-
solved. Traditionally, contour and shape based methods
are regarded most adequate for handling the generaliza-
tion requirements needed for this task. Appearance based
methods, on the other hand, have been successful in object
identification and detection scenarios. Today little work is
done to systematically compare existing methods and char-
acterize their relative capabilities for categorizing objects.

In order to compare different methods we present a new
database specifically tailored to the task of object catego-
rization. It contains high-resolution color images of 80 ob-
jects from 8 different categories, for a total of 3280 images.
It is used to analyze the performance of several appearance
and contour based methods. The best categorization re-
sult is obtained by an appropriate combination of different
methods.

1. Introduction

Even though generic object recognition and classification
have been one of the goals of computer vision since its be-
ginnings [1], we are still far from achieving this goal. On
the other hand, the identification of known objects in dif-
ferent poses and under novel viewing conditions has made
significant progress recently [2, 3, 4, 5, 6, 7, 8, 9]. At the
sametime, impressive results have been achieved for the de-
tection of canonical views of individual categories, such as
faces[10], cars[11, 12], pedestrians[13], and horses[14].

Still, little progress has been made for the more general
task of multi-class object categorization, with some notable
exceptions such as [15, 16]. Even more importantly, many
recognition methods have not been tested on multi-class cat-
egorization, so that little is known about their respective
capabilities to generalize beyond known and seen objects.
Also, it is not clear what the role of different cues, such as
contour, shape, color, and textureis for categorization. Tra-
ditionally, contour and shape based methods are considered
most adequate for handling the generalization requirements
needed for categorization tasks.

To address these issues, we have built a novel database
specifically tailored to the task of object categorization. It
contains 80 objects from 8 categories. Each object is rep-
resented by 41 views spaced evenly over the upper viewing
hemisphere. This alows to analyze the performance of dif-
ferent recognition methods not only from a 1D circle or a
few canonical viewpoints, but from multiple viewing posi-
tions. For each image ahigh-quality figure-ground segmen-
tation mask is provided. This makesit possible to compare
both appearance and contour based methodsin theidealized
setting of perfect segmentation. Even though any compari-
son on a particular database has its limitations, we strongly
believe that databases such as the one we propose, as well
as the comparison of different methods are important steps
to enable progress in the area of object categorization. The
database is made publicly available and other authors are
invited to run and report experiments.

Section 2 casts the object categorization problem in a
framework founded in Cognitive Psychology. This founda-
tion motivates our object database, introduced in Section 3.
Different contour and appearance-based methods are intro-
duced in Section 4, and Section 5 presents experimental re-
sults comparing those methods as well as different cues for
object categorization. As expected, different methods and
cues have their respective strengths and weaknesses. There-
fore, Section 6 proposes and discusses the combination of
different methods.

2. Object Categorization

It isimportant to emphasize that the notion and the abstrac-
tion level of object classes is far from being uniquely and
clearly defined. Notably, the question of how humans orga-
nize knowledge at different levels has received much atten-
tion in Cognitive Psychology [17]. Taking an examplefrom
Brown’s work, a dog can not only be thought of as a dog,
but also as a boxer, a quadruped, or in general an animate
being [17]. Yet, dog is the term that comes to mind most
easily, which is by no means accidental. Experiments show
that there is a basic level in human categorization at which
most knowledge is organized [18]. According to Rosch et
al. [18, 19], thisbasic level isalso

o the highest level at which category members have sm-



ilar perceived shape.

e the highest level at which a single mental image can
reflect the entire category.

o the highest level at which a person uses similar motor
actionsfor interacting with category members.

e thelevel at which human subjects are usually fastest at
identifying category members.

e thefirst level named and understood by children.

These points are the motivation for us to address multi-
level object categorization rather than the less clearly de-
fined problem of object classification. Basic level catego-
rizationiseasiest for humans. At the next lower levels, sub-
ordinate categories and the exemplar level used in object
identification can be found. The next higher level, super-
ordinate categories, requires a higher degree of abstraction
and world knowledge. It is thus useful to start the generic
object recognition task in the framework of basic-level cat-
egories, which seem to be a good starting point for visual
classification.

Another argument is that the distinction between object
classes may be quite arbitrary when drawing strict borders
between any two classes. |In reality, some classes are in-
herently more similar than others (e.g. dogs and horses
are more similar since they are quadrupeds than dogs and
cars). Looking at multiple levels of object categorization
rather than individual classes, it becomes a desired property
that objects from the same superordinate category, such as
quadrupeds, be classified as more similar than objects from
different superordinate categories. If the object itself is not
correctly recognized, then we want it to be assigned at |east
toa“similar” category (graceful degradation).

The experimentsof this paper arerestricted to basic level
categories. In afirst step, we explicitly do not want to model
functional categories (e.g. “things you can sit on”) and
ad-hoc categories (e.g. ““things you can find in an office
environment™) [20]. Even though those categories are im-
portant, they exist only on a higher level of abstraction and
require a high degree of world knowledge and experience
living in the real world.

It is important to note that categories do not exist per
se in the world; they are a learned representation [18] and
therefore depend on experience and education. So, it may
not be possible to find the unique basic level for every ob-
ject. However, there are objects that have become so much
part of our daily life that their basic level is well-defined
almost all over the world (e.g. apples, horses, cars, etc.).
In the following section, we will introduce our evaluation
database, which contains some of those categories.

3. The Database

Existing publicly available image databases, like the COIL
[4], have been very influential. Most directly related to

our endeavor, the RSORT database [15] containsfull-sphere
views, but only includes grayscale images and no segmen-
tations. In this section, we present a new database for object
categorization containing 80 objects from 8 carefully cho-
sen categories, high-resolution color images, and segmen-
tation masks for every image.

In our work, we want to explore categorization for both
natural and artificial (human-made) objects. In particular,
weinclude objects from the following basic areas; “fruits &
vegetables’; “animals’; “human-made, small (graspable)”;
and “human-made, big” (e.g. vehicles). Objects from these
areas have different affordances, that is different ways of
interacting with the environment, and different character-
istics. For the first iteration of our database, we chose to
include the following objects: apples, pears, and tomatoes
for the “fruits & vegetables’ area; cows, dogs, and horses
for the“animals’; cups for the “ graspable”, and carsfor the
“vehicles’ supercategory.

In principle, there are two ways how such a database
can be built. A category can either be set up by a rep-
resentative distribution of member objects reflecting their
probabilities of occurrence in practice, or by a few proto-
types that approximately span the category [21]. In light
of the difficulty of establishing representative distributions
and the effort involved in taking pictures of member ob-
jects, we resort to the second option. Figure 1 shows the
current status of our database (in the following referred to
as the ETH-80 database). For each category, we provide 10
objects that span large in-class variations while still clearly
belonging to the category. Each object is represented by
41 images from viewpoints spaced equally over the upper
viewing hemisphere (at distances of 22.5 — 26°). The view-
ing positions were obtained by subdividing the faces of an
octahedron to the third recursion level. For collecting the
views, we employed an automated robot setup and a blue
chromakeying background for easier segmentation. All im-
ages have been taken with a Sony DFW-X700 progressive
scan digital camera with 1024 x 768 pixel resolution and
a Tamron 6-12mm varifocal lens (F1.4). For every image,
we provide a high-quality segmentation mask (Figure 1), so
that shape and contour based methods can be easily applied.
The full database is made available on our webpage?.

Theintended test mode is |eave-one-object-out crossval -
idation. This means we train with 79 objects and test with
the one unknown object. Recognition is considered suc-
cessful if the correct category label is assigned. The re-
sults are averaged over all 80 possible test objects. We use
the database for a best case analysis: categorization of un-
known objects under the same viewing conditions, with a
near-perfect figure-ground segmentation, and known scale.
In a practical application, such perfect information is sel-
domly available. But if an algorithm does not work under

http://www.vision.ethz.ch/pcev/



(c) Extracted Contour

Figure 1. The 8 categories of the ETH-80 database. Each category contains 10 objects with 41 views per object, spaced

equally over the viewing hemisphere, for atotal of 3280 images.

theseideal conditions, it is likely to fail in practice.

4. Recognition M ethods

Using the database presented above, we want to compare
different methods for multi-class object categorization. In
particular, we want to address the question of what therole
of color, texture, and shape is for this task. In this sec-
tion, we introduce a selection of well-known recognition
methodsthat are prototypical for these cues. Those methods
serve as the basis for our experiments.

Color: One of the earliest appearance based recognition
methods is recognition with color histograms [2]. Us
ing this approach, we collect a globa RGB histogram
over al image pixels belonging to the object (as spec-
ified by the segmentation mask). Two histograms V'
and ) can be compared using the intersection measure-
ment N(Q,V) = >, min(g;,v;) or the x* divergence
(@, V) =3, (qq_fﬁ))z The test image is then assigned
to the category contal nizng the closest matching histogram.
In our experiments, we obtained the best results with a his-
togram resolution of 16-16-16 for the color channels and
using the x? measurement.

Texture: For the texture cue, we use a generalization of
the color histogram approach to histograms of local gray-

value derivatives at multiple scales [9]. In our experiments,
we compare two versions of this approach. The first is a
rotation-variant descriptor and uses only first derivativesin
2 and y direction over 3 different scales. The second uses
rotation invariant features, namely the gradient magnitude
and the Laplacian, again over 3 scales. Both the D, D,
and the Mag-Lap version have been applied to the COIL
database in the past with 100% recognition rate [9]. In our
experiments, we obtained best results with the scales set to
01,2,3 = (1,2,4), 16 histogram bins per dimension, and the
x? measurement for histogram comparison. As shown in
[9], histogram based approaches can also be used locally to
recognize objects from a small set of sample points taken
from the test image. In this paper, however, we use only the
simpler aternative of matching histograms.

Global Shape: For the shape cues, we make a differ-
ence between global and local shape. As representatives
for global shape, we use PCA-based methods[22, 4]. There
are two principa ways of using PCA for recognition. In the
traditional method [4], one single global eigenspace for al
categoriesis built and the training images are projected into
this space. Recognition then becomes a nearest-neighbor
search in the eigenspace for the closest training example.
Theother approachisto build separate el genspacesfor each
category and measure the reconstruction error (" distance
from feature space” [22]), that is the quality by which the



class-specific eigenspace can represent the test image. This
approach can be generalized even further towards view-
specific eigenspaces [23], which we will leave for future
experiments.

The class-specific approach has the advantage that it can
be extended easily to alarger number of categories — only
the eigenspacesfor the new classes have to be recomputed —
but it is not yet known how it scales. We have made exper-
iments with both approaches and found no significant dif-
ferencesin their recognition performance. Since our exper-
iments require the recal culation of the eigenspace for every
object, and the global eigenspace version takes an order of
magnitude longer to compute, we only report results on the
version with class-specific eigenspaces.

In two separate experiments, we apply PCA to the raw
segmentation masks (“pure” global shape) and to the seg-
mented grayvalue images. For the segmentation masks,
the best recognition performance was achieved using only
the first 30 eigenvectors; for grayvalue images, best re-
sults were obtained using the first 40 eigenvectors. For all
PCA experiments, the images are downscaled to a size of
128 x 128 pixels. In contrast to [4], we do not adapt the
scale for individual views of an object such that its bound-
ing box always fills the wholeimage. In our experience, the
varying scales distort the eigenspace and could potentially
hurt recognition performance.

Local Shape: We have chosen contours as a representa
tivefeaturefor local shape. Over the years, numerous meth-
ods have been devel oped for contour-based recognition, e.g.
deformable prototypes [21] or shock graphs [24], to name
but afew. We pick out a method based on the Shape Context
proposed by Belongie [25], which has achieved excellent
results, for example for handwritten digit recognition.

In this approach, an object view is represented by a dis-
crete set of points sampled regularly along the internal or
external contours. For every point, a log-polar histogram,
the Shape Context, is computed that approximates the dis-
tribution of adjacent point locationsrelative to the reference
point. In order to achieve scale invariance, the outer radius
for the histograms is typically set to the mean distance be-
tween all point pairs.

Point correspondences between different shapes can be
found by matching the log-polar histograms. In their origi-
nal implementation, Belongie et al. match shapes by itera-
tively deforming one contour using thin plate splines [25].
Here, we compare two simpler approaches. In the first
method, we search a continuous path around the main obj ect
contour using a dynamic programming approach (similar to
Dynamic Time Warping). We allow that adjacent points on
one contour be matched to the same point on the other con-
tour, and that a mismatching point be skipped, but every
point on one of the contours must be matched and the over-

al matching order must be kept. The final scoreis the sum
over al individual matching costs. The second approach
is just a one-to-one matching between contour points us-
ing a greedy strategy. Here, the matching score is also the
sum over al individual matching costs. In both cases, best
results were obtained using 100 points on the contour, 5 ra-
dius and 12 sector bins, and the intersection measurement
for comparing shape context histograms.

5. Results

In this section, the methods described above are applied to
the object categorization task. As al methods depend on a
set of parameters, we made a series of preliminary experi-
ments to determine the optimal parameter settings for every
method. In the following, we report only the best results.

5.1. Global Recognition Rates

Table 1 shows the recognition results for the different meth-
ods, both averaged over the whole database and broken up
per category. As aready mentioned in Section 3, the test
mode is leave-one-object-out crossvalidation. So, the re-
sults always show the performance for the categorization
of unknown objects. As can be seen, the contour-based
methods perform best with 86.4% recognition rate. Next
best arethe global-shapebased PCA variationswith 83.41%
and 82.99%, respectively. The texture histograms are only
dlighly behind with 82.23% for the rotation-invariant case,
and 79.79% for the rotation-variant one. With only 64.85%
recognition rate, color performsworst.

Globally, there is only a slight difference between the
two PCA methods. However, on the category level signifi-
cant differences become apparent. For the apple and tomato
categories, the version with grayvalue images outperforms
the mask-based version. Here, the global shape is similar
for both categories, but the objects in both classes have a
characteristic, class-specific texture. As aresult, shape am-
biguities between the categories can be resolved by addi-
tional information from the grayvalueimages. For the cow,
dog and horse categories, on the other hand, the mask-based
version shows better performance. Here, the global shape
is again similar for al three categories. However, the am-
biguities cannot be resolved by resorting to the grayvalue
information encoded in the eigenspaces, because thereis no
characteristic texture for those categories. On the contrary,
the in-class variation for texture is so high that using lo-
calized grayvalue information actually hurts performance.
The behavior of both contour based methods is similar to
the one for PCA on mask images, only on aglobally higher
level. Between the two contour-based methods, there is no
significant difference.

For the texture histograms, the rotation invariant version
has a better global performance than the rotation variant



Color D,D, | Mag-Lap | PCA Masks | PCA Gray | Cont. Greedy | Cont. DynProg Avg.
apple | 57.56% | 85.37% | 80.24% 78.78% 88.29% 77.07% 76.34% 77.66%
pear 66.10% | 90.00% | 85.37% 99.51% 99.76% 90.73% 91.71% 89.03%
tomato | 98.54% | 94.63% | 97.07% 67.80% 76.59% 70.73% 70.24% 82.23%
cow 86.59% | 82.68% | 94.39% 75.12% 62.44% 86.83% 86.34% 82.06%
dog 34.63% | 62.44% | 74.39% 72.20% 66.34% 81.95% 82.93% 67.84%
horse | 32.68% | 58.78% | 70.98% 77.80% 77.32% 84.63% 84.63% 69.55%
cup 79.76% | 66.10% | 77.80% 96.10% 96.10% 99.76% 99.02% 87.81%
car 62.93% | 98.29% | 77.56% 100.0% 97.07% 99.51% 100.0% 90.77%
total 64.85% | 79.79% | 82.23% 83.41% 82.99% 86.40% 86.40% 80.87%
Table 1: Recognition Results for the categorization of unknown objects.
| Category | Primary feature(s) | Secondary feature(s) |  fused by the different methods. We hope this can shed more
apple PCA Gray Texture D, D, light onto how the methods perform and how they may gen-
pear PCA Gray / Masks eralize to larger tasks with more categories.
tomato Color Texture Mag-Lap In order to examine this more closely, we look at the
cow Texture Mag-Lap Contour / Color confusion matrix for each method. By iteratively grouping
dog Contour together those categories that are confused most often, we
horse Contour obtain a hierarchy of groupings. Figure 2 shows the group-
cup Contour PCA Gray | Masks ing hierarchies for color, rotation invariant texture, PCA on
car PCA Masks/ Contour Texture D, D, segmentation masks, and contours. As can be seen from

Table 2: Best primary and secondary features for our cate-
gories, as derived from the recognition results.

one. On the per-category level, however, the methods show
more distinct behaviors. Rotation variant features seem to
be significantly better for the apple, pear, and car categories,
that is for those objects where the relative orientation of
texture elements or lines is important for recognition. For
those categories that contain mainly circular texture ele-
ments (like the specularities on most of the tomatoes), or
where the relative number of edge pixels on its own is a
characteristic feature (as seems to be the case for the an-
imals and cups), the rotation invariant texture descriptor
givesthe better results.

In general, it becomes clear that no single method is su-
perior for all categories. Interestingly, though, amost all of
the above methods are the best choice for at least one cat-
egory. For example, the global color distribution, which is
in general not a characteristic feature for many basic-level
categories, still performswell for cows and tomatoes. From
this we can conclude that for multi-class object categoriza-
tion, we need multiple features and different combinations
of features. Table 2 shows alist of the most discriminative
primary and secondary features for our categories (achiev-
ing best and second best recognition results).

5.2. Confusions

In Section 2, we have stated the need for graceful degrada-
tion of an object categorization system. We therefore want
to evaluate which objects are treated as similar or are con-

these diagrams, the contour based method results in the
most intuitive hierarchy, grouping together both the fruits
and the animals. Both PCA and texture succeed in group-
ing together the animals, but manage only two of the three
fruit categories. Interestingly, those groupings are different
for the two cues: apples and tomatoes are treated as simi-
lar in terms of global shape; apples and pears in terms of
texture. As could be expected, color again performsworst.

The out-of-class confusions that occurred most often in
our experiments are cows with cars for the shape and con-
tour cues, and apples with cups for texture. These are
mainly degenerate views from above, where a cow has
a roughly rectangular outline, or from a medium height,
where the cup handle is not visible and only an ambigu-
ous shape remains. In real-world situations and with uncon-
strained viewpoints, such confusions are likely to appear.

Interestingly, rotation-invariant texture is the cue that
best groups the animal categories together. When taken for
asingle class, this cue can recognize them with 99.59% ac-
curacy — significantly better than it is possible with global
shape or contours. It only fails when trying to distinguish
the individual types of animals.

6. Multi-Cue Combination

The results from our experiments stress the need for multi-
cue combination. In the following, we examine how recog-
nition performance can be improved by applying a decision
tree [26] that at each level bases its decisions on one cue
only. Starting again from the confusion matrices, we seek
an optimal partition of the categories that minimizes the
number of misclassifications. We then make our decision
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Figure 2: Grouping hierarchies for four different cues: color (top Ieft), rotation invariant texture (top right), PCA on masks
(bottom Ieft), and contours (bottom right). The diagrams show, from bottom to top, the best groupings for each cue. At each
nodethe local recognition rate for this grouping is displayed. The numbersto the right show the global recognition rate after

the groups are split.

based on the cue that produces the best partition and itera-
tively refine the resulting group of categories. For this, we
have to recompute the confusion matrices for all cues while
leaving out those views that have already been misclassi-
fied. In this example, we stop at the category level, but we
expect that the results can be improved when the approach
is pursued down to aview or aspect level.

Figure 3 shows the resulting optimal decision trees for
the case where all cues are available, and for the case where
local shape is not. The performance for the first case is
clearly better, with 93.02% recognition rate compared to
89.97% for the second case. However, both versions are
comparable up to the point where the individual animal cat-
egories need to be distinguished. Here, the main difference
occurs, and 3% performance is lost because the other cues
are not as good at separating the animals. Using only color
and texture and no shapeinformation at all, the performance
is significantly worse with only 86.4% combined recogni-
tion rate (not shown). This confirms that both global and
local shape are important cues for object categorization.

7. Discussion & Conclusion

In this work, we have analyzed the performance of severa
state-of -the-art appearance- and contour-based recognition
methods for the more general task of multi-class object cat-
egorization. As basis for our analysis, we have introduced
a new database containing several categories and both ob-
ject appearances and segmentation masks. We hope it will
serve to bring together the communities of appearance and
contour based recognition. That thereis a potential for mu-
tual benefit can be seen from our results. Contours proved

to be the best single cue for the categories in our database,
followed by global shape and (rotation invariant) texture de-
scriptors. What is even more important, though, is that ev-
ery cue we tested turned out to be the best choicefor at least
one category. This shows that there is significant potential
for improvement by using multiple cues.

In the second part of our analysis, we have demonstrated
how this potential can be used in the form of a multi-cue
decision tree. Using al available cues, we were thus able
to improve the global recognition rate from 86.4% to 93%.
Contours again played an important role in this improve-
ment. Without them, the recognition rate could only be in-
creased to about 90%, mostly because the remaining cues
were not able to distinguish the different animal categories.
Without both contours and global shape, recognition per-
formance could only be increased from 83.4% to 86.4% —
a performance the contour-based methods achieved on their
own. This emphasizes the importance of shape-based cues
for object categorization.

It isimportant to bear in mind that thiswork shows a best
caseanalysis. Transferring methodsfrom alab setting to the
real world isnot atrivia task, and it may well be that some
necessary features cannot be extracted in sufficient quality
for a particular method to work. What we can deduct from
the experiments is an opposite argument: if a method does
not achieve good results under our idealized conditions, it
is likely to fail in practice. In that respect, our finding that
no single method achieved over 87% recognition rate is an
even stronger argument for the necessity of multiple cues.

The size of the database will be increased in the future,
with more objects per category and a larger number of cat-
egories. However, the ultimate test case is the real world.
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Figure 3: Optimal multi-cue decision trees when all cues are available (left) and when local shape is not (right). The
numbers to the right of each tree show the global recognition rate after each split. Note that the performance of both trees
differs significantly only for distinguishing the animal categories.

Thus, our long-term vision isto use this database as atrain-
ing set and test on pictures taken under more realistic and
less controlled viewing conditions. For this goal, we will
produce a series of test sets with increasing difficulty, with
objects placed in the real world including cluttered settings,
occlusions, and different lighting conditions.

With the exception of the contour-based approaches, all
methods analyzed in this paper have been global. 1t would
be interesting to compare also local, part- or region-based
approaches, such as [8, 12, 13, 27]. This work provides a
framework in which they can be tested.
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