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Abstract— Tracking people is a key technology for robots
and intelligent systems in human environments. Many person
detectors, filtering methods and data association algorithms
for people tracking have been proposed in the past 15+
years in both the robotics and computer vision communities,
achieving decent tracking performances from static and mobile
platforms in real-world scenarios. However, little effort has been
made to compare these methods, analyze their performance
using different sensory modalities and study their impact on
different performance metrics. In this paper, we propose a fully
integrated real-time multi-modal laser/RGB-D people tracking
framework for moving platforms in environments like a busy
airport terminal. We conduct experiments on two challenging
new datasets collected from a first-person perspective, one of
them containing very dense crowds of people with up to 30
individuals within close range at the same time. We consider
four different, recently proposed tracking methods and study
their impact on seven different performance metrics, in both
single and multi-modal settings. We extensively discuss our
findings, which indicate that more complex data association
methods may not always be the better choice, and derive
possible future research directions.

I. INTRODUCTION

People tracking from a first-person perspective using a
mobile sensor platform has been studied in the robotics
and computer vision communities for over a decade, and
various detection methods for different sensor modalities,
as well as tracking algorithms have been proposed. Often,
complex, generic data association methods are combined
with extensions that are specific to the application domain
to better deal with frequent occlusions in such environments
and model people’s behavior [1], [2]. However, very recent
work [3] reminds us that although complex data association
methods, such as JPDAF or MHT, have been shown to
deliver better performance in application areas with high-
clutter environments like radar tracking [4], no systematic
comparison between simpler and more complex data asso-
ciation methods has been performed for people tracking,
where false positive detections occur systematically rather
than randomly. Also, most systems focus only on a single
sensor modality, and are tested in simple environments with
only few tracked persons and limited dynamics.

In this paper, we want to go one step further and examine
how well some recent, publicly available tracking methods
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Fig. 1. Typical example of a crowded, dynamic situation in an airport
terminal with frequent occlusions where we want to robustly and efficiently
track persons from a first-person perspective with our mobile service robot
platform, which can (barely) be seen in the center of the picture.

perform in challenging, highly crowded and dynamic sce-
narios such as a busy airport terminal (Fig. 1). Following
recent trends in the computer vision community towards a
standardized benchmark for multi-object tracking methods
[5], [6], and to enable a fair comparison of different tracking
methods, we integrate them into a common framework and
provide them with the same set of detections as input.

Our contributions are:
• An extensive ROS-based framework that provides the

tooling for the systematic evaluation of multi-modal
people tracking algorithms under identical conditions

• A comparison, with focus on both tracking quality and
runtime performance, of four state-of-the-art real-time
tracking systems [7]–[10] that have been integrated
into the framework – including a proven MDL-based
tracking approach from the computer vision community

• Experiments on two challenging new datasets with
RGB-D and 2D laser from a first-person perspective

• A thorough discussion of strengths and weaknesses of
current methods in these scenarios, and possible future
directions of research.

Large parts of our framework, including our new multi-
modal annotation tool and the parameters used to obtain
our results, are publicly available as open source, to allow
researchers to quickly reproduce our results on their own
datasets and to evaluate their own algorithms using our
framework.

II. RELATED WORK

People detection and tracking are of high interest to both
robotics and computer vision. While both communities have,
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Fig. 2. (a) All components of our framework are implemented as separate, reusable ROS modules, most of them open source. So far, we have integrated
four existing tracking methods [7]–[10] into our framework for a fair comparison under identical conditions. (b) Our new multi-modal track annotation
tool, based upon RViz. The 3D visualization encompassing RGB-D and laser point clouds as well as annotated trajectories (red line with yellow waypoint
markers), along with 2D camera views with projected annotations (small images), significantly speeds up the annotation process. (c) Our service robot
platform, equipped with front- and rear-facing 2D laser and RGB-D sensors. (d) Our mobile sensor platform, in a similar sensor configuration.

rather individually, made significant progress in the past,
there has recently been a trend towards combining multiple
methods and modalities as the available computational power
for real-time detection and tracking is becoming larger, also
on mobile robot platforms.

In robotics, often laser sensors are used to cover a large
field of view, especially for mapping and navigation. The
methods to detect people in this setup are based on simple ad-
hoc classifiers looking for local minima in the scan [11], [12],
or more elaborate person detectors [13]. In vision, camera
and RGB-D sensor information is used as an input stream
to the detection pipeline. Often HOG features are used to
detect full bodies [14], [15], while upper-body detectors like
[10] are better suited to detect nearby persons.

In both areas, missed detections and false alarms need
to be compensated by a tracking algorithm, which often
uses some form of data association method. [8] and [16]
use the most simple NN method or NN-JPDA. Another NN
tracker, [9], is using a more sophisticated track initiation and
deletion logic and an interacting multiple model filter (IMM).
The more complex multi-hypothesis tracking methods [17],
[18] are known to outperform simple NN methods in radar
tracking [4], and have also been used for people tracking
purposes [7] along with extensions such as a social force
model or person-level feedback from group-tracking [1],
[19]. The vision based MDL-tracker [10] is also loosely
based on MHT, but formulates it as a quadratic pseudo-
boolean optimization problem, solved via mininum descrip-
tion length (MDL). As it was specifically designed for visual
data, it allows for the incorporation of an appearance model.
Most trackers use an Extended Kalman Filter (EKF) to
incorporate a constant velocity motion model of pedestrians.

With higher computational power, it has become possible
to use multi-modal sensor platforms, equipped with both
laser and RGB-D sensors, especially on service robots.
This combination makes it possible for the robots to deal
with the challenges in their highly crowded and dynamic
field of operation. While a few multi-modal systems have
been presented in the past [8], [20], [21], to the best of
our knowledge, a consistent comparison of different people
tracking approaches in a multi-modal setup in challenging
environments is still missing in robotics. Even in the vision

community, a standardized baseline evaluation of existing
tracking methods has just begun [6]. Being aware of the
challenges of groundtruth evaluation, as discussed in [5],
we aim at providing a reusable, multi-modal framework that
enables a consistent, comparative evaluation.

III. OUR FRAMEWORK

Fig. 2a gives an overview of the main components of our
modular people tracking framework. All of these components
are fully integrated into ROS and publicly available and
documented on GitHub1. In the following, we will briefly
describe the most important components, starting from the
left at the detection layer.

A. Detection

2D laser. For people detection in 2D laser range data, we
use a random forest classifier trained on the laser features
described in [13]. While our ROS-based implementation,
using classifiers from the OpenCV library, also allows to use
other classifiers such as Adaboost or SVM, the random forest
(with 15 trees and maximum depth of 10) performed best on
our manually annotated training/test data set recorded in a
pedestrian zone [19] using a SICK LMS 500 laser scanner at
a height of 70 cm and 0.25 degrees angular resolution. After
a separate ROS node has segmented the laser scans using
a variant of jump-distance clustering, the detector computes
a set of geometric 2D features on each segment which are
then fed to the classifier.

Monocular vision and RGB-D. For person detection in
RGB-D, the existing depth template-based upper-body detec-
tor described in Jafari et al. [10], which runs in real-time at
20-30 Hz on the CPU, as well as their CUDA-based, monoc-
ular groundHOG detector [14] have been integrated. We
also extended the RGB-D person detector from [22], which
applies a HOG classifier on candidate regions extracted from
a depth-based height map, with GPU acceleration.

Fusing detections. For multi-sensor people tracking, our
framework allows to flexibly combine detections from multi-
ple modalities using a detection-to-detection fusion scheme,

1https://github.com/spencer-project/spencer_
people_tracking



easily set up via XML, that works even when the particular
tracking algorithm was not specifically designed to cope with
detection input from multiple sources, as most of the trackers
in our evaluation. Using greedy NN association, we first fuse
detections from sensors with overlapping fields of view (e. g.
front laser, front RGB-D) and then aggregate the resulting
sets of detections that do not overlap (e. g. front and rear
detections). As association cost, we use either the Euclidean
or Mahalanobis distance between individual detections, or a
cost computed in polar coordinates that penalizes discrepan-
cies in distance less heavily (mainly useful for 2D image-
based detectors that do not output precise depth estimates).
All detectors integrated into our framework output detections
which adhere to the same ROS message format. A Detected-
Person comprises a position vector z′ and its uncertainty R′

in a sensor-specific 3D coordinate frame, a scalar detection
confidence, and some meta-data. This clearly defined inter-
face allows to easily integrate additional detectors into the
system, and provides the interface to the tracking module.

B. Tracking

Up to now, we have integrated four different tracking
systems into our framework for comparison purposes. We
will shortly outline these approaches in the following:

Nearest-neighbor tracker [8]. This is a very fast tracker
based upon a nearest-neighbor data association that has
recently been integrated into ROS by the authors of [8].
Motion prediction is performed via an Extended Kalman
Filter (EKF) using a constant velocity (CV) motion model,
and tracks are initiated if a minimum number of detections
occur within a small radius. Track deletion takes place if the
track covariance exceeds a certain limit. A more advanced
NN-JPDAF association method, not used in our experiments,
is also provided.

Extended nearest-neighbor tracker [9]. Also based upon
greedy NN data association, this recent work of our own
was developed with robustness and computational efficiency
in mind especially in highly crowded scenarios. Compared to
[8], it includes a velocity-based track initiation logic that only
initiates new tracks if a given amount of detections appear
with a consistent velocity profile that is compatible with
typical human walking speeds. Track deletion occurs when
the number of tracking cycles without matching detection
exceeds a certain threshold, and a distinction is made be-
tween ‘young’ and ‘mature’ tracks that have already existed
for a while; young tracks are deleted after a smaller number
of cycles, since they often represent false alarms. For motion
prediction, an IMM approach is used that combines multiple
CV and coordinated turn models.

Multi-hypothesis tracker [7]. As an additional baseline
method for comparison, we use a variant of the multi-
hypothesis tracker (MHT) after Reid et al. [17] and Cox
& Hingorani [18] with explicit occlusions labels [7]. This
probabilistic tracker does not incorporate any track initiation
logic. Instead, new track creation is modelled via a Poisson

process. Various extensions (such as incorporation of group-
level feedback or a social force model) have been proposed in
the past, but are not used in our experiments. For the purpose
of tracking people from a moving platform in dynamic
environments, the MHT is configured with a low scanback
depth to enable real-time decision making at low latencies.

Vision-based MDL tracker [10]. This method is based
on the work of Leibe et al. [23] and uses the tracking
framework of [24], [25] to build an overcomplete set of
track hypotheses, similar to MHT. Via bi-directional EKF
new trajectories are generated for the current frame by
following the motion model backwards in time, while
existing trajectories are extended from the last to the
current frame. Each track then receives an individual score
incorporating the motion model as well as confidence
and color-based appearance of inlier detections, adapted
on the fly. The interaction cost between tracks takes into
account physical overlap and shared detections. Selecting
the best subset of hypotheses from the score matrix is then
formulated as a quadratic binary problem and solved in an
MDL fashion by the multi-branch method of [26].

In all of the examined tracking systems, person detections
arrive in their sensor-specific coordinate frame and are in-
stantaneously transformed into a locally fixed frame (based
upon robot odometry) that does not move with the robot.
This ensures that the motion prediction of tracked persons
is independent from the robot’s ego-motion. In the resulting
set of measurements Z = {z1, ..., zn} ⊂ R2, we drop the z
coordinate as we only track in 2D world coordinates.

C. Groundtruth annotation and evaluation

To our knowledge, no multi-modal track annotation tool
for 2D/3D laser, RGB-D and stereo data is currently publicly
available. Our new ROS-based multi-modal annotation tool,
partially shown in Fig. 2b, leverages the powerful visualiza-
tion capabilities of the ROS visualization tool RViz and rqt
to enable annotating people directly in 3D world space in
the RGB-D and laser point clouds. For reference purposes,
annotations and 2D laser scans are also projected into the
camera images. By placing trajectory waypoints at regular
intervals (e. g. every 0.5 sec or 2.0 sec, depending on the
dynamics of the scene) and interpolating in between, the
annotation process is significantly sped up.

For tracking performance evaluation purposes, we have
integrated and extended a publicly available Python imple-
mentation of the CLEAR-MOT metrics, and implemented
further trajectory-based metrics (both described in Sec. IV-
B), as well as the OSPA metrics [27] (not used in this work).

IV. EXPERIMENTS

A. Datasets

For our experiments, we have recorded two entirely new,
multi-modal datasets (cf. Fig. 3). The Motion Capture Se-
quence has been recorded in a narrow lab environment
in front of our robot platform, shown in Fig. 2c, which



(a) Motion Capture Sequence (b) Airport Sequence 03

Fig. 3. Example RGB frames from our new datasets.

remains stationary throughout this sequence. The recorded
sensor data includes a 190-degree frontal 2D laser scan
from a SICK LMS 500 sensor, and the data from a front-
facing Asus Xtion Pro Live RGB-D sensor. In this four-
minute sequence, available via our website, four persons that
wear motion capture markers on their heads for groundtruth
acquisition are moving around in highly dynamic and erratic
patterns, very frequently occluding each other and stopping
or accelerating abruptly. This dataset is mainly intended to
simulate human-robot interaction, in which case people often
‘play’ with the robot, or try to challenge its tracking abilities.

The second sequence, Airport Sequence 03, is part of a much
larger dataset that was recorded at Amsterdam-Schiphol
airport, used by around 150,000 passengers each day, using
a moving sensor platform (Fig. 2d) that closely replicates
the sensory setup on our robot. The dataset includes 2D
laser range data recorded from two back-to-back SICK LMS
500 scanners at 70 cm height, covering a full 360-degree
horizontal field of view around the robot. It also includes
RGB-D data from two Asus sensors mounted in horizontal
orientation and facing into forward and rearward direction.

In the first half of this sequence, the sensor platform
remains stationary and observes a dense flow of passengers
disembarking from an airplane. In the second half, the
platform joins the flow of people towards a large, open area
inside the terminal. During the entire 4-minute sequence, the
platform is almost constantly surrounded by 20–30 persons
that follow various motion patterns at different walking
speeds and undergo many severe occlusions. In total, 172
ground truth tracks have been manually annotated using
our new multi-modal annotation tool. For our experiments,
we ignore all groundtruth tracks at a distance of greater
than 12.0m as correctly annotating tracks becomes highly
challenging above this distance due to extreme occlusions
and increasing inaccuracy in sensor calibration.

B. Evaluation metrics

A commonly used measure for evaluating multi-object
tracking performance is the CLEAR-MOT metrics [28]. Be-
sides counting false positives (FP), false negatives (FN) and
ID switches (IDS), they define an aggregate error measure
called MOT Accuracy (MOTA) as

MOTA = 1−
∑

k(FPk + FNk + IDSk)∑
k GTk

,

where k is the tracking cycle index. The optimal MOTA score
is 1.0, and MOTA can reach negative values if the tracker
makes more errors than there are ground truth objects GT
over the entire duration of the dataset.

As discussed extensively in [5], MOTA scores can vary
between implementations and are highly dependent on meta-
parameters such as the matching distance threshold θd
and the way in which track hypotheses are assigned to
groundtruth objects. In our version, we compute groundtruth
correspondences using a variant of the Hungarian method,
based upon Euclidean distances between object centroids in
world coordinates with θd = 1m. We ignore all correspon-
dences where the groundtruth track is physically occluded,
which is determined by searching for associated laser points
within a radius of 0.3m of the annotated position, shifted
towards the sensor origin by 0.2m to take into account that
the laser sensor only perceives the surface of the person.

One caveat is that the number of ID switches (IDS)
has very low influence on overall MOTA, as FP and FN
counts are often significantly higher in comparison. There-
fore, the absolute number of ID switches is often used as
a second, separate measure when evaluating people tracking
performance. However, a tracking system with lower track
recall (i. e. which tracks less persons by, for instance, initi-
ating tracks very reluctantly) almost certainly generates less
ID switches. Very recent research in the computer vision
community [6], which we adopt here, instead motivates to
compute the relative number of ID switches, rIDS, defined
as a product of the absolute number of ID switches and the
inverse of the recall over all frames, IDS ·GT/TP.

Finally, we also compute the trajectory-based measures
of mostly tracked (MT) and mostly lost (ML) persons [29],
denoting the number of groundtruth tracks that have been
tracked for more than 80% or less than 20% of their length.

C. Experimental setup

All of our experiments were conducted on a high-end
gaming laptop equipped with a quad-core Intel Core i7-4700
MQ processor and 8 GB of RAM under Ubuntu 14.04 with
ROS Indigo. Each single experiment has been run at least 3
times and metrics have been averaged to ensure stable results
that are not negatively affected by the not fully deterministic
message passing, synchronization and transform lookups in
ROS. For the computationally more complex experiments
on the airport dataset sequence, we have pre-recorded all
detections to ensure that all tracking algorithms are always
fed with the same input for a fair comparison.

D. Parameter selection

As highlighted in [5], for evaluations of multi-person
tracking it is important that parameters of the tracking
algorithm are tuned on a separate validation dataset to verify
its generalization capabilities and avoid overfitting. With this
in mind, we carefully tuned all of our algorithms on separate,
similar, but not identical datasets. Specifically, for tuning the
NNT [8], the Extended NNT [9] and the MHT [7], we used
the laser-based Freiburg Main Station dataset (cf. e. g. [1]),



as well as a synthetically generated dataset via a combination
of the pedestrian simulator PedSim and Gazebo (see [9] for
details). The vision-based MDL tracker has been tuned on
the ETH dataset [30] recorded in a pedestrian zone.

V. RESULTS

In Tables I–IV, we present quantitative results of the
different tracking methods for each modality on our datasets.
Qualitative results are available on our YouTube channel2. As
the MDL tracker [10] currently only supports image-based
detections from the upper-body and groundHOG detectors,
we only use it in experiments with the front RGB-D sensor.

A. Comparison of different tracking approaches

Comparing the results of the different tracking approaches
under identical conditions (sequence, modality), we note that
the simple NN approaches often generate the best MOTA
score. This might be due to a lower number of parameters,
which could result in better generalization capabilities re-
garding new scenarios. The Extended NNT is superior to
the NNT in terms of MOTA and FP%, most likely due to its
track initiation and deletion logic. Especially on the Motion
Capture Sequence with four groundtruth tracks, one or two
ghost tracks are enough to cause bad FP scores for methods
without a sophisticated initiation logic, such as NNT and
MHT. Interestingly, both of these perform very similarly in
most of the tested scenarios concering MOTA and FP%. On
the other side, the miss ratio is often the highest for the
Extended NNT, and caused by delayed track initiation.

Both multi-hypothesis methods seem to suffer from fre-
quent switching between hypotheses, a problem well known
in multi-hypothesis tracking. This results in a high number of
relative ID switches. However, in front RGB-D only (Tab. I),
the MDL-Tracker gives best FP% and thus a MOTA score
comparable to the one of Extended NNT. Note that MHT
might obtain better results if parameters such as new track
rates were re-tuned on the datasets used for testing, or if
it were allowed to delay decision making by backtracking
in a fixed-lag smoothing sense. Nevertheless, this can be
problematic for real-time motion planning applications due
to the introduced delay, and lowers MOTA when comparing
always against the most recent groundtruth.

The simple NNT tracker dominates in the number of
consistently tracked targets, i.e., higher MT and lower ML,
due to a more straightforward initiation of tracks.

B. Laser-only vs. multi-modal detections

Next, we want to investigate the benefits of the multi-
modal sensor platform and the use of both 2D laser and
RGB-D sensors. On the airport sequence, incorporating
vision-based detections from groundHOG and upper-body
increases the number of mostly tracked targets. This leads to
a higher track recall and lower miss ratio for all approaches,
at the cost of an increased FP%, ultimately resulting in a
lower MOTA score (Tab. III). A more sophisticated fusion
scheme of the different detector outputs might yield some

2https://youtube.com/spencereuproject

(a) (b) (c)

Fig. 4. Typical failure cases from the HOG detector caused by (a) clutter,
(b) reflections on the floor or (c) on the walls. Reflections on walls and
glass surfaces can sometimes also cause false laser detections.

improvement, however, a visual inspection of our naïve
fusion scheme reveals no immediately apparent problems.
Instead, further experiments reveal that the HOG detector
causes many false alarms (Fig. 4) and provides imprecise
depth estimates for distant persons, obtained by projecting
image footpoints onto the estimated ground plane. Tab. IV
shows the multi-modal result without HOG, but still using
upper-body detections from the RGB-D sensor. The FP%
decreases, but unfortunately also MT goes down and miss
rate increases. Anyhow, general tracking quality improves,
which is reflected in the highest MOTA score for each
tracking approach so far using this configuration.

On the Motion Capture Sequence, all methods struggle
with an extremely high FP%, except for Extended NNT,
whose extensive track initiation logic can again compensate
for false alarms. The resulting discrepancy of the MOTA
scores is huge (75% vs. 8-15%). It seems here that the laser
detector – instead of HOG – is responsible for most of the
false positives, often in chairs and other furniture: when using
only front RGB-D (Tab. I), FP% is around 50%-points lower.

C. Filtering detections by a static map

As a static map of the environment is often available for
navigation purposes anyway, we want to examine its use for
false positive suppression. We rasterize a circle of 15 cm
radius at the detection’s position onto the given occupancy
grid map. If less than 90 percent of all grid cells are free,
we reject the detection. As we filter on the detection level,
the process can be applied to any detector.

As no map had been recorded in the airport environment,
we restrict this experiment to the Motion Capture Sequence
(Tab. V), where it leads to an increase in MOTA of 15–65
percentage points for the different tracking approaches.

D. Runtime performance

In the last column of each table, we show the median of
the extrapolated processing rates of the tracking algorithms
based upon actually measured cycle times (without taking the
detection stage into account). All examined tracking systems
are implemented in C++. Note that the rate of MHT is
fixed to 30 Hz, generating as many hypotheses per cycle as
possible in this time frame (at lower rates, the performance
gets worse due to less frequent updates of the EKF).



Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [8] 27.7% 227 39.4% 32.5% 92 47 13701
Extended NNT [9] 44.4% 210 13.1% 42.1% 63 60 4287
MHT [7] 26.9% 338 39.4% 33.0% 87 51 28
MDL-Tracker [10] 43.7% 428 12.5% 43.1% 36 59 53

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

60.7% 131 23.6% 14.3% 4 0 20726
69.8% 151 7.8% 20.9% 4 0 5637
57.9% 173 24.7% 15.6% 4 0 28
60.7% 373 4.8% 31.3% 1 0 139

TABLE I
ONLY FRONT RGB-D DETECTIONS (SMALL FOV)

Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [8] 59.7% 236 20.8% 19.3% 112 27 6184
Extended NNT [9] 62.8% 331 3.4% 33.5% 68 35 2307
MHT [7] 58.9% 700 16.6% 23.9% 85 26 29

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

25.6% 54 70.4% 3.3% 4 0 17968
68.8% 60 25.3% 5.2% 4 0 4988
28.0% 85 67.3% 3.8% 4 0 28

TABLE II
ONLY LASER DETECTIONS (LARGE FOV)

Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [8] 45.7% 325 36.4% 17.7% 123 19 4590
Extended NNT [9] 62.1% 313 8.2% 29.4% 96 26 2005
MHT [7] 46.3% 692 34.9% 18.2% 117 22 31

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

14.8% 55 81.7% 2.7% 4 0 15703
74.9% 58 20.1% 4.3% 4 0 4690
8.6% 74 87.6% 2.9% 4 0 29

TABLE III
MULTI-MODAL DETECTIONS (LARGE FOV)

Airport Sequence 03
Method MOTA rIDS FP% Miss% MT ML Hz

NNT [8] 62.1% 226 18.7% 19.0% 114 27 6100
Extended NNT [9] 64.2% 262 3.3% 32.4% 77 33 2222
MHT [7] 60.2% 676 17.2% 22.0% 97 24 29

Motion Capture Sequence
MOTA rIDS FP% Miss% MT ML Hz

18.1% 52 77.6% 3.7% 4 0 15857
77.4% 62 16.5% 5.4% 4 0 4744
17.8% 76 77.7% 3.6% 4 0 28

TABLE IV
MULTI-MODAL DETECTIONS WITHOUT HOG (LARGE FOV)

The simple NNT is about 3 times computationally more
efficient than the Extended NNT. Both outperform the two
more complex methods MDL and MHT by two orders of
magnitudes, and require less than 10 percent CPU usage even
in very crowded environments.

VI. DISCUSSION

In the following, we discuss the most important conclu-
sions that we can draw from our experiments on the crowded
airport dataset and the dynamic motion capture sequence.

A. Influence of detector performance

A major observation that we made during our experiments
is that detector performance is the single, most important fac-
tor influencing tracking performance which goes far beyond
the impact of the chosen tracking algorithm. In a nutshell,
none of the examined tracking methods deal really well
with high false positive rates. During initial experiments,
we used a 2D laser detector trained on a different sensor
model, and using a less restrictive selection of positive and

negative training samples. This detector caused extremely
bad MOTA scores between −3.3 and −1.3 due to enormous
false positive rates (> 200%). None of the examined methods
could cope with this high number of false positives, which
occur systematically and repeatedly at the same locations.
Although the track initiation logic of the extended NNT
was able to suppress a significant amount of the false
positives, MOTA still did not exceed −1.3. Even though
multi-hypothesis trackers have been shown to work well in
(random) high clutter in radar tracking [4], the worst MOTA
score was obtained using the MHT, which does not possess
any dedicated track initiation logic. After incorporating the
static occupancy grid map to filter out false detections
beforehand, MOTA scores of all examined approaches be-
came positive, but were still significantly below the levels
presented in Sec. V.

B. Integrating 2D image-based detections

While a vision-based tracker can significantly benefit from
2D image-based detections (e. g. from HOG) that extend its



Motion Capture Sequence
Method MOTA rIDS FP% Miss% Hz

NNT [8] 78.0% 50 18.5% 2.9% 19050
Extended NNT [9] 89.4% 59 5.3% 4.6% 4926
MHT [7] 73.8% 71 21.9% 3.4% 28

TABLE V
MULTI-MODAL DETECTIONS (LARGE FOV) + STATIC MAP

maximum tracking distance beyond the useful working range
of RGB-D sensors (around 6–7m), their depth estimates are
often very imprecise. In a multi-modal setup where precise
laser measurements are available (σ ≈ 3cm), using HOG
detections as a direct input to the tracking algorithm may
therefore be detrimental. Instead, laser-based detections may
be a better choice to cover far detection ranges, while image-
based detections could be used to validate laser detections
visually, if an association can be established.

C. The choice of tracking parameters
Our experience shows that the correct choice of param-

eters significantly outweighs the choice of data association.
Tracking approaches with only few parameters may generally
be the preferrable choice, as they may generalize better
towards new scenarios. Especially complex, probabilistic
multi-hypothesis approaches often require re-learning or
manual tuning by an expert of parameters such as new-track
or deletion Poisson rates that depend on the given scenario
and can vary with location and time (e. g. when a new plane
arrives at an airport and the passengers start disembarking).
Also, automatic parameter learning approaches as outlined
in [9], [31] may help to simplify the process. To make our
results easier to reproduce and allow researchers from other
fields (e. g. HRI) to benefit from our findings, we will share
all parameter configurations used in our experiments online.

D. Trade-off between FPs, miss rate and ID switches
Another lesson we learn from our experiments is that

the choice of parameters greatly depends on the desired
application scenario. There appears to be no universal set
of parameters that fully accommodates all requirements, as
a trade-off has to be made between attaining a low false
positive count, a low miss rate, and a low number of ID
switches. The first two can be important when using the
people tracker output for socially aware navigation, since
high false positive rates (i. e. ghost tracks) could freeze the
robot, while missed tracks can cause the robot to behave
impolitely or even endanger people. On the other hand, in
person guidance scenarios, it is of utmost importance to
maintain the ID of a tracked person as long as possible,
while false positives might not be such a large issue.

As shown in our experiments, low false positive rates can
be achieved by a dedicated track initiation logic, pre-filtering
on a static map, and early track deletion. The first two options
can cause the tracker to miss certain (e. g. static) tracks, while
the last option may result in ID switches if the track suddenly
reappears after an occlusion.

E. Importance of standardized tracking metrics

Even minor differences in tracking metrics implementation
or its parameters can have significant influence on results. We
agree with findings from the vision community [5] which
underline the importance of using a standardized evaluation
script and the same detection input for all tracking systems.
Our proposed tracking framework is, to our knowledge, the
first that allows for multi-modal data annotation in RGB-D,
2D/3D laser and potentially stereo data, and enables a
systematic evaluation and comparison of different tracking
methods and detectors in a joint framework.

F. Which tracking approach to choose?

Finally, we attempt to answer the question which of the
examined tracking methods to choose for real-time people
tracking from a mobile platform in very crowded and dy-
namic environments. Looking at the multi-modal results on
the motion capture sequence (Table III, right), we see that
the same, underlying NN data association method of [8], [9]
delivers an astonishing difference in MOTA performance of
60%, depending on the presence or lack of a dedicated track
initiation logic. On the other hand, on the airport sequence,
we observe only a a 0.5% difference in MOTA between
simple NN and complex MHT data association. Therefore,
as already hinted at in [9], it appears that incorporating
promising tracking extensions (e. g. [1], [2]) into a simple
data association scheme might be the way to go. The com-
putation time which is saved by refraining from using a more
complex multi-hypothesis data association method could
instead be spent on higher-level perception, or to improve
detector performance, which has a high impact as previously
discussed. Both of the discussed NN-based approaches are
relatively easy to configure, show good performance on our
test datasets, and run at low CPU usage (<10% on a single
core) – which is crucial on a mobile service robot platform
that also needs to localize itself, plan and navigate.

Here, the hypothesis-oriented MHT after Reid [17] and
Cox & Hingorani [18] may also be at disadvantage in very
crowded environments. Since the entire state of the scene
is represented within each single hypothesis, a very large
number of hypotheses may be needed to adequately represent
all likely combinations of possible track states. In [7], up to
1000 hypotheses are generated for just 4 person tracks, each
one involving the same data association that the NN-based
methods only need to perform once. Generating as many
hypotheses as possible within a given time window, as in
our experiments, ensures a certain minimum cycle rate to be
met, but may result in only few hypotheses being generated.

Finally, scenarios where some delay in decision making
can be tolerated, such as offline video analysis or static
observation of people behavior, allow for a different mode of
evaluation where the delayed selection of the best hypothesis
can be taken into account, by deferring matching with the
groundtruth by a certain number of tracking cycles. We
believe that in these cases, the multi-hypothesis approaches
[7], [10] can show their full potential and attain higher scores.



G. Future directions of research

Using solely detectors with relatively low false-positive
rate, the difference in tracking metrics between various track-
ing approaches and implementations becomes surprisingly
small. Visually analyzing the remaining ID switches that
still occur on the airport and motion capture sequences,
we believe that in these cases, the motion model provides
insufficient information and full person reidentification is
required. Implementing a robust reidentification module can
be very challenging in scenarios such as the airport, which is
used by over 150,000 passengers per day. An open question
is still how to deal with tracks that first re-appear in 2D laser
and need to be assigned a preliminary ID, before potentially
getting visually re-identified as a previously seen person; in
person guidance scenarios, this issue potentially needs to be
dealt with on the task planning level.

VII. CONCLUSION

In this paper, we have presented a multi-modal people
tracking framework into which we have integrated four
existing tracking approaches of varying complexity, in order
to study them on two challenging new, multi-modal datasets
– one of them recorded from a static platform in a highly
dynamic HRI scenario, and another one from a moving
platform inside a crowded airport terminal. We have carefully
analyzed the performance of these existing methods with
regard to multiple tracking metrics under different multi-
modal configurations, identified and extensively discussed
their strengths and weaknesses, shared some learned lessons
and drawn conclusions that may guide possible future di-
rections of research. Finally, we want to encourage other
researchers to integrate their own detectors and tracking
algorithms into our framework, and share their results.
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