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ABSTRACT

We investigate sequence-discriminative training of long short-
term memory recurrent neural networks using the maximum
mutual information criterion. We show that although recur-
rent neural networks already make use of the whole observa-
tion sequence and are able to incorporate more contextual in-
formation than feed forward networks, their performance can
be improved with sequence-discriminative training. Experi-
ments are performed on two publicly available handwriting
recognition tasks containing English and French handwriting.
On the English corpus, we obtain a relative improvement in
WER of over 11% with maximum mutual information (MMI)
training compared to cross-entropy training. On the French
corpus, we observed that it is necessary to interpolate the
MMI objective function with cross-entropy.

Index Terms— recurrent neural networks, long short-
term memory, sequence-discriminative training, handwriting
recognition

1. INTRODUCTION

Neural networks (NNs) have become a key component of
modern automatic speech recognition (ASR) and handwriting
recognition (HWR) systems. Framewise trained bidirectional
long short-term memory recurrent neural networks (BLSTM-
RNNs) have been used on several handwriting recognition
tasks with great success [1]. In particular on tasks that require
long-range contextual information, LSTM-RNNs have been
shown to outperform regular feed forward network structures.

Usually, neural networks are trained on frame-level using
the cross-entropy (CE) criterion. However, the recognition
is done on sequence-level and also incorporates additional
knowledge sources like the language model. Furthermore,
the evaluation criterion is the word error rate (WER). This
mismatch between training and recognition suggests that us-
ing training criteria which are based on whole sequences and
incorporate additional knowledge sources can be helpful.
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Recently, significant improvements using sequence-
discriminative criteria for feed forward networks have been
reported in literature [2, 3, 4, 5]. Sequence-discriminative
training criteria have already been used decades ago for
discriminative training of Gaussian mixture hidden Markov
models (GHMMs) [6]. Kingsbury et al. [7] proposed using
the same lattice-based framework which has been developed
for discriminative GHMM training for neural networks.

In this work, we evaluate sequence-discriminative train-
ing of deep bidirectional LSTM-RNNs. Since RNNs al-
ready make use of the whole sequence and are able to in-
corporate more contextual information than feed forward net-
works, it is not clear, whether they can benefit from sequence-
discriminative training as much as feed forward networks
do. Nevertheless, we find sequence-discriminative training to
give substantial improvements over our cross-entropy LSTM-
RNN baselines.

Very recently and independently of this work, sequence-
discriminative training has been applied to unidirectional
LSTM-RNNs for ASR on an in-house database [8]. Our work
differs from [8] in that we apply sequence-discriminatively
trained LSTM-RNNs to two handwriting recognition tasks,
which are publicly available and heavily evaluated. Further,
we use bidirectional LSTM-RNNs, a more complex topology,
which has been found to be advantageous over unidirectional
LSTM-RNNs.

2. LSTM-RNNS IN THE HYBRID APPROACH

In our system, we use the hybrid approach [9] to combine
an HMM with a neural network to a neural network hidden
Markov model (NN-HMM). The emission probability p(x|s)
of observation vector x given HMM state s can be rewritten
by Bayes rule as

p(x|s) = p(s|x)p(x)
p(s)α

(1)

with prior scaling factor α. p(x) is independent of s and can
therefore be dropped in search. The state posterior probability
p(s|x) is estimated by the neural network.

RNNs extend feed forward networks by recurrent connec-
tions. The output of layer l at time t is used as an additional



input of that layer at time t + 1 which leads to the following
equation for the output y(l)(t) of layer l at time t:

y(l)(t) = σ
(
W (l)y(l−1)(t) + V (l)y(l)(t− 1) + b(l)

)
, (2)

where W (l) is the weight matrix for the output of the under-
lying layer, V (l) is the recurrent weight matrix, b(l) is the bias
of layer l and σ is the activation function. The recurrent con-
nections give the network a memory and enable it to make use
of more contextual information. To train RNNs, we use back-
propagation through time (BPTT) [10] which is a modifica-
tion of backpropagation for RNNs. However, training RNNs
is a difficult problem as the gradients tend to either blow up
or decay exponentially when they are backpropagated through
time which is known as the vanishing gradient problem [11].
An effective solution to this problem is the use of the long
short-term memory (LSTM) [12] architecture which also fur-
ther improves the use of contextual information. LSTM in-
troduces the concept of memory cells which are protected by
an input, an output and a forget gate which control the flow
of information into and out of the cell and has been shown
to yield good performance on handwriting recognition tasks
[1, 13]. All RNNs in this work are bidirectional [14], which
means that the hierarchy of hidden layers is replaced by two
independent hierarchies of layers, one which processes its in-
put in forward direction and one which processes its input
backwards in time. The outputs of the hierarchy of forward
and backward layers are recombined at the output layer which
uses a softmax activation function to predict the state posteri-
ors.

3. TRAINING CRITERIA

Let {(Xr,Wr)}Rr=1 be the training set composed of R text
line images, each consisting of an observation sequence
Xr := (x1,r . . . xTr,r) and a reference transcription Wr :=
(w1,r . . . wNr,r). The parameters of the neural network are
optimized with respect to a training criterion using this train-
ing set.

3.1. Cross-entropy training

The cross-entropy criterion (CE) is the most common train-
ing criterion for hybrid NN-HMMs. For the CE criterion, an
alignment {Sr}Rr=1 with Sr := (s1,r . . . sTr,r) is required for
each sequence. The alignment can be computed using the
Viterbi algorithm, for example using a GHMM baseline sys-
tem. The CE objective function for a set of parameters θ is
defined as

FCE(θ) = −
R∑
r=1

Tr∑
t=1

log pθ(st,r|xt,r). (3)

The objective function is optimized with each frame as inde-
pendent observation. Sequential properties of the input se-
quence are not covered by the CE objective function.

3.2. Sequence-discriminative training

CE only optimizes the decision on frame-level and does not
take the other knowledge sources of the speech recognition
system into account. In contrast, sequence-discriminative
training criteria are based on whole sequences rather than
frames and are formulated in context of the recognition sys-
tem. In this initial work, we only consider the maximum mu-
tual information (MMI) criterion

FMMI(θ) = −
R∑
r=1

log p(Wr|Xr) (4)

= −
R∑
r=1

log
p(Wr)pθ(Xr|Wr)

1
γ∑

W̃ p(W̃ )pθ(Xr|W̃ )
1
γ

. (5)

For sequence-discriminative training, usually a weakened LM
is used [15]. Further, the acoustic likelihoods are scaled by
the inverse of the language model scale γ > 0 used in recog-
nition.

MMI involves a sum over all possible word sequences,
which is approximated by word lattices. As for discriminative
GHMM training, the MMI derivative can be computed with
the forward-backward algorithm on lattices. Once the MMI
derivative with respect to the network output is known, it can
be optimized with any gradient-based optimization algorithm.

When training NNs with sequence-discriminative training
criteria, in some cases, additional heuristics are needed to ob-
tain improvements compared to the CE baseline [4, 3]. Su
et al. [4] conjectured that these problems are related to the
sparseness of the lattices. Only a fraction of all labels are
contained in the lattice at every time frame. As a solution,
they proposed the F-smoothing heuristic which interpolates
the MMI criterion with the cross-entropy criterion. The com-
bined objective function is then

FFSMMI = (1−H) · FCE +H · FMMI (6)

with H ∈ (0, 1).

4. IMPLEMENTATION

Our GPU-based implementation of LSTM-RNNs is done in
Python using the Theano library [16] which supports auto-
matic differentiation. To calculate the MMI gradient with
respect to the network outputs, we combine the Python soft-
ware with the RWTH Aachen University Open Source Speech
Recognition Toolkit (RASR) [17]. RASR does not support
RNNs yet, but supports the calculation of MMI derivatives.
For every mini-batch of sequences, the python software cal-
culates the softmax activations and transfers them to RASR



using a shared memory interface. RASR then uses the acti-
vations to calculate the MMI derivatives with respect to the
network outputs and transfers them back to the python soft-
ware which performs the BPTT procedure.

5. EXPERIMENTAL SETUP

Experiments were conducted on two publicly available
databases containing offline images of English and French
handwriting. A more detailed description of all preprocess-
ing steps and our HMM recognition system is given in [13].

5.1. Databases

For English HWR we used the IAM database [18], which con-
sists of handwritten English sentences. The data is divided
into 747 paragraphs for training, 116 paragraphs for develop-
ment and 336 for testing. A smoothed trigram word-based
language model trained on three text corpora lead to a per-
plexity of 420 and an out of vocabulary (OOV) rate of 4%
on the development set. In order to deal with the OOVs, a
10-gram character based language model with a character in-
ventory of 77 characters was trained and combined with the
word based language model [19]. The unigram LM used to
create lattices on the training data has a perplexity of 310.

The RIMES database [20] is a corpus for French HWR.
The training set of the RIMES database contains 1500 sen-
tences and 100 sentences are provided to evaluate the model.
Here we use a 4-gram word-based LM with a perplexity of 23
on the validation set and a lexicon with a character inventory
of 96 base characters. The unigram LM has a perplexity of
310.

5.2. Preprocessing

The images were cleaned using standard preprocessing tech-
niques like contrast normalization and deslanting. Afterwards
image slices are extracted by an overlapping sliding window
of width 8. Then the slices are translated to their center of
gravity and further normalized by their standard deviation in
order to generate fixed-size input frames of 8×32 pixels. The
resulting 256-dimensional vector is reduced by PCA to 20
components and augmented by its original moments in hor-
izontal and vertical direction resulting in a 24 dimensional
feature vector. On the IAM and RIMES databases 3, 742, 335
and 6, 991, 867 frames were generated from the training sets,
respectively.

5.3. HMM modeling

At first we trained an HMM with a fixed number of six states
per character where each of the emission probability distribu-
tions was modeled by a Gaussian mixture model (GMM) with
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Fig. 1: Evolution of the MMI objective function and WER
without heuristics.
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Fig. 2: Evolution of the unsmoothed MMI objective function
and WER with active F-smoothing.

128 densities per state. Afterwards a forced alignment gener-
ated by the HMM was used to generate character length statis-
tics to estimate a character dependent variable state HMM
topology. With this method we obtained 563 state labels on
the IAM database and 702 state labels on the RIMES database
which serve as targets for NN training.

6. EXPERIMENTAL RESULTS

Experiments were conducted on the IAM and RIMES hand-
writing corpora (see Section 5.1). In both cases we first
trained an HMM baseline system and obtained an alignment
with it. This alignment was then used to train a neural net-
work with CE. In the next step, lattices and lattice alignments
were created using the CE network and a unigram LM. The
parameters of the CE trained network are then used as ini-
tialization for MMI training. The bidirectional LSTM-RNNs
were composed of an input layer with one unit for each com-
ponent of the 24-dimensional input vector, a variable number
of hidden layers with 500 memory cells (both forward and



Table 1: Recognition performance on the IAM database.

System Criterion WER[%] CER[%]
Dev Eval Dev Eval

GMM ML 10.7 - 3.8 -

MLP CE 10.0 14.7 3.3 6.1
MMI 9.6 13.7 3.1 5.6

LSTM- CE 9.8 13.8 3.0 5.2
RNN MMI 8.7 12.7 2.6 4.8

Table 2: Comparison of the proposed system to results re-
ported by other groups on the IAM database.

System WER[%] CER[%]
Dev Eval Dev Eval

Our system 8.7 12.7 2.6 4.8
Doetsch et al. [21] 8.4 12.2 2.5 4.7
Kozielski et al. [13] 9.5 13.3 2.7 5.1
Pham et al. [23] 11.2 13.6 3.7 5.1

backward) in each layer and a softmax output layer with one
unit per state label. Network training was done using BPTT
without truncation and stochastic gradient descent using a
batch size of 30 sequences, no momentum, and an empiri-
cally optimized learning rate for each network. MMI training
was performed for at least 30 epochs with a duration of about
two hours each.

6.1. IAM

On the IAM corpus, we trained LSTM-RNNs with one to five
hidden layers and obtained the best results with three hidden
layers. For comparison, we additionally trained multilayer
perceptrons (MLPs) with sigmoid units and different numbers
of hidden layers and nodes. The best MLP result was obtained
with four hidden layers of 2048 nodes each. Table 1 shows
our results on IAM. The best LSTM result with CE on the
evaluation set was a WER of 9.8% which was improved by
MMI by more than 11% relative to 8.7%. We did not use
the heuristics of Section 3.2 on IAM, as the training already
worked reliably without them and prior experiments with feed
forward networks did not show any benefits when using them.

Table 2 compares our results with results reported by other
groups on IAM. Doetsch et al. [21] use a modification of the
LSTM architecture. Kozielski et al. [13] use discriminatively
trained HMMs in the tandem approach [22]. Pham et al. [23]
use multidimensional [24] LSTM networks with a Connec-
tionist Temporal Classification (CTC) [25] output layer.

Table 3: Recognition performance on the validation set of the
RIMES database.

System Criterion WER[%] CER[%]

GMM ML 15.7 5.5

LSTM- CE 12.6 4.4
RNN MMI 12.1 4.4

Table 4: Comparison of the proposed system to results re-
ported by other groups on the RIMES database.

System WER[%] CER[%]

Our system 12.1 4.3
Doetsch et al. [21] 12.9 4.3
Kozielski et al. [13] 13.7 4.6
Pham et al. [23] 12.3 3.3

6.2. RIMES

On the RIMES corpus, we only trained a single LSTM net-
work with three hidden layers with 500 memory cells each.
Without the use of heuristics, the WER quickly increased to
over 70% when trained with MMI, although the MMI objec-
tive function improved (see Figure 1). In order to understand
if this problem is related to RNNs, we also trained a multi-
layer perceptron (MLP) with a single hidden layer. It turned
out, that without the use of heuristics, the WER increased
even faster for the MLP than for the RNN. In order to improve
the result, we used the F-smoothing heuristic (see Section 3.2)
and found that a value of H = 0.75 yielded good results, al-
though the WER was not very sensitive to the exact value of
H . Figures 1 and 2 show the evolution of the MMI part of the
objective functions (normalized by the number of frames) and
WER during training wit and without F-smoothing, respec-
tively. Note that for Figure 2, the MMI part was rescaled by
dividing by H for better comparability. Without F-smoothing
the WER quickly degrades. With active F-smoothing, the CE
baseline of 12.6% is improved to 12.1% (see Table 3).

Table 4 compares our results with results reported by other
groups on RIMES. The systems of Doetsch et al. [21], Koziel-
ski et al. [13], and Pham et al. [23] are the same as on IAM.

7. CONCLUSION

We evaluated sequence-discriminative training of deep
LSTM-RNNs using MMI on two real-world handwriting
recognition tasks. We obtained a relative improvement in
WER of more than 11% on the IAM corpus, which shows that
the performance of state-of-the-art LSTM-RNN models can
be significantly improved by sequence-discriminative train-
ing. We showed that the F-smoothing heuristic is helpful on
corpora on which simple MMI does not yield improvements.
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