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Abstract

Man-made environments are abundant with planar surfaces which have attractive
properties and are a prerequisite for a variety of vision tasks. This paper presents an
incremental model selection method to detect piecewise planar surfaces, where planes
once detected are tracked and serve as priors in subsequent images. The novelty of this
approach is to formalize model selection for plane detection with Minimal Description
Length (MDL) in an incremental manner. In each iteration tracked planes and new planes
computed from randomly sampled interest points are evaluated, the hypotheses which
best explain the scene are retained, and their supporting points are marked so that in the
next iteration random sampling is guided to unexplained points. Hence, the remaining
finer scene details can be represented. We show in a quantitative evaluation that this new
method competes with state of the art algorithms while it is more flexible to incorporate
prior knowledge from tracking.

1 Introduction

Regardless whether indoor or outdoor, man-made environments are abundant with planar
structures. Walking on a planar street in a city we can observe many planar surfaces. Entering
a supermarket even more objects consisting of planar structures can be found, such as box-
shaped packaging located on shelves surrounded by a planar floor and walls.

Because of their attractive properties, planes are used in various vision tasks. Examples
include application for camera self-calibration [25, 28] and for feature matching and group-
ing [7, 15]. Planes are also used for 3D reconstruction and scene analysis [1, 3, 6, 10, 18] and
in robotics applications for obstacle detection [14], camera localization [19] and for object
recognition [23].

Our overall goal is to build a cognitive robotic experimentation framework. The ratio-
nale behind our system is to enable human tutor driven learning-by-showing as well as com-
pletely automatic on-line model acquisition by the robot (More details about the cognitive
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robotic framework can be found in [20]). Schindler et al. [24] use a model selection frame-
work for multibody Structure-and-Motion estimation of image sequences. In contrast we use
model selection to detect piecewise planar surfaces necessary to attach affordances such as
graspable and stability. Our model is simpler but enables the robot to interact in more real-
istic environments. Therefore we developed an incremental model selection method, where
planes once detected are tracked and serve as priors in subsequent images. This approach for-
malizes model selection for plane detection with Minimal Description Length (MDL), which
is well-known for segmentation of range images [12] and robust object detection [11]. We
describe plane hypotheses using the 2D projective transformation (homography) computed
from four interest point pairs in two uncalibrated images. In an iterative scheme tracked
planes and new planes computed from randomly sampled interest points are evaluated, the
hypotheses which best explain the scene are retained and their supporting points marked
so that in the next iteration random sampling is guided to unexplained points. Hence, the
remaining finer scene details can be detected.

After a review of the related work, we give an overview of the approach in Section 2
and its core parts, namely how to select good plane hypotheses (Section 2.1) and the model
selection scheme (Section 2.2). Section 3 describes the post-processing and Section 4 shows
how to incorporate plane tracking. Finally, results of the experiments are shown in Section 5.

1.1 Related work

Various approaches for plane detection in uncalibrated image pairs exist. Most of them use
a hypothesize-and-test framework. A popular method for detecting multiple models is to
use the robust estimation method RANSAC [4], to sequentially fit the model to a data set
and then to remove inliers. To generate plane hypotheses Vincent et al. [29] use groups of
four points which are likely to be coplanar to compute the homography. To increase the
likelihood that the points belong to the same plane they select points lying on two different
lines in an image. In contrast Kanazawa et al. [9] define a probability for feature points to
belong to the same plane using the Euclidean distance between the points. Both approaches
use a RANSAC scheme, iteratively detect the dominant plane, remove the inliers and precede
with the remaining interest points.

The success of the plane computation depends on the coplanarity of four matched points.
Nicolas et al. [13] propose to use the knowledge of the first homography to guide the com-
putation of further homographies and thus reduce the set of points/lines to three pairs. After
the first iteration they use three points to generate hypotheses. The selection scheme is also
iterative and RANSAC based. Piazzi et al. [22] also need only three corresponding points.
They propose to use two cameras aligned to the same orientation to compute the normal vec-
tor to a plane. The normal vector is then used to cluster triangles. This approach does not use
RANSAQC, instead sequentially similar neighbouring normal vectors of Delaunay triangles
are clustered. Lourakis et al. [16] first estimate the fundamental matrix and the epipoles.
Then the homography is computed for each set of point and line feature and a voting scheme
is applied. The homography with the highest number of votes is selected and refined using
Least Median of Squares. This approach also detects a plane and removes the inliers in an
iterative scheme.

More recent approaches concentrate on robust estimation of multiple structures.
Toldo et al. [27] propose j-linkage, an approach based on random sampling and concep-
tual data representation. Each point is represented with the characteristic function of the set
of random models that fit the point. Then agglomerative clustering is used to group points
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belonging to the same model. In [5] this method is used for the robust detection and match-
ing of multiple planes. For hypothesis generation random sampling is used. To select the
best hypotheses this approach clusters homographies. In [2] Chin et al. propose a novel
Mercer kernel for the robust estimation problem which elicits the potential of two points to
have emerged from the same underlying structure and thus can cope with more than 90%
outliers. While random sampling is used to generate hypotheses, principal component anal-
ysis and spectral clustering are applied for robust fitting. The methods of Toldo et al. [27],
Fouhey et al. [5] as well as Chin et al. [2] use clustering schemes and avoid to remove inliers
and iterative detection of planes.

Given a fixed threshold to detect inliers incremental methods favour planes detected first
over subsequent planes by greedily consuming features. Recently developed approaches
overcome this drawback by treating hypotheses equally, but plane hypotheses have to be
created independently of each other and thus it is not possible to restrict the search space,
which leads to higher computational complexity. We propose model selection based on the
MDL principle: Instead of creating all hypotheses at once, pruning models and then using
model selection, we propose to embed model selection in an incremental scheme and thus
guide randomized selection of interest points to compute more likely plane hypotheses. This
allows us to avoid an additional hypotheses pruning step without decrease of performance.
Finally, this formulation allows us to explicitly introduce priors, hence we can detect and
track planes in one scheme which is not possible in any of the approaches described above.

2 Approach

We developed a method to detect multiple planes in image pairs. The idea is to embed
Minimal Description Length (MDL) based model selection in an iterative scheme. Thus
existing planes compete with newly created hypotheses to ensure that interest points are
assigned to the best current available hypothesis. Additionally hypothesis generation can be
guided to unexplained regions. This method avoids the bias towards dominant planes typical
for iterative methods, and it limits the search space which leads to a faster explanation of the
entire image in terms of piecewise planar surfaces.

Algorithm 1 Plane detection
P+—0,T+0
k< 0,e< M/N,S+0
while n = (1 —e")* <o do
T+ P
Add Z random plane hypotheses to T’
Select plane hypotheses from T and store in P
Count number of explained interest points (inliers) / for P
if / > S then
S«1
e« S/N
end if
k< k+1
end while
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Algorithm | shows our proposed method for plane detection. In each iteration a small
number Z of new plane hypotheses T is computed which have to compete with the selected
hypotheses P of the last iteration. The termination criterion is based on the true inlier ratio
€ and the number of samples M which are necessary to compute the homographies. As long
as we do not know these values we use the best estimate available up to now. For € that is
the ratio of the number of explained interest points S of the current best plane hypotheses
and the number of matched interest points N to explain. Accordingly M is the number of
plane hypotheses currently selected multiplied with the minimal set of interest points m = 4
to compute one plane homography. Furthermore in Algorithm 1 k is the number of iterations,
n stands for the probability that no correct set of hypotheses is found and 7 is the desired
failure rate. Due to the incremental scheme it is possible to guide the computation of new
hypotheses to unexplained regions.

2.1 Incremental computation of good hypotheses

One of the key issues of approaches which use random samples is to select good features.
Our method addresses this fact in two ways. In [21] Myatt et al. propose to bias random
selection towards clusters in a multi-dimensional space. Following this approach the first in-
terest point A is selected randomly. Then all other points are ordered in increasing Euclidean
distance from A and further three nearby points are selected, depending on their position in
the sorted list using a Gaussian distribution. The second assumption is that in the following
iteration already selected homographies are good and thus the selection of the first interest
point A is biased to unexplained interest points.

2.2 Minimal Description Length (MDL) based model selection

In each iteration selected homographies of the last iteration have to compete with newly
sampled hypotheses. For the selection, the idea is that the same feature cannot belong to
more than one plane and that the model cannot be fitted sequentially. Thus an over-complete
set of homographies is generated and the best subset in terms of a Minimum Description
Length criterion is chosen. The basic mathematical tool for this is introduced in [12] and
adapted in [11]. We briefly describe the general formulation and explain our specific version
for plane detection. To select the best model, the savings for each hypothesis H are expressed
as

Su = Sdata —Ki Smodel - K‘ZSerrar (1)

where in our case Sy, is the number of interest points N explained by H and S,,,4.; stands
for the cost of coding the model itself. We use one model (the homography of a plane) and
thus S0de1 = 1. Serror describes the cost for the error added, which we express with the
log-likelihood over all interest points f; of the plane hypothesis H. Experiments have shown
that the Gaussian error model

1 &
P(fi|H):0_7meXP (—262> (2)
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in conjunction with an approximation of the log-likelihood comply with our expectations.
Thus the cost of the error results in

Serror = _IOng fl|H ZIOg fl|H 3)

bl

where log(p(f;|H)) is the log-likelihood that an interest point belongs to the plane. For & we
use the Euclidean distance of inliers to the estimated homography. Substitution of Equation 4
into Equation 1 yields the merit of a model

:M—‘

Il
7 Mz

N
p(filH))" ~N =Y p(filH) 4)
i=1

N

Su=—x1+ Y ((1-x)+Kp(filH)) 4)
k=1

An interest point can only be assigned to one model. Hence, overlapping models compete
for interest points which can be represented by interaction costs

1
S,'j = ——=

3 (1 = k2) + ko min{p(fi|H;), p(fi|H;)}) - (6)

Jk€HiNH;

In contrast s; = Sy ; represents a merit term of a plane hypothesis. Finding the optimal
possible set of homographies for the current iteration leads to a Quadratic Boolean Problem

(QBP)'

Sir o SIN
mrzllanSn , = oo (7)
SN1 tt SNN
where n= [n},n,, - - ,ny| stands for the indicator vector with n; = 1 if a plane hypothesis is

selected and n; = 0 otherwise. We embed model selection in an iterative algorithm to keep
the number of hypotheses tractable. Furthermore experiments have shown that a greedy
approximation gives good results and thus the solution can be found very fast.

3 Splitting of clusters

Plane hypotheses often capture interest points that match the underlying homography by
chance. To account for this we introduce a postprocessing step and split them into separate
planes. For this, we build a neighbourhood graph of the interest points of a plane using the
Delaunay triangulation. Then the mean and the standard deviation of the distance between
connected interest points is computed and edges longer than s times the standard deviation
are removed. For each split plane hypothesis, we verify that the support is high enough,
i.e. that their merit still surpasses k;. We found that for our scenarios a factor of s = 1
works best and leave it fixed for all following experiments. Figure 1 shows the edges of the
Delaunay neighbourhood graph in white and the plane hypothesis split into two groups of
interest points. The dark cluster is accepted and the weaker white group is rejected, since it
does not surpass the base cost k.

! QBP assumes pairwise interaction, which in our case can be violated. But this is still a good approximation
because interaction always increases cost, yielding a desirable bias against weak hypotheses.
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Figure 1: A plane (top surface of packaging) accidentally picks up interest points in the
background. Therefore we split the interest point clusters (coloured dots) using the mean
and standard deviation of edges of a Delaunay graph (white edges).

4 Combined detection and tracking of planes

One of the key benefits of our algorithm is that prior knowledge can be introduced easily.
We exploit this in image sequences where detected planes are propagated to subsequent
frames. For this, the interest points of planes detected in the previous image pair are matched
with interest points of the current frame, followed by a robust homography estimation using
RANSAC. Thus Algorithm 1 is extended with tracked planes P, 4ckeq, Which are used to
initialize P. Following P 4ckeq the initialization value of the inlier ratio € increases to the
number of accumulated interest points of the tracked planes divided by the total number of
matched interest points. Hence, plane detection already starts with an initial guess of planes
which have to survive the following hypothesis selection stage.

S Experiments

For all experiments we use SIFT, the well known interest point proposed by Lowe [17].
SIFT features are matched in image pairs using the Euclidean distance of the descriptors
and matches are accepted if the NNDR (nearest/next ratio) d is below 0.8. To compute the
homography we follow Hartley [8], that is points are normalized to zero mean and scaled to
get an average distance of /2 from the origin. Then the homography is estimated using the
Direct Linear Transform (DLT) algorithm.

To test our method we use two completely different sets of images. Motivated by our
cognitive robotic scenarios the first set of images show packaging of arbitrary shapes typi-
cally found in a supermarket (see Figures 5). We placed each object in front of a low textured
background as well as in a highly cluttered scene. For comparison, we additionally test the
system with the houses data sets published by the Visual Geometry Group at the University
of Oxford (see Figures 6). To get ground truth we manually marked all planes in the fore-
ground and dominant ones of the background, resulting in 231 planes in 56 images. To test
the tracking of our method the packaging data set consists of 8 sequences with 4 subsequent
images, whereas we used 6 sets from Oxford also with 4 images, but these images are not
ordered in a sequence.

Three numbers are computed to compare the methods, that is the feature based precision
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Figure 2: Parameter optimisation

= b (8)
nfap TRffp

which is the ratio of the number of inliers ny,, correctly located on a ground truth plane

and the total number of features per detected plane ny,, +ny rp. The second number is the

oversegmentation rate

Ppr

"p.fp 9)
Npip +Np,fp
per plane which indicates if an algorithm splits a plane in several parts. n, r, the number of
false positives is the number of detected planes minus the number of correct detected planes
npp- Furthermore we computed the plane based true-positive rate (tp-rate)

Pov =

Mpep
Dip= —7T — (10)
v Mptp+7p, fn

which describes the ratio of the correctly detected planes 7, and the total number of planes
Npip+Np,fn-

5.1 Parameter optimisation

To get an idea about the behaviour of the parameters of our algorithm we tested it with the
first half of the packaging data set. For this, we vary the parameters: number of random
hypotheses Z = [1...40], x; = [1...10] and x, = [0...1.] and plot the performance measures.
Figure 2 shows that our algorithm is quite robust against variation of the parameters. While
the over-segmentation-rate in Figure 2(a) is almost constant the precision slightly increases
at the beginning and the tp-rate has a peak at Z = 10. The Parameter kx; mostly influences the
over-segmentation-rate, the tp-rate slightly decreases and thus we set k; = 5 to the minimum
of poy. In Figure 2(c) it can be seen, that the Parameter k; is stable in a wide range. We set
it to k3 = 0.3 where the tp-rate has a maximum and over-segmentation-rate is rather low.

5.2 Plane detection

For this test all images of the packaging data set and the oxford houses data set are used. We
compare the proposed method with/without tracking of planes (SPlaneTrack/SPlane) with
iterative plane detection (DPlane) and j-linkage based plane detection (JPlane, see [5]).
DPlane is a simple RANSAC based method, where in each iteration dominant planes are
detected, supporting features marked and excluded in the following iteration. For all the
following tests we use our own implementation of the algorithms.
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Figure 3: Comparison of plane detection methods. Left graph shows the plane detection

result for images with no background texture. Tested images of the right graph have a highly
textured background.
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Figure 4: Results for all our images (left) and for the oxford houses data set (right).

The experimental evaluation shows that our model based selection method outperforms
the other methods in terms of tp-rate and lower over-segmentation especially for complex
scenes. Although it is not optimized for outdoor environments of the Oxford houses it com-
petes with JPlane. Only the incremental RANSAC approach DPlane has a higher tp-rate of
the cost of over segmentation. If one compares Figure 3(a) with the Figures 3(b) and 4(b)
an interesting detail can be seen. Although we use the same postprocessing step for the
methods (see Section 3) for the case of highly cluttered images over-segmentation increases
for DPlane and JPlane, while it remains low for SPlane. Comparing Figure 3(a) and 3(b)
it seems that all methods have a higher tp-rate in case of a cluttered background. For fore-
ground objects some of the marked ground truth planes are very small and thus easily missed,
while the background planes of the cluttered scenes are generally rather large and thus more
easily detected, which explains the higher overall tp-rate for this scenes.

Table 1 shows the results for the packaging data set depict in Figure 4(a). Comparing
SPlane and DPlane it can be seen that although SPlane converges faster and the mean number
of random sample per image is lower the tp-rate is higher. A reason therefore is that incre-
mentally filtering out of interest points which support planes detected first in DPlane leads
to a decreasing inlier/outlier ratio and thus to a increasing number of samples for planes de-
tected later. In contrast SPlane treats all planes together and thus the number of samples has
an appropriate lower value. In Figure 5 planes detected in our packaging data set are depicted
in different colours. Whereas in Figure 5(a) and 5(b) flat objects located on the groundplane
are “correctly” detected as one plane, they are separated in Figure 5(c). Because of the fore-
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| method | precision | ov. segm. rate | tp-rate | num. samples |
SPlaneTrack 0.987 0.278 0.787 2455
SPlane 0.986 0.261 0.753 2407
DPlane 0.979 0.273 0.753 8278
JPlane 0.983 0.241 0.608 5000

Table 1: Comparison of different methods for plane detection (packaging data set)

(b) (c)
Figure 5: Examples of our packaging data set.

ground object, which separates the magazine and the CD’s, our postprocessing described in
Section 3 also splits this plane in two separate groups. Figure 6(a) shows MertonCollegel
from the Oxford data set. Features assigned to detected planes are drawn in different colours,
whereas false matches, inaccurate features and features which belong to not accepted weak
planes are depicted in white. The white lines indicate the motion of the interest points in the
image pair. Another example of the Oxford data set is shown in Figure 6(b).

6 Conclusion and Further Work

We formalize model selection with Minimal Description Length to detect multiple planes in
images. Planes once detected are tracked and serve as priors in subsequent images. Instead
of creating all hypotheses at once an incremental scheme is proposed where tracked planes
as well as planes of former iterations serve as prior to guide randomized selection of interest

(a) MertonCollegel (b) WadhamCollege

Figure 6: Examples of the Oxford Visual Geometry data set.



10 PRANKL et al.: PLANE DETECTION AND TRACKING

points to unexplained regions. Hypotheses which best explain the image are selected using
an MDL criterion and retained to the next iteration. Although the method is incremental
planes have to compete for features and thus features are treated equally. The result of
our algorithm is planes specified by 2D homographies and sparse point clouds. For future
work we want to extend the post-processing to get a dense piecewise planar object model.
One possibility would be to introduce a multi-label segmentation using a Markov Random
Field (MRF) optimization and graph-cuts, e.g., such as proposed by Sudipta et al. [26] and
Micusik et al. [18].
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