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Abstract— Scene understanding is an important prerequisite
for vehicles and robots that operate autonomously in dynamic
urban street scenes. For navigation and high-level behavior
planning, the robots not only require a persistent 3D model
of the static surroundings—equally important, they need to
perceive and keep track of dynamic objects. In this paper,
we propose a method that incrementally fuses stereo frame ) Semantics
observations into temporally consistent semantic 3D maps. ‘ : ¢ R
In contrast to previous work, our approach uses scene ow \ ]
to propagate dynamic objects within the map. Our method
provides a persistent 3D occupancy as well as semantic belief
on static as well as moving objects. This allows for advanced

reasoning on objects despite noisy single-frame observations Previous map
and occlusions. We develop a novel approach to discover object

instances based on the temporally consistent shape, appearance, .Eﬁﬁ!
motion, and semantic cues in our maps. We evaluate our -
approaches to dynamic semantic mapping and object discovery f\'

on the popular KITTI benchmark and demonstrate improved

results compared to single-frame methods. Fig. 1. We map dynamic environments in 3D occupancy grid maps
using stereo visual odometry, depth, and scene ow. Image-based semantic
I. INTRODUCTION segmentation is additionally temporally Itered in the semantic maps and

made spatially consistent in a dense CRF. Scene motion is compensated for
Great progress has recenuy been achieved in the devekﬂy_warping the mapped dynamic objects with the estimated scene ow.
ment of vehicles that operate autonomously in urban street

scenes. Such systems need in-depth scene understanding,dq a5 dynamic objects. This not only has the potential to

navigate safely in complex everyday traf c scenarios. FOfmprove semantic segmentation alone. By discovering ob-
motion planning and navigation, the vehicle not only requirej%ctS in the persistent dynamic map, our proposal-generating
a 3D map of its static surrounding, but it should also keepethod is less susceptible to noise in the depth or scene ow
track of moving objects in the scene. It should be able tgpserved in single stereo frames. Object discovery can make
parse task-relevant semantics in the scene and observe objggt of semantic segmentation from a series of views, such

instances for which pre-trained detectors are not available g{at opjects become observable even through occlusions.
would be dif cult to obtain.

In this paper, we propose a novel approach to 3D semantic!" €xperiments, we demonstrate the performance of our

mapping with stereo cameras that explicitly takes the motio"f]1ppro"’1_Ch to semantic 3D mapping and object discovery in
in the scene into account (see Fig. 1): our method ma namic urban traf c scenes. We evaluate our method on

3D occupancy of the static scene parts, and — importantlys—equences of the popular KITTI benchmark suite [3]. We

propagates and updates moving objects in the dynamic mgpmpa're our approach to single-frame methods and demon-
using stereo depth and scene ow. We probabilistically lterStrate improvements in terms of the accuracy of semantic
image-based semantic segmentations within these mapsswmentatlon and the quality of object proposals.
order to obtain temporally and spatially consistent semantic The main contributions of our work are summarized as
3D segmentations. Based on this persistent 3D semant@lows: (1) We propose a method for 3D occupancy mapping
representation of the dynamic environment, we propose @m dynamic environments based on state-of-the-art methods
object discovery approach that nds object instances basdar stereo depth, scene ow, and semantic segmentation.
on the shape, appearance, semantics, and motion cues mé#)- We fuse the depth measurements and the semantic
tained in our maps. segmentation of individual stereo frames within our dynamic
In contrast to previous approaches to semantic mappimgaps to induce temporal consistency. To this end, we propose
in urban street scenes (e.g. [1], [2]), our approach lters a probabilistic ltering technique that warps the occupancy
probabilistic belief on occupancy and semantics of static s@nd semantics belief in the map using the observed scene
ow. In addition, we use a dense CRF on the 3D voxel grid
All “authors are with the Computer Vision Group, Visualin order to enforce spatial consistency. (3) We propose an
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Germany deyvid.kochanov@rwth-aachen.de _~ "approach to object discovery based on the aggregated shape,
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ll. RELATED WORK A4

Previous map Predict and update Spatial consistency
Recent trends in the development of autonomous vehicléd 'I!iil D ‘.ggig B
and robots have fuelled research in semantic mapping and - ;
scene understanding. Simultaneous localization and mapping s &
in urban street scenes with vision sensors has attracted much|  Previous map Predict and update Spatial consistency
attention in recent years. Current state-of-the-art methods EI D . o
such as ORB-SLAM [4] or LSD-SLAM [5], [6] demon- ‘ﬂi .Eiii=’
strate consistent large-scale trajectory estimation and 3D I ]
reconstruction. While these methods can cope with a limited Previous map Predict and update | [Spatial consistency
number of moving objects as outliers to the SLAM process, 2 >
they are inherently designed for static environments. Only ‘;Eﬂi .iiiﬁ!

few SLAM methods have been proposed that explicitly
distinguish between the static parts of the environment arﬁlitigﬁnz- ( e‘l’l\c’:,vesfggéce% te;?tg‘)’rg'ndcosniz:“ggn;?sr?e“rgch ;Sifﬁfzivger‘?siyecs;ag
dynamic objects (e.g. SLAMMOT [7], [8], or [9]). In the (brOW?1 S‘,’]aded parts) inpour Semam@ maps. y
indoor RGB-D SLAM domain, KinectFusion [10] and point-
based fusion techniques [11] have been proposed that capresent the map. They segment the mesh with a CRF using
separate dynamic parts from the static background and @raage-based appearance and mesh-based geometry features.
clude them from tracking and mapping. Recently, Newcombe In contrast to our approach, these semantic mapping
et al. [12] propose DynamicFusion, a SLAM method thamethods assume the scene to remain static during mapping.
takes non-rigid motion in a small-scale scene into accounery recently, Vineet et al. [2] addressed this shortcoming.
to map a canonical shape model of the deforming object. They apply random forest segmentation to individual stereo
None of the aforementioned methods incorporates sceiages and fuse the labelled stereo depth in a 3D trun-
semantics such as the categorization of surfaces into cagted signed distance function (TSDF) representation using
building or road, which is often argued to be an importanmemory-ef cient voxel hashing. For voxels annotated with a
aspect in scene understanding. Approaches in this line pétentially movable object class, they allow for a faster decay
research can be distinguished by the way the semantic seg-the integrated TSDF values, such that their measurements
mentation is obtained and how this information is integratedre removed more easily from the map from con icting
and made temporally and spatially consistent in a global mapbservations towards the static background. We explicitly
Koppula et al. [13] investigate semantic mapping using RGBake the estimated motion on such objects into account and
D sensors in indoor scenes. They label the 3D points in gmopagate occupancy belief in a 3D map with scene ow.
aggregated point cloud map and impose a Markov randoBy doing this, we can probabilistically Iter the semantic
eld model on the points with appearance and geometric fedabelling of static parts as well as moving objects.
tures. Hermans et al. [14] also semantically label a 3D point We also demonstrate the utility of these combined features
cloud map which they obtain using RGB-D visual odometryin a temporally integrated map representation for object
Their approach, however, rst segments individual RGB-Ddiscovery. Several previous approaches to object discovery
images with a random forest classi er and probabilisticalljuse single-image cues such as geometric or appearance-based
Iters the soft labelling of the random forest in the 3D saliency (e.g. [19], [20], [21]). Some methods also discover
points. A dense 3D conditional random eld (CRF) enforceobjects from motion cues over multiple frames [22], [23].
spatial consistency on the semantic labels of the point clofdur approach Iters geometry, appearance, semantics and
map. The semantic SLAM approach byii€kler et al. [15] motion cues in a consistent map over subsequent frames.
lters the semantic segmentation from an RF classi er inWe apply clustering in this temporally integrated multi-cue
multi-resolution surfel maps, while concurrently performingmap in order to discover objects.
keyframe-based SLAM based on the map representation.
Differently to our method, the aforementioned approaches Il. OVERVIEW
assume the environment to remain static during the semanticOur approach takes as an input a sequence of stereo image
mapping process. pairs and incrementally reconstructs a 3D semantic map (see
Semantic mapping in outdoor street scenes is considere@). 1 for an illustration of the overall approach). More
by Sengupta et al. [16]. In this work, stereo images are rgprecisely, the map is represented as a 3D voxel grid which
segmented into object classes with a CRF approach. Instores information about occupancy and semantic object-
second CRF stage, the image-based semantic segmentatitass categories in the contained volume. For 3D mapping,
is fused on a ground plane projection. In [1], Sengupta ete determine depth from the stereo images and estimate
al. fuse a CRF semantic labeling of stereo images in a 3ibe camera pose using visual odometry in order to obtain
point cloud map. Floros and Leibe [17] use a higher-ordehe camera trajectory from which we integrate the measured
CRF in order to enforce a consistent semantic labelling of 3Depth in a global map reference frame.
points that backproject into individual image-based semantic A major challenge in typical street scenes are moving
segmentations. Valentin et al. [18] use a triangle mesh tbjects. If we simply update the voxels and do not take



motion into account, moving objects would leave trails obemantic segmentation approach proposed in [26] which is
erroneous occupancy belief in the map. We thus compubased on classifying supervoxels using a random forest clas-
scene ow, i.e., the 3D motion of each stereo image pixeki er. Instead of making a hard decision on each supervoxel,
in order to take motion into account. We accumulate thi& provides a probabilistic classi cation output in the form
ow in the voxels and use it to propagate the occupancef a label distribution. This way, the uncertain decisions
and semantic belief on dynamic objects within the map. Toan be lItered temporally and be incorporated as per-voxel
this end, we propose an efcient grid warping procedurdabel evidence in a probabilistic spatial CRF model. We use
which also takes the uncertainty of the ow measurementthe image and point cloud to compute the following 150-
into account. dim. features for each supervoxel within the random forest
At every time step, we also extract semantic informatiorlassi er as in [26].
from the stereo images and lIter it in the map through time. 1) Appearance Featuresthese features capture the color
We compute an image-level semantic segmentation whi@nd texture statistics of the supervoxels. For the color, we
results in a probabilistic per-pixel label assignment. Usingompute a 10-bin color histogram in the CIELab color space
the label distribution, we perform a Bayesian update on thier each channel. In addition, we determine the mean and
semantic category of the corresponding voxel. covariance of the gradients in each channel. Finally, we add
This method of updating the map allows us to integrata histogram of textons computed as described in [27].
information from multiple frames (see Fig. 2). A main 2) Density FeaturesThis shape feature describes the den-
advantage of the integration over time is the ability tcsity of 3D points around the supervoxel They are computed
enforce temporal consistency in the semantic labeling aray estimating a ground plane and discretizing the point
3D reconstruction. We additionally employ a probabilisticcloud into a grid with 3 height bins, using 3 different grid
3D Voxel-CRF model to enforce spatial consistency of theesolutions to capture context at different scales. We project
semantic labels. Note that we lter the distribution overeach centroid of the supervoxels to the grid and examine its
semantic labels in the temporal domain and only apply a CR&=neighbourhood at its height.
on top of the accumulated voxel grid to obtain the most likely 3) Spectral Features:We compute this second type of
explanation of accumulated measurements in each framghape features from the eigenvectors and the eigenvalues of
This explanation may change in future frames in the presenttee covariance matrix of the points in the supervoxel. Look-
of new evidence. ing at eigenvalues, we can quantify pointness, linearness,
Finally, we describe our object proposal generation methaslirfaceness and curvature [28] of the segment. We compute
that builds on the reconstructed 3D semantic map. Ouhe surface normal from the eigenvectors and measure the
method uses a clustering algorithm on the aggregated magsentation of the supervoxel as the angle between the surface
that groups voxels into objects proposals based on shapmrmal and the ground plane normal.
appearance, motion and semantic cues. 4) Locational Features:The relative location of a super-
voxel in the scene is encoded by the distance of its centroid
to the ground plane, its distance from the camera, and the
A. Stereo Depth and Motion Estimation horizontal angle between the optical axis and the ray from
Based on the stereo frames we estimate visual odomettie focal point to the supervoxel's centroid.
image depth and scene ow, which we will further use in our . .
semantic mapping pipeline. We build on the stereo visueﬁ' Mapping of Dynamic Scenes
odometry proposed by Geiger et al. [24]. It is a sparse We now arrive at our algorithm for 3D mapping of
keypoint-based method which is speci cally designed foPccupancy and semantics from a moving stereo camera in a
the stereo setup and the street scenes typical to automotfgnamic (street) scene. The main challenge in this setting is
scenarios. to construct a mapping method which can effectively account
Given two stereo pairs, captured at consecutive time steff8! the motion of objects. In each time stepour algorithm
scene ow methods estimate the 3D motion at each pixel ifeceives the current stereo frarhe From this image, we
the scene. In our experiments we used the state-of-the-gtract a depth mag and a semantic segmentatisinwhich
scene ow method by Vogel et al. [25]. For each pixel inwe summarize in the observation = fd;;sig. Semantic
the images the method computes both depth and 3D o®egmentation yields a probability distributiqly j I:) on
concurrently. It approximates the scene with a set of plan#ie labelling of each image pixel.
segments in superpixels for which a rigid motion towards In addition to these single-frame measurements, visual
a reference stereo frame is determined. Note that we c@dometry provides us with the posg of the camera in
easily subtract the scene- ow induced by the ego-motion ghe world frame at timet. Piece-wise rigid scene ow; is

IV. SEMANTIC MAPPING IN DYNAMIC STREET SCENES

the camera using the visual odometry estimate. estimated from the last frame ; to the current frame;,
. . which we compensate for the ego-motion of the camera
B. Semantic Stereo Image Segmentation with the visual odometry estimate. We summarize the visual

Semantic segmentation aims at mapping the pixels iodometry and scene ow estimates up to timeby P!
the stereo images to one of several category labe®s andF!, respectively. In analogy, we writé' to denote the
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Fig. 3. Voxel map representation. Top: Corresponding image from th?ig. 4. Voxel-age (color-coded) in frames 1, 10, and 15 of the KITTI

KITTI benchmark. M[ddle: Vo_er map for the stereo frame, colorized Withtracking sequenc@0. Voxel-age corresponds to the number of frames in
the average color of image pixels in the voxel. Bottom: Average voxel oWpich the voxel was updated. Remarkably, due to scene ow propagation,
(red lines, voxel centers depicted as colored disks). voxels on dynamic objects exhibit similar ageing like the static p@mst

1) Map RepresentationWe represent our map with vox- viewed in color)

elsv; using sparse and memory-ef cient voxel hashing [29]. 3) Dynamic Map Prediction:In the prediction step, we
Each voxel of siz&:1m 0:Im 0:1m maintains a distribu- determine the distribution

tions on occupancy(o; j X'; P; F') and semantic labelling X X
Pl i XS PYSFY. Plyg JX© HFY = P(Yej §Ye 1k = Vifex)

2) Probabilistic Mapping: The stereo images provide ob- kY ot 1t 1
servations of voxel occupancy and semantic labelling, which plyr 1k =Y JiX" HF ) (@)

we transform from the camera frame to the world frame usingy propagating the occupancy and label beliefs in the voxels
the visual odometry estimate. Scene dynamics is observed fym the last time step based on the current scene ow
ego-motion-compensated scene ow. Under this model, thestimate. Note that we model occupancy and label belief
occupancy and semantic belief in each voxgl is updated as stochastically independent, such that we can process both
in a recursive Bayesian ltering scheme, modalities in separate Bayesian lters.

Clearly, the estimated scene ow and the imposed model
Cut.et. oty assumptions are not fully satis ed in a real setting. Hence,
Pl JX5F5PY) = the state transition should also induce additional uncertainty

P(Xtjyey:p)P(yy i X' HFSPY; (1) on the occupancy and label belief. We incorporate this by
approximating the state transition model with two model

where is a normalization factor. In the following, we will terms
drop thg dependency on the visual odometry estimBtes P(Yi; jxt LEY=
for brevity. X . ot 1t
The lter decomposes into a prediction and a correction Pl T2 = y)p(gj =yiX® “F) ()

step. The prediction step applies a state transition model y

and warps the voxel map based on the scene ow. Avherep(yy j ;) now smoothes the occupancy and label
subsequent correction update step incorporates the imagkstribution in a voxel. The propagation then splits into two
based depth and semantic observations into the map. F§parate processes: In a rst step, we propagate the belief
ef cient integration of the stereo image-based observation§om the previous frame with the scene ow to obtain an
we rst accumulate the occupancy, semantics, and scene olgtermediate distribution o ,
measurements in a local map. This local map is aligned with . 1.

i : : plgy = yix"' HF=
the grid of the temporally integrated map. Fig. 3 shows an ] X '
example of a local measurement magp generated from a PR = Vive 1k = ¥ifek)
stereo frame. k

piyr 1k = yjiX" LEU Y (@)



The second step applies the smoothing model, 0:2. Measurements that fall into voxels are rst accumulated
( ) 0 in a local measurements map. For the occupancy update, we

PVik = Vi® 1k =YY= !f Y=Y (5) employ amethod similar to the counting model of Haehnel

' ' h if y6yS et al. [30]. We approximate the occupancy belief in a voxel

where N is the number of state variables andis a pa- of the local measurement map directly from the point count,

rameter that controls the degree of smoothing. We apply the m o _ min( ;N % _
smoothing separately to the occupancy and semantic states. P(Oct J Xt) = o ©)

By the separation into history- and smoothing-based trm\‘/\?hereN,L“;t is the number of measurements in vokedithin

sitions, we can approximate scene ow propagation using
. . the local measurement map, and , , and are param-
particle propagation scheme, :
eters of the inverse sensor model. Consequently, all voxels
= yixXt LEYY in the global map that contain measurements in the local
p(g; = y>g F) . L
measurement map are updated with the occupancy likelihood

[i] — v 1. 1y. .
Wl PO 1k = yIXE HED D) (6) computed in eq. (8). Occluded voxels are neglected for the
i2P ) (Fx ) update.
For eagh voxelk, we generate a set of particled = We accumulate the semantic image segmentation in the

s{i] 1x - The position of the particles is sampled accordin%zccﬂerg?fesl:rsv?:ﬁgtam\fg;gy averaging the label distribution

to the distribution of the current ow measuremeiit of
the voxel. With P} (fix) we denote the set of particles p(Im, j %) = - 1 .
originating from voxelk that end up in voxej through ’ jUKj

the ow fx . Each particle is associated a Weiglr{t] Kk = ) . .
1 ’ where U(k) is the set of pixels that fall into voxet, and

~—, where Ny is the number of particles sampled in the ) L . .
N 1
orkiginating voxel. update the semantic belief in the integrated map accordingly.

Since the scene ow estimate itself is affected by noisep. spatially Consistent Semantics

we resample the particle positions in the 3D voxel map under Due to the spatial coherence of obiects. neiahboring pixels
the distribution of the scene ow. Unfortunately, piece-wise P ) » N€19 gp

. . C or voxels in the map are very likely to have the same seman-
rigid scene ow does not provide this distribution. Instead,. . .
tic category. However, the image-based classi er as well as

we approximate it with a normal distribution centered at th?he Bavesian maonind aoproach treat pixels and voxels inde-
scene ow and with the covariance of the difference vector Y pping app P

Rendently. We hence enforce spatial consistency on the voxel
mgdp using a dense conditional random eld (CRF) [31].

X
P(lu j Xt); 9)

u2u (k)

between the stereo depth estimates of the correspondi

pixels in the subsequent stereo frames, wt 17T out We use the belief on the label distribution in the voxels

2 ut, Where ; is an approximation of the covarlance . o 1 semantic maps as unary potentials for the CRF.

of the stereo depth estimate assuming constant pixel aﬁlﬂe airwise potentials model spatial and appearance-based
disparity noise. Consequently, the distribution of the scene P P P P

ow is approximated with the normal distributioN (f; ¢). smoothness using the kemel

The particles are sampled from their initial voxel positions kb bikE ko ok kpj pik?

into their new voxels according to this normal distribution. K(fj:fk) = wie ’ ’ + wze ’ ;
Special care needs to be taken for voxels in the fre

space that gets occupied by a moving object. If particl
are sampled into such a voxel, we reset the occupancy voxels. The weight parametens andws, control the

semantic belief with the belief of the particles. Since W‘?mportance of the two kernels in the pairwise potential

only use a low number of.samples in each vgxel, our par.t'dﬁoth in relation to each other and the unary potentials. The
scheme can be more ef cient than 3D Gaussian ConVOIUt'onétandard deviations and  set their range

while it still approximates the belief propagation well.
4) Occupancy and Semantics Measurement Updelte: E. Large-Scale Mapping

integra_lte measurements into the global voxel map using |n our online mapping system, we only maintain a volume

Bayesian updates, close to the current camera frustum in the temporally inte-

grated map. In order to obtain large-scale reconstructions

%\'merefj andfy are features consisting of the voxel center
ositionsp;, p« and the average CIELab colog, ¢ in

m o
p(yy j X4 FY = PO I x:) p(yy; § X' L FY; (7) of the scene, we fuse the integrated map periodically into
Py ) a large-scale global map. Each voxel in the global map

where is a normalization factor. Note that we use uniformis set to its most recent belief from the integrated map.
priors p(yz; ). We only transfer the voxels with an average scene ow

Instead of raycasting in the map, we determine voxels d®low a threshold in order to include only the static parts.
measured free by projecting them into the stereo frame amar robustness against outliers, we discard voxels below
determining if they lie in front of the measurements. In sucla speci c voxel-age (we require at least 2 frames in our
cases, we apply a constant occupancy likelinp@® j x;) =  experiments).



V. OBJECTDISCOVERY IN DYNAMIC SEMANTIC MAPS RF + CRF semantic map

Generating object proposals from semantic maps instead recall  loU  recall loU
of individual images has several potential advantages. Inte-  object 84.02 67.39 83.02 70.39
grating semantic segmentations over time leads to a more ~ foad 94.04 9150 9341 92.11

. ; X ) building 83.29 75.27 86.91 76.68

accurate, stable labeling. The integration of occupancy in- tree/bush 70.36 6459 68.97 64.35
formation over time signi cantly improves the noisy stereo sign/pole 409 383 196 188
i i ; i ; : ) sky 35.84 3443 4091 39.75
depth information present in a single frame. Finally, integra grass/dirt 6063 2677 7946 2593

tion over time in a map helps us to generate proposals for

objects which may be strongly occluded in individual frames. class avg. € 25m) 6854 5747 7046 5781
We propose to employ density-based spatial clustering -

(DBSCAN [32]) on features extracted from the semantic E;;?S?(,%.(gh%i’:;{'hss)) o e oo

map (see. Fig. 8). DBSCAN clusters points in a feature-

pixel avg. € 25m)  87.71 7825 87.99 78.55

space based on their distance in a bottom-up way. It starts TABLE |
Clusterlng at core pOIntS W|th at |eaNmm number Of SEMANTIC SEGMENTATION RESULTS ON THEKITTI ODOMETRY
DATASET.

points in an"-neighborhood. It expands from these points

recursively to core points within th&-neighborhood and . . . . .
. . e . corresponding voxel in the map. Only if no depth is available
includes all points within the neighborhood. :

at a pixel, we ray-cast for the label.

As features for each occupied voxel labelled with the _. o .
N . . Fig. 5 shows a qualitative result of our mapping approach
object' class label, we use a concatenation of its center : .
. : . .In a high-traf c road scene. It can be seen that the dynamic
position, its average color in CIELab color space, and its, . :
) objects are well segmented from the static parts and not
average scene ow. We extract proposals at multiple scales

. .o . ; included in the large-scale map. The semantic segmentation
by varying the"-neighborhood in a discrete range of val- : . :
i A . nds a consistent labelling of the cars and traf ¢ signs as
ues ( 2 f 1:7;1:9;2:1; 2:3; 2:4; 2:6; 2:8; 3:0g in our experi- ! .
i ” objects. It also segments the larger surface categories such
ments). For each radius, we additionally vary the occupan

C .
thresholds , at which voxels are considered for clustering‘ﬂj}ls_l_rr?aOI and veigftat|on \;Yte”.' d using the P IVOC
(we use the values, 2 f 0:6;0:7; 0:8; 0:85; 0:9; 0:95; 0:98g € segmentation qualily IS assessed using the masca

. . . intersection-over-union measure (| . Wi mpar r
in our experiments). After computing proposals across scales ersection-over-union measure (loU [33]). We compare ou

; . . -approach with a purely image-based semantic segmentation
we merge them according to their bounding box overlap vaéethod that applies spatial smoothing on the RF output

using the dense CRF [26]. Note that for pixels without a
valid depth, the pixel is assigned to a void class which is
VI. EXPERIMENTS accounted as false positive if it should label one of the object

We evaluate our approaches to semantic mapping aﬁgasses_. In Table | we report recall and loU over all pixels,
object discovery on datasets from the popular KITTI bencrlass-wise, and by class-averages on the test set. From the
mark [3]. On the KITTI odometry dataset, we evaluatd€Sults we observe that on average the semantic informa-
semantic mapping based on custom dense object-class HAN contained in our maps clearly outperforms the single-
notations of 200 of the images. We used the same split inffRMe-based semantic segmentation baseline (RF+CRF). Our
training and test set to train the random forest classi er angi€thod also demonstrates improvements in recall and loU
to evaluate our segmentation results as in [26]. Our meth&Yer the single-frame-based segmentation on several object
for object discovery is assessed on the tracking dataset whigiSses with medium-sized and larger structures. Notably,

comes with ground truth annotations for bounding boxes o ¢lasses which contain ner structures, image-based seg-
objects such as cars, pedestrians, and bicyclists. mentation can perform slightly better. This is likely due

Besides training the RF classier, we also determined the highly noisy stereo depth that is unreliable in such
the remaining parameters of our method empirically on thifin structures. Especially at very far distances, this renders
training split. To nd good values for the CRF parameter<£onsistent integration of ne structures in the map dif cult.
we performed grid search. We ran the MAP inference usinfjiterestingly, averaged over all classes, the improvements by
the RF unaries and evaluated the semantic segmentation @ Persistent maps are stronger if we consider all depths
15 frames from our training set. This yielded the setting§oMpared to a limited range of up 8m (chosen as in [2]).

wlh =2:5 w@ =1, =25 =7and =0:3.

number of the matchings.

B. Object Discovery

A. Semantic Dynamic Mapping For evaluating our object-instance proposal method on
We evaluate the quality of the semantic labelling in our 3Rhe temporally integrated semantic maps, we follow the
maps using the image-based ground truth annotations on tinvaluation protocol in [26]. We use the KITTI tracking
KITTI odometry dataset. To this end, we generate a semanti@ining set [3] due to the public availability of the ground-
labelling of the stereo frames from the belief contained in ouruth annotations of object bounding boxes. Note that se-
semantic maps. We directly lookup the semantic labellinghantic segmentation was trained on a non-overlapping set of
of each image pixel using its depth measurement at iemantic labels and that we set the parameters of the object



Building | Sky ] Tree/Bush

Fig. 5. Large-scale semantic mapping result on KITTI tracking seq. 18. Top: birds-eye view on large-scale map. Second row: views into large-scale map.
Third row: semantics looked up in the temporally integrated map. Bottom row: object instances discovered in the temporally integrated map.

Fig. 6. Object discovery results over all categories (left: 30 m camera
range; right: 50 m camera range).

Fig. 8. Object proposal examples from the KITTI tracking sequences.
Left: semantic segmentation looked up in maps temporally integrated over
ten previous frames. Right: object proposals discovered on maps temporally
integrated over ten previous frames.

[34] does not make use of semantic information. However,
Fig. 7. Object discovery results for the three most frequently annotatddl€y make use of object category size statistics.
categories (left) and three levels of occlusions (right) at 30m depth range. In Fig. 6, we show recall vs. number of highest ranked

proposals (see Sec. V) for 30 m and 50 m depth range. The
discovery algorithm empirically. We accept object proposalgesults demonstrate signi cant improvements compared to
as matching a ground-truth bounding box, if they achieve agrevious work [26], especially in the camera far-range. We
intersection-over-union value of at least 0.5. assume that the reason for the improvement is two-fold: First,

We compare our method with the density-based multiby performing temporal integration we are able to bridge

scale approach (GOP) [26] and state-of-the-art 3D objeshort occlusions. Second, the method by [26] only relies on
proposal generation method (3DOP) [34]. In order to make the depth and semantic measurements, while our approach
fair comparison of the two methods, we use the depth mapdso takes motion and appearance into account.
obtained with piece-wise rigid scene ow in the baseline In Fig. 7 (left) we show the performance of our method
methods as well. Both our method and GOP [26] method usm the three most frequently annotated categories on the
the same semantic segmentation of the stereo frames wWh{EITI tracking dataset, i.e. car, pedestrian, and cyclist. While



our method clearly outperforms GOP on the car and cyclist9]
categories, this baseline seems better suitable for detection of
individual pedestrians. This is due to the fact that pedestrians
in KITTI mostly appear in groups. Due to inaccuracies ir10]
the scene ow estimation, occupancy beliefs in these cells
become blurred and groups are perceived as single objects.
Fig. 7 (right) compares our method with the baseline w.r.{11]
the amount of occlusion on the objects. The results clearly
show that the main advantage of our method over GOP is dyf,z]
to the temporal integration. Finally, Fig. 8 shows example
results obtained with our approach. It can be seen that oijg]
method provides proposals on a wide range of generic objects
(e.g truck, dog, traf c sign/poles, post-box etc.) and nds
them even in dif cult occlusion situationg(g the car behind [14]
the traf ¢ sign in 3rd row). [15]

VII. CONCLUSIONS 1161

In this paper, we have proposed a novel approach to 3D
semantic mapping and object discovery in dynamic streﬁltﬂ
scenes. We use scene ow to propagate occupancy and
semantic belief in the map. In this way, our maps maintain @8]
temporally consistent semantic belief not only on the static
parts of the environment as in previous approaches, but algg,
on dynamic objects. Based on our map representation, we
develop an object discovery approach that is less suscepti 48]
to occlusions and noisy observations in single stereo frames.
We develop our method as an important building-block1]
for our future research in detailed 3D scene understanding
in the close camera range. Potential next steps will be thg
tracking of discovered objects over time and to reason about

their occupancy in separate, object-centric voxel grids. [23]
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