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Abstract— Scene understanding is an important prerequisite
for vehicles and robots that operate autonomously in dynamic
urban street scenes. For navigation and high-level behavior
planning, the robots not only require a persistent 3D model
of the static surroundings—equally important, they need to
perceive and keep track of dynamic objects. In this paper,
we propose a method that incrementally fuses stereo frame
observations into temporally consistent semantic 3D maps.
In contrast to previous work, our approach uses scene �ow
to propagate dynamic objects within the map. Our method
provides a persistent 3D occupancy as well as semantic belief
on static as well as moving objects. This allows for advanced
reasoning on objects despite noisy single-frame observations
and occlusions. We develop a novel approach to discover object
instances based on the temporally consistent shape, appearance,
motion, and semantic cues in our maps. We evaluate our
approaches to dynamic semantic mapping and object discovery
on the popular KITTI benchmark and demonstrate improved
results compared to single-frame methods.

I. INTRODUCTION

Great progress has recently been achieved in the develop-
ment of vehicles that operate autonomously in urban street
scenes. Such systems need in-depth scene understanding to
navigate safely in complex everyday traf�c scenarios. For
motion planning and navigation, the vehicle not only requires
a 3D map of its static surrounding, but it should also keep
track of moving objects in the scene. It should be able to
parse task-relevant semantics in the scene and observe object
instances for which pre-trained detectors are not available or
would be dif�cult to obtain.

In this paper, we propose a novel approach to 3D semantic
mapping with stereo cameras that explicitly takes the motion
in the scene into account (see Fig. 1): our method maps
3D occupancy of the static scene parts, and – importantly –
propagates and updates moving objects in the dynamic map
using stereo depth and scene �ow. We probabilistically �lter
image-based semantic segmentations within these maps in
order to obtain temporally and spatially consistent semantic
3D segmentations. Based on this persistent 3D semantic
representation of the dynamic environment, we propose an
object discovery approach that �nds object instances based
on the shape, appearance, semantics, and motion cues main-
tained in our maps.

In contrast to previous approaches to semantic mapping
in urban street scenes (e.g. [1], [2]), our approach �lters a
probabilistic belief on occupancy and semantics of static as
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Fig. 1. We map dynamic environments in 3D occupancy grid maps
using stereo visual odometry, depth, and scene �ow. Image-based semantic
segmentation is additionally temporally �ltered in the semantic maps and
made spatially consistent in a dense CRF. Scene motion is compensated for
by warping the mapped dynamic objects with the estimated scene �ow.

well as dynamic objects. This not only has the potential to
improve semantic segmentation alone. By discovering ob-
jects in the persistent dynamic map, our proposal-generating
method is less susceptible to noise in the depth or scene �ow
observed in single stereo frames. Object discovery can make
use of semantic segmentation from a series of views, such
that objects become observable even through occlusions.

In experiments, we demonstrate the performance of our
approach to semantic 3D mapping and object discovery in
dynamic urban traf�c scenes. We evaluate our method on
sequences of the popular KITTI benchmark suite [3]. We
compare our approach to single-frame methods and demon-
strate improvements in terms of the accuracy of semantic
segmentation and the quality of object proposals.

The main contributions of our work are summarized as
follows: (1) We propose a method for 3D occupancy mapping
in dynamic environments based on state-of-the-art methods
for stereo depth, scene �ow, and semantic segmentation.
(2) We fuse the depth measurements and the semantic
segmentation of individual stereo frames within our dynamic
maps to induce temporal consistency. To this end, we propose
a probabilistic �ltering technique that warps the occupancy
and semantics belief in the map using the observed scene
�ow. In addition, we use a dense CRF on the 3D voxel grid
in order to enforce spatial consistency. (3) We propose an
approach to object discovery based on the aggregated shape,
appearance, motion and semantic cues in the maps.



II. RELATED WORK

Recent trends in the development of autonomous vehicles
and robots have fuelled research in semantic mapping and
scene understanding. Simultaneous localization and mapping
in urban street scenes with vision sensors has attracted much
attention in recent years. Current state-of-the-art methods
such as ORB-SLAM [4] or LSD-SLAM [5], [6] demon-
strate consistent large-scale trajectory estimation and 3D
reconstruction. While these methods can cope with a limited
number of moving objects as outliers to the SLAM process,
they are inherently designed for static environments. Only
few SLAM methods have been proposed that explicitly
distinguish between the static parts of the environment and
dynamic objects (e.g. SLAMMOT [7], [8], or [9]). In the
indoor RGB-D SLAM domain, KinectFusion [10] and point-
based fusion techniques [11] have been proposed that can
separate dynamic parts from the static background and ex-
clude them from tracking and mapping. Recently, Newcombe
et al. [12] propose DynamicFusion, a SLAM method that
takes non-rigid motion in a small-scale scene into account
to map a canonical shape model of the deforming object.

None of the aforementioned methods incorporates scene
semantics such as the categorization of surfaces into car,
building or road, which is often argued to be an important
aspect in scene understanding. Approaches in this line of
research can be distinguished by the way the semantic seg-
mentation is obtained and how this information is integrated
and made temporally and spatially consistent in a global map.
Koppula et al. [13] investigate semantic mapping using RGB-
D sensors in indoor scenes. They label the 3D points in an
aggregated point cloud map and impose a Markov random
�eld model on the points with appearance and geometric fea-
tures. Hermans et al. [14] also semantically label a 3D point
cloud map which they obtain using RGB-D visual odometry.
Their approach, however, �rst segments individual RGB-D
images with a random forest classi�er and probabilistically
�lters the soft labelling of the random forest in the 3D
points. A dense 3D conditional random �eld (CRF) enforces
spatial consistency on the semantic labels of the point cloud
map. The semantic SLAM approach by Stückler et al. [15]
�lters the semantic segmentation from an RF classi�er in
multi-resolution surfel maps, while concurrently performing
keyframe-based SLAM based on the map representation.
Differently to our method, the aforementioned approaches
assume the environment to remain static during the semantic
mapping process.

Semantic mapping in outdoor street scenes is considered
by Sengupta et al. [16]. In this work, stereo images are �rst
segmented into object classes with a CRF approach. In a
second CRF stage, the image-based semantic segmentation
is fused on a ground plane projection. In [1], Sengupta et
al. fuse a CRF semantic labeling of stereo images in a 3D
point cloud map. Floros and Leibe [17] use a higher-order
CRF in order to enforce a consistent semantic labelling of 3D
points that backproject into individual image-based semantic
segmentations. Valentin et al. [18] use a triangle mesh to

Fig. 2. We enforce temporal consistency through recursive Bayesian
�ltering (yellow shaded parts) and spatial consistency with a dense CRF
(brown shaded parts) in our semantic maps.

represent the map. They segment the mesh with a CRF using
image-based appearance and mesh-based geometry features.

In contrast to our approach, these semantic mapping
methods assume the scene to remain static during mapping.
Very recently, Vineet et al. [2] addressed this shortcoming.
They apply random forest segmentation to individual stereo
images and fuse the labelled stereo depth in a 3D trun-
cated signed distance function (TSDF) representation using
memory-ef�cient voxel hashing. For voxels annotated with a
potentially movable object class, they allow for a faster decay
of the integrated TSDF values, such that their measurements
are removed more easily from the map from con�icting
observations towards the static background. We explicitly
take the estimated motion on such objects into account and
propagate occupancy belief in a 3D map with scene �ow.
By doing this, we can probabilistically �lter the semantic
labelling of static parts as well as moving objects.

We also demonstrate the utility of these combined features
in a temporally integrated map representation for object
discovery. Several previous approaches to object discovery
use single-image cues such as geometric or appearance-based
saliency (e.g. [19], [20], [21]). Some methods also discover
objects from motion cues over multiple frames [22], [23].
Our approach �lters geometry, appearance, semantics and
motion cues in a consistent map over subsequent frames.
We apply clustering in this temporally integrated multi-cue
map in order to discover objects.

III. OVERVIEW

Our approach takes as an input a sequence of stereo image
pairs and incrementally reconstructs a 3D semantic map (see
Fig. 1 for an illustration of the overall approach). More
precisely, the map is represented as a 3D voxel grid which
stores information about occupancy and semantic object-
class categories in the contained volume. For 3D mapping,
we determine depth from the stereo images and estimate
the camera pose using visual odometry in order to obtain
the camera trajectory from which we integrate the measured
depth in a global map reference frame.

A major challenge in typical street scenes are moving
objects. If we simply update the voxels and do not take



motion into account, moving objects would leave trails of
erroneous occupancy belief in the map. We thus compute
scene �ow, i.e., the 3D motion of each stereo image pixel,
in order to take motion into account. We accumulate the
�ow in the voxels and use it to propagate the occupancy
and semantic belief on dynamic objects within the map. To
this end, we propose an ef�cient grid warping procedure
which also takes the uncertainty of the �ow measurements
into account.

At every time step, we also extract semantic information
from the stereo images and �lter it in the map through time.
We compute an image-level semantic segmentation which
results in a probabilistic per-pixel label assignment. Using
the label distribution, we perform a Bayesian update on the
semantic category of the corresponding voxel.

This method of updating the map allows us to integrate
information from multiple frames (see Fig. 2). A main
advantage of the integration over time is the ability to
enforce temporal consistency in the semantic labeling and
3D reconstruction. We additionally employ a probabilistic
3D Voxel-CRF model to enforce spatial consistency of the
semantic labels. Note that we �lter the distribution over
semantic labels in the temporal domain and only apply a CRF
on top of the accumulated voxel grid to obtain the most likely
explanation of accumulated measurements in each frame.
This explanation may change in future frames in the presence
of new evidence.

Finally, we describe our object proposal generation method
that builds on the reconstructed 3D semantic map. Our
method uses a clustering algorithm on the aggregated maps
that groups voxels into objects proposals based on shape,
appearance, motion and semantic cues.

IV. SEMANTIC MAPPING IN DYNAMIC STREET SCENES

A. Stereo Depth and Motion Estimation

Based on the stereo frames we estimate visual odometry,
image depth and scene �ow, which we will further use in our
semantic mapping pipeline. We build on the stereo visual
odometry proposed by Geiger et al. [24]. It is a sparse
keypoint-based method which is speci�cally designed for
the stereo setup and the street scenes typical to automotive
scenarios.

Given two stereo pairs, captured at consecutive time steps,
scene �ow methods estimate the 3D motion at each pixel in
the scene. In our experiments we used the state-of-the-art
scene �ow method by Vogel et al. [25]. For each pixel in
the images the method computes both depth and 3D �ow
concurrently. It approximates the scene with a set of planar
segments in superpixels for which a rigid motion towards
a reference stereo frame is determined. Note that we can
easily subtract the scene-�ow induced by the ego-motion of
the camera using the visual odometry estimate.

B. Semantic Stereo Image Segmentation

Semantic segmentation aims at mapping the pixels in
the stereo images to one of several category labelsl 2
f 1; : : : ; Lg such as car, road or building. We apply the

semantic segmentation approach proposed in [26] which is
based on classifying supervoxels using a random forest clas-
si�er. Instead of making a hard decision on each supervoxel,
it provides a probabilistic classi�cation output in the form
of a label distribution. This way, the uncertain decisions
can be �ltered temporally and be incorporated as per-voxel
label evidence in a probabilistic spatial CRF model. We use
the image and point cloud to compute the following 150-
dim. features for each supervoxel within the random forest
classi�er as in [26].

1) Appearance Features:These features capture the color
and texture statistics of the supervoxels. For the color, we
compute a 10-bin color histogram in the CIELab color space
for each channel. In addition, we determine the mean and
covariance of the gradients in each channel. Finally, we add
a histogram of textons computed as described in [27].

2) Density Features:This shape feature describes the den-
sity of 3D points around the supervoxel They are computed
by estimating a ground plane and discretizing the point
cloud into a grid with 3 height bins, using 3 different grid
resolutions to capture context at different scales. We project
each centroid of the supervoxels to the grid and examine its
4-neighbourhood at its height.

3) Spectral Features:We compute this second type of
shape features from the eigenvectors and the eigenvalues of
the covariance matrix of the points in the supervoxel. Look-
ing at eigenvalues, we can quantify pointness, linearness,
surfaceness and curvature [28] of the segment. We compute
the surface normal from the eigenvectors and measure the
orientation of the supervoxel as the angle between the surface
normal and the ground plane normal.

4) Locational Features:The relative location of a super-
voxel in the scene is encoded by the distance of its centroid
to the ground plane, its distance from the camera, and the
horizontal angle between the optical axis and the ray from
the focal point to the supervoxel's centroid.

C. Mapping of Dynamic Scenes

We now arrive at our algorithm for 3D mapping of
occupancy and semantics from a moving stereo camera in a
dynamic (street) scene. The main challenge in this setting is
to construct a mapping method which can effectively account
for the motion of objects. In each time stept, our algorithm
receives the current stereo frameI t . From this image, we
extract a depth mapdt and a semantic segmentationst which
we summarize in the observationx t = f dt ; st g. Semantic
segmentation yields a probability distributionp(lu j I t ) on
the labelling of each image pixelu.

In addition to these single-frame measurements, visual
odometry provides us with the posept of the camera in
the world frame at timet. Piece-wise rigid scene �owf t is
estimated from the last frameI t � 1 to the current frameI t ,
which we compensate for the ego-motion of the camera
with the visual odometry estimate. We summarize the visual
odometry and scene �ow estimates up to timet by P t

andF t , respectively. In analogy, we writeX t to denote the
series of observationsx0; : : : ; x t .



Fig. 3. Voxel map representation. Top: Corresponding image from the
KITTI benchmark. Middle: Voxel map for the stereo frame, colorized with
the average color of image pixels in the voxel. Bottom: Average voxel �ow
(red lines, voxel centers depicted as colored disks).

1) Map Representation:We represent our map with vox-
elsvj using sparse and memory-ef�cient voxel hashing [29].
Each voxel of size0:1m� 0:1m� 0:1m maintains a distribu-
tions on occupancyp(oj j X t ; P t ; F t ) and semantic labelling
p(l j j X t ; P t ; F t ).

2) Probabilistic Mapping:The stereo images provide ob-
servations of voxel occupancy and semantic labelling, which
we transform from the camera frame to the world frame using
the visual odometry estimate. Scene dynamics is observed by
ego-motion-compensated scene �ow. Under this model, the
occupancy and semantic belief in each voxelyt;j is updated
in a recursive Bayesian �ltering scheme,

p(yt;j j X t ; F t ; P t ) =

� p (x t j yt;j ; pt ) p(yt;j j X t � 1; F t ; P t ); (1)

where� is a normalization factor. In the following, we will
drop the dependency on the visual odometry estimatesP t

for brevity.

The �lter decomposes into a prediction and a correction
step. The prediction step applies a state transition model
and warps the voxel map based on the scene �ow. A
subsequent correction update step incorporates the image-
based depth and semantic observations into the map. For
ef�cient integration of the stereo image-based observations,
we �rst accumulate the occupancy, semantics, and scene �ow
measurements in a local map. This local map is aligned with
the grid of the temporally integrated map. Fig. 3 shows an
example of a local measurement mapmt generated from a
stereo frame.
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Fig. 4. Voxel-age (color-coded) in frames 1, 10, and 15 of the KITTI
tracking sequence00. Voxel-age corresponds to the number of frames in
which the voxel was updated. Remarkably, due to scene �ow propagation,
voxels on dynamic objects exhibit similar ageing like the static parts(best
viewed in color).

3) Dynamic Map Prediction:In the prediction step, we
determine the distribution

p(yt;j j X t � 1; F t ) =
X

k

X

y

p(yt;j j yt � 1;k = y; f t;k )

p(yt � 1;k = y j X t � 1; F t � 1); (2)

by propagating the occupancy and label beliefs in the voxels
from the last time step based on the current scene �ow
estimate. Note that we model occupancy and label belief
as stochastically independent, such that we can process both
modalities in separate Bayesian �lters.

Clearly, the estimated scene �ow and the imposed model
assumptions are not fully satis�ed in a real setting. Hence,
the state transition should also induce additional uncertainty
on the occupancy and label belief. We incorporate this by
approximating the state transition model with two model
terms

p(yt;j j X t � 1; F t ) =
X

y

p(yt;j j eyt;j = y) p(eyt;j = y j X t � 1; F t ); (3)

wherep(yt;j j eyt;j ) now smoothes the occupancy and label
distribution in a voxel. The propagation then splits into two
separate processes: In a �rst step, we propagate the belief
from the previous frame with the scene �ow to obtain an
intermediate distribution oneyt;j ,

p(eyt;j = y j X t � 1; F t ) =
X

k

p(eyt;j = y j yt � 1;k = y; f t;k )

p(yt � 1;k = y j X t � 1; F t � 1): (4)



The second step applies the smoothing model,

p(yt;k = y j eyt � 1;k = y0) =

(
� if y = y0

1� �
N � 1 if y 6= y0;

(5)

where N is the number of state variables and� is a pa-
rameter that controls the degree of smoothing. We apply the
smoothing separately to the occupancy and semantic states.

By the separation into history- and smoothing-based tran-
sitions, we can approximate scene �ow propagation using a
particle propagation scheme,

p(eyt;j = y j X t � 1; F t ) /
X

i 2P j
k ( f t;k )

w[i ]
t � 1;k p(yt � 1;k = y j X t � 1; F t � 1): (6)

For each voxelk, we generate a set of particlesS =n
s[i ]

t � 1;k

o
. The position of the particles is sampled according

to the distribution of the current �ow measurementf t of
the voxel. With P j

k (f t;k ) we denote the set of particles
originating from voxelk that end up in voxelj through
the �ow f t;k . Each particle is associated a weightw[i ]

t � 1;k =
1

N k
, where Nk is the number of particles sampled in the

originating voxel.
Since the scene �ow estimate itself is affected by noise,

we resample the particle positions in the 3D voxel map under
the distribution of the scene �ow. Unfortunately, piece-wise
rigid scene �ow does not provide this distribution. Instead,
we approximate it with a normal distribution centered at the
scene �ow and with the covariance of the difference vector
between the stereo depth estimates of the corresponding
pixels in the subsequent stereo frames,� f � � u;t � 1+� u;t �
2 � u;t , where � u;t is an approximation of the covariance
of the stereo depth estimate assuming constant pixel and
disparity noise. Consequently, the distribution of the scene
�ow is approximated with the normal distributionN (f; � f ).
The particles are sampled from their initial voxel positions
into their new voxels according to this normal distribution.

Special care needs to be taken for voxels in the free-
space that gets occupied by a moving object. If particles
are sampled into such a voxel, we reset the occupancy and
semantic belief with the belief of the particles. Since we
only use a low number of samples in each voxel, our particle
scheme can be more ef�cient than 3D Gaussian convolutions,
while it still approximates the belief propagation well.

4) Occupancy and Semantics Measurement Update:We
integrate measurements into the global voxel map using
Bayesian updates,

p(yt;j j X t ; F t ) = �
p(ym

t;j j x t )

p(yt;j )
p(yt;j j X t � 1; F t ); (7)

where� is a normalization factor. Note that we use uniform
priors p(yt;j ).

Instead of raycasting in the map, we determine voxels as
measured free by projecting them into the stereo frame and
determining if they lie in front of the measurements. In such
cases, we apply a constant occupancy likelihoodp(ot j x t ) =

0:2. Measurements that fall into voxels are �rst accumulated
in a local measurements map. For the occupancy update, we
employ a method similar to the counting model of Haehnel
et al. [30]. We approximate the occupancy belief in a voxel
of the local measurement map directly from the point count,

p(om
k;t j x t ) =

min( �; N m
k;t )

�
+ ; (8)

whereN m
k;t is the number of measurements in voxelk within

the local measurement mapmt , and� , � , and are param-
eters of the inverse sensor model. Consequently, all voxels
in the global map that contain measurements in the local
measurement map are updated with the occupancy likelihood
computed in eq. (8). Occluded voxels are neglected for the
update.

We accumulate the semantic image segmentation in the
local measurement map by averaging the label distribution
of the pixels within a voxel,

p(lm
k;t j x t ) =

1
jU(k)j

X

u2U (k )

p(lu j x t ); (9)

where U(k) is the set of pixels that fall into voxelk, and
update the semantic belief in the integrated map accordingly.

D. Spatially Consistent Semantics

Due to the spatial coherence of objects, neighboring pixels
or voxels in the map are very likely to have the same seman-
tic category. However, the image-based classi�er as well as
the Bayesian mapping approach treat pixels and voxels inde-
pendently. We hence enforce spatial consistency on the voxel
map using a dense conditional random �eld (CRF) [31].

We use the belief on the label distribution in the voxels
of our semantic maps as unary potentials for the CRF.
The pairwise potentials model spatial and appearance-based
smoothness using the kernel

k(f j ; f k ) = w1e

�
�

k p j � p k k 2
2

2 � 2
�

�
k c j � c k k 2

2
2 � 2

�

�

+ w2e

�
�

k p j � p k k 2

2 � 2


�

;

wheref j and f k are features consisting of the voxel center
positionspj , pk and the average CIELab colorscj , ck in
the voxels. The weight parametersw1 and w2 control the
importance of the two kernels in the pairwise potential
both in relation to each other and the unary potentials. The
standard deviations� � , � � and �  set their range.

E. Large-Scale Mapping

In our online mapping system, we only maintain a volume
close to the current camera frustum in the temporally inte-
grated map. In order to obtain large-scale reconstructions
of the scene, we fuse the integrated map periodically into
a large-scale global map. Each voxel in the global map
is set to its most recent belief from the integrated map.
We only transfer the voxels with an average scene �ow
below a threshold in order to include only the static parts.
For robustness against outliers, we discard voxels below
a speci�c voxel-age (we require at least 2 frames in our
experiments).



V. OBJECTDISCOVERY IN DYNAMIC SEMANTIC MAPS

Generating object proposals from semantic maps instead
of individual images has several potential advantages. Inte-
grating semantic segmentations over time leads to a more
accurate, stable labeling. The integration of occupancy in-
formation over time signi�cantly improves the noisy stereo
depth information present in a single frame. Finally, integra-
tion over time in a map helps us to generate proposals for
objects which may be strongly occluded in individual frames.

We propose to employ density-based spatial clustering
(DBSCAN [32]) on features extracted from the semantic
map (see. Fig. 8). DBSCAN clusters points in a feature-
space based on their distance in a bottom-up way. It starts
clustering at core points with at leastNmin number of
points in an"-neighborhood. It expands from these points
recursively to core points within the"-neighborhood and
includes all points within the neighborhood.

As features for each occupied voxel labelled with the
`object' class label, we use a concatenation of its center
position, its average color in CIELab color space, and its
average scene �ow. We extract proposals at multiple scales
by varying the"-neighborhood in a discrete range of val-
ues (" 2 f 1:7; 1:9; 2:1; 2:3; 2:4; 2:6; 2:8; 3:0g in our experi-
ments). For each radius, we additionally vary the occupancy
thresholds� o at which voxels are considered for clustering
(we use the values� o 2 f 0:6; 0:7; 0:8; 0:85; 0:9; 0:95; 0:98g
in our experiments). After computing proposals across scales,
we merge them according to their bounding box overlap in
the image domain and rank the merged proposals by the
number of the matchings.

VI. EXPERIMENTS

We evaluate our approaches to semantic mapping and
object discovery on datasets from the popular KITTI bench-
mark [3]. On the KITTI odometry dataset, we evaluate
semantic mapping based on custom dense object-class an-
notations of 200 of the images. We used the same split into
training and test set to train the random forest classi�er and
to evaluate our segmentation results as in [26]. Our method
for object discovery is assessed on the tracking dataset which
comes with ground truth annotations for bounding boxes on
objects such as cars, pedestrians, and bicyclists.

Besides training the RF classi�er, we also determined
the remaining parameters of our method empirically on the
training split. To �nd good values for the CRF parameters
we performed grid search. We ran the MAP inference using
the RF unaries and evaluated the semantic segmentation on
15 frames from our training set. This yielded the settings
w(1) = 2 :5, w(2) = 1 , � � = 2 :5, � � = 7 and �  = 0 :3.

A. Semantic Dynamic Mapping

We evaluate the quality of the semantic labelling in our 3D
maps using the image-based ground truth annotations on the
KITTI odometry dataset. To this end, we generate a semantic
labelling of the stereo frames from the belief contained in our
semantic maps. We directly lookup the semantic labelling
of each image pixel using its depth measurement at its

RF + CRF semantic map

recall IoU recall IoU

object 84.02 67.39 83.02 70.39
road 94.04 91.50 93.41 92.11
building 83.29 75.27 86.91 76.68
tree/bush 70.36 64.59 68.97 64.35
sign/pole 4.09 3.83 1.96 1.88
sky 35.84 34.43 40.91 39.75
grass/dirt 60.63 26.77 79.46 25.23

pixel avg. (< 25m) 87.71 78.25 87.99 78.55
class avg. (< 25m) 68.54 57.47 70.46 57.81

pixel avg. (all depths) 78.08 70.46 79.13 71.05
class avg. (all depths) 61.75 51.9764.95 52.91

TABLE I

SEMANTIC SEGMENTATION RESULTS ON THEKITTI ODOMETRY

DATASET.

corresponding voxel in the map. Only if no depth is available
at a pixel, we ray-cast for the label.

Fig. 5 shows a qualitative result of our mapping approach
in a high-traf�c road scene. It can be seen that the dynamic
objects are well segmented from the static parts and not
included in the large-scale map. The semantic segmentation
�nds a consistent labelling of the cars and traf�c signs as
objects. It also segments the larger surface categories such
as road and vegetation well.

The segmentation quality is assessed using the Pascal VOC
intersection-over-union measure (IoU [33]). We compare our
approach with a purely image-based semantic segmentation
method that applies spatial smoothing on the RF output
using the dense CRF [26]. Note that for pixels without a
valid depth, the pixel is assigned to a void class which is
accounted as false positive if it should label one of the object
classes. In Table I we report recall and IoU over all pixels,
class-wise, and by class-averages on the test set. From the
results we observe that on average the semantic informa-
tion contained in our maps clearly outperforms the single-
frame-based semantic segmentation baseline (RF+CRF). Our
method also demonstrates improvements in recall and IoU
over the single-frame-based segmentation on several object
classes with medium-sized and larger structures. Notably,
on classes which contain �ner structures, image-based seg-
mentation can perform slightly better. This is likely due
to the highly noisy stereo depth that is unreliable in such
thin structures. Especially at very far distances, this renders
consistent integration of �ne structures in the map dif�cult.
Interestingly, averaged over all classes, the improvements by
our persistent maps are stronger if we consider all depths
compared to a limited range of up to25m (chosen as in [2]).

B. Object Discovery

For evaluating our object-instance proposal method on
the temporally integrated semantic maps, we follow the
evaluation protocol in [26]. We use the KITTI tracking
training set [3] due to the public availability of the ground-
truth annotations of object bounding boxes. Note that se-
mantic segmentation was trained on a non-overlapping set of
semantic labels and that we set the parameters of the object



Building Grass/Dirt Object Road Sky Sign/Pole Tree/Bush

Fig. 5. Large-scale semantic mapping result on KITTI tracking seq. 18. Top: birds-eye view on large-scale map. Second row: views into large-scale map.
Third row: semantics looked up in the temporally integrated map. Bottom row: object instances discovered in the temporally integrated map.

Fig. 6. Object discovery results over all categories (left: 30 m camera
range; right: 50 m camera range).

Fig. 7. Object discovery results for the three most frequently annotated
categories (left) and three levels of occlusions (right) at 30 m depth range.

discovery algorithm empirically. We accept object proposals
as matching a ground-truth bounding box, if they achieve an
intersection-over-union value of at least 0.5.

We compare our method with the density-based multi-
scale approach (GOP) [26] and state-of-the-art 3D object
proposal generation method (3DOP) [34]. In order to make a
fair comparison of the two methods, we use the depth maps
obtained with piece-wise rigid scene �ow in the baseline
methods as well. Both our method and GOP [26] method use
the same semantic segmentation of the stereo frames while

Fig. 8. Object proposal examples from the KITTI tracking sequences.
Left: semantic segmentation looked up in maps temporally integrated over
ten previous frames. Right: object proposals discovered on maps temporally
integrated over ten previous frames.

[34] does not make use of semantic information. However,
they make use of object category size statistics.

In Fig. 6, we show recall vs. number of highest ranked
proposals (see Sec. V) for 30 m and 50 m depth range. The
results demonstrate signi�cant improvements compared to
previous work [26], especially in the camera far-range. We
assume that the reason for the improvement is two-fold: First,
by performing temporal integration we are able to bridge
short occlusions. Second, the method by [26] only relies on
the depth and semantic measurements, while our approach
also takes motion and appearance into account.

In Fig. 7 (left) we show the performance of our method
on the three most frequently annotated categories on the
KITTI tracking dataset, i.e. car, pedestrian, and cyclist. While



our method clearly outperforms GOP on the car and cyclist
categories, this baseline seems better suitable for detection of
individual pedestrians. This is due to the fact that pedestrians
in KITTI mostly appear in groups. Due to inaccuracies in
the scene �ow estimation, occupancy beliefs in these cells
become blurred and groups are perceived as single objects.

Fig. 7 (right) compares our method with the baseline w.r.t.
the amount of occlusion on the objects. The results clearly
show that the main advantage of our method over GOP is due
to the temporal integration. Finally, Fig. 8 shows example
results obtained with our approach. It can be seen that our
method provides proposals on a wide range of generic objects
(e.g. truck, dog, traf�c sign/poles, post-box etc.) and �nds
them even in dif�cult occlusion situations (e.g. the car behind
the traf�c sign in 3rd row).

VII. CONCLUSIONS

In this paper, we have proposed a novel approach to 3D
semantic mapping and object discovery in dynamic street
scenes. We use scene �ow to propagate occupancy and
semantic belief in the map. In this way, our maps maintain a
temporally consistent semantic belief not only on the static
parts of the environment as in previous approaches, but also
on dynamic objects. Based on our map representation, we
develop an object discovery approach that is less susceptible
to occlusions and noisy observations in single stereo frames.

We develop our method as an important building-block
for our future research in detailed 3D scene understanding
in the close camera range. Potential next steps will be the
tracking of discovered objects over time and to reason about
their occupancy in separate, object-centric voxel grids.
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