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Abstract— Tracking in urban street scenes plays a central role
in autonomous systems such as self-driving cars. Most of the
current vision-based tracking methods perform tracking in the
image domain. Other approaches, e.g. based on LIDAR and
radar, track purely in 3D. While some vision-based tracking
methods invoke 3D information in parts of their pipeline, and
some 3D-based methods utilize image-based information in
components of their approach, we propose to use image- and
world-space information jointly throughout our method. We
present our tracking pipeline as a 3D extension of image-based
tracking. From enhancing the detections with 3D measurements
to the reported positions of every tracked object, we use world-
space 3D information at every stage of processing. We accom-
plish this by our novel coupled 2D-3D Kalman filter, combined
with a conceptually clean and extendable hypothesize-and-
select framework. Our approach matches the current state-
of-the-art on the official KITTI benchmark, which performs
evaluation in the 2D image domain only. Further experiments
show significant improvements in 3D localization precision by
enabling our coupled 2D-3D tracking.

I. INTRODUCTION

Visual scene understanding in outdoor environments is

a key requirement for autonomous mobile systems. The

tracking and detection of traffic participants such as pedes-

trians, cars, and bicyclists plays an important role in safe

navigation of autonomous vehicles. Through tracking, the

vehicle becomes aware of the whereabouts of important

objects and determines their motion.

A substantial amount of research has been done in this

area, mainly driven by the goal of developing autonomous

vehicles that may operate in everyday traffic. Recent ad-

vances in object detection [38], [7], [40] and detection-based

multi-object tracking [9], [39], [21], [41] start to approach a

matured state. However, there are still several open problems

in vision-based tracking approaches. The majority of existing

methods only perform tracking in the image domain. Yet, in

mobile robotics and autonomous driving scenarios, precise

3D localization and trajectory estimation is of fundamental

importance. In order to prevent collisions, it is crucial to be

aware of the extent and the orientation of objects in world-

space, especially for objects close to the camera.

In this work, we carefully combine 2D object detections

and 3D stereo depth measurements in order to improve

image-based tracking and, more importantly, precise 3D

localization (see Fig. 1). While image-based tracking has

shown to be successful even in greater distances from

the camera, 3D stereo measurement precision deteriorates

quickly with camera distance [29]. Our system weights

these sources depending on the distance from the camera.
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Fig. 1. Example output of our method. Using stereo matching and vision-
based tracking, we obtain precise 3D bounding boxes.

It combines 2D and 3D information when available, but is

also able to cope with missing 3D measurements.

Our contributions are as follows. (i) We propose a new

tracking framework1, which exploits both 2D and 3D mea-

surements. To that end, we combine object detections (e.g.

cars, pedestrians) and 3D object proposals obtained in a 3D

point-cloud. Our method takes advantage of the strengths

of both sources of information: 2D detections provide class

information, while our 3D proposals assist in locating the

objects in world coordinates. (ii) We introduce a novel 2D-

3D Kalman filter, which is keeping both an image- and a

world-space (position and size) estimate. These estimates are

loosely coupled to ensure the consistency of a track. This

coupling enables us to track distant objects and continue

these tracks with more precise information in the close

range, while smoothly transitioning between the modalities.

(iii) We show competitive results on the KITTI benchmark.

Additionally to these image-based evaluations, we assess

the precision of our method in 3D space to quantify the

advantage of our method.

II. RELATED WORK

Vision-based multi-object tracking in street scenes. Most

vision-based approaches to multi-object tracking (MOT)

in street scenes follow the tracking-by-detection paradigm,

where object detector responses are matched across multiple

frames in the image domain [9], [10], [21], [22], [30],

[39], [41], [44]. Geiger et al. [13] associate detections using

an appearance model and bounding box overlap in the

image domain. Detection bounding boxes are filtered with a

Kalman filter and are associated in a two stage process: first,

detections are combined to short tracks (tracklets), followed

by association of these tracklets to form full trajectories.

Yoon et al. [41] propose a method that compensates for

1Code is available at http://www.vision.rwth-aachen.de/page/combined-tracking



abrupt camera motion by employing a new data association

algorithm that takes structural constraints into account. Choi

[9] utilizes a sparse optical flow-based descriptor as an ad-

ditional affinity measure and proposes a near-online tracking

formulation similar to [20]. These methods are based on

monocular camera systems and perform tracking in the image

domain. However, for robotics applications such as path

planning and obstacle avoidance it is desirable to be fully

aware of the object’s 3D position and spatial extent. Our

method follows the same tracking-by-detection paradigm, but

performs tracking jointly in 2D and 3D.

Vision-based multi-object tracking using depth sen-

sors. Several vision-based tracking methods include depth

information in the tracking process by using either stereo

camera pairs or structured light based (RGB-D) sensors

(e.g. Kinect, RealSense) in order to improve tracking per-

formance. Depth information can be exploited for different

purposes, e.g. to enhance the detection process [4], [18], [43],

to reduce a detector’s search space [1], [4], [18], [24], [26],

or to facilitate data association [12], [20]. While RGB-D

sensors are well suited to perform pedestrian tracking in

indoor scenes [4], [18], [43] they are of less use in outdoor

environments due to challenging lighting conditions and

reflective surfaces. Therefore, multi-object tracking systems

in street scenes usually rely on a stereo-camera based setup.

[12], [20], [23] use such a setup to estimate a coarse scene

geometry (ground plane) and localize detections in 3D-space

by ray-casting detection footpoints and intersecting them

with the ground plane [20] or by performing a depth-analysis

of the detection windows [12], [23]. While such a depth-

analysis of detection windows has shown to work reliably

for the pedestrian category, it can fail in more challenging

scenarios, e.g. for occluded cars.

Similar to our work, [33] precisely estimates 3D pose

and extent of the tracked objects. However, their method is

limited to cars. We show the applicability of our approach for

a multitude of object categories. For a detailed overview of

MOT methods using RGB-D sensors we refer the interested

reader to [6].

LIDAR-based multi-object tracking. When performing

MOT using LIDAR sensors, the tracking pipeline is typically

reversed using a tracking-before-detection paradigm [11],

[19], [27], [34]. LIDAR sensor outputs are more precise,

and do not suffer from systematic errors compared to stereo-

based sensors. The acquired measurements are better suit-

able to delineate the shapes of objects [8]. Segmentation

of object candidates from LIDAR sensor data is a well-

studied problem [27], [34], [37]. These object candidates

provide a precise object boundary, position and shape but

no object category information, hence model-free tracking

is performed (typically, using a Kalman filter and nearest-

neighbor data association). Category-agnostic trajectories can

then be classified into object categories [34], [37]. In our

work, we also rely on category-agnostic object proposals, but

rather than using expensive LIDAR systems our proposals

are generated from stereo input images [28].
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Fig. 2. Method overview. Our input data is processed in two steps. We
first generate a large number of observations (observation = detection +
3D object proposal) and perform model selection to pick the most suitable
ones. In the same fashion, we track the observations to generate an over-
complete set of tracking hypotheses, and again perform model selection to
pick the trajectories we report as results.

In the context of LIDAR tracking, it has been shown that

3D measurements of the objects can be utilized to improve

3D tracking precision (position and velocity). [17] proposes

to align LIDAR object candidates in a coarse-to-fine fashion

using annealed dynamic histograms in order to obtain precise

position and velocity. [35] uses 3D measurements to jointly

estimate trajectory and shape of the tracked object by creat-

ing an object “map”. We show that using 3D measurements is

suitable for improving the 3D tracking precision even though

our input data originates from noisy stereo-based depth data.

III. METHOD OVERVIEW

Fig. 2 shows an overview of our proposed pipeline.

Our method combines information from several commonly

used sources, such as object detections [38], [13], stereo

[15], visual odometry [16], and optionally scene flow [36].

Additionally, we support the detections with stereo-based

class-agnostic 3D object proposals [28], short 3D proposals.

These proposals hypothesize objects and provide precise 3D

measurements for them, in our case the objects’ positions

on the ground plane, physical size and a segmentation mask

(See Fig. 3, bottom).

A 3D object proposal combined with a 2D detection con-

stitutes an observation. We use a CRF model to select suit-

able observations out of the huge set of possible observations

we generate. The CRF scores the observations according to

the compatibility of their 2D and 3D information, and helps

to exclude observations which would share either a detection

or a 3D proposal with another selected observation.

Our tracker works using a comparable idea. We first

generate an over-complete set of track hypotheses. They are

then selected via a CRF model, which scores the hypotheses

and prevents the selection of overlapping pairs of hypotheses.

In extension of the common paradigm of image-space

tracking, we use 3D information in every part of the tracking

pipeline. Hypotheses are tracked using Kalman filters with a

joint 2D-3D state, which is weakly coupled by projection and

back-projection operations. As a result, measurements of 2D

bounding boxes can help to estimate the 3D position and vice

versa. This also means that we can track opportunistically,

i.e. we make use of the 3D measurements when available,

but we can also perform the tracking without them. Finally,



Fig. 3. Use of depth information. The top row shows detections and associated 3D object proposals (bright green boxes are not associated). The middle
row shows the corresponding stereo point-clouds, where all points originating from inside the bounding boxes are highlighted. These sets of points often
include an occluder or the background. The bottom row shows the same point-clouds, but points belonging to the associated 3D proposals are highlighted.
The 3D proposals separate the object from the environment much better, e.g. the dog in the left column. Best viewed in color.

the CRF model scores the hypotheses by evaluating their

consistency in image- and world-space.

IV. OBSERVATION FUSION MODEL

As inputs to our observation fusion we use 3D object

proposals, obtained by performing clustering in the stereo

point-cloud, and object detections. We fuse these sources

of information before feeding them to the tracking process.

This results in (i) extending the 2D detections by precise

3D measurements of the object position and size and (ii)

selecting the relevant proposals from the huge set of available

3D proposals.

A. Observation Models

For 2D object detection we use image-space detectors, e.g.

[38], [13]. A set of detections at timestep t, t ∈ [0, . . . , T ], is

defined as Mt
det =

{

m
t,i
det

}

, i ∈ 1, . . . , nt. Each detection

measurement provides the center-point, width, and height of

the 2D bounding box b2D =
[

x2D, y2D, w2D, h2D
]T

(in the

image domain), class information c, and score sdet:

m
t,i
det =

[

b2D, c, sdet

]T
. (1)

We obtain 3D object proposals using an extension of our

previous work on multi-scale 3D proposals, described in

[28]. That approach generates a large set of class-agnostic

3D object proposals by identifying clusters of depth mea-

surements in stereo point-clouds. The intuition behind this

approach is that relevant real-world objects usually stick out

of the ground plane, surrounded by a certain amount of free

space. As the class of each object is unknown, potential

objects have to be searched at varying scales. Clusters that

remain stable over multiple scales are selected as possible

object candidates. The number of proposed objects is re-

duced by merging clusters if their bounding boxes overlap

(intersection-over-union > 0.9).

For our application, we slightly modify [28]: (i) Rather

than using the projected bounding boxes in the image plane

for merging the clusters, we now project 3D bounding boxes

to the ground plane. This results in more precise localization

in 3D. (ii) Additionally to clustering with an isotropic kernel,

we add two anisotropic kernels elongated along the x- and

z-direction (the two dimensions of the ground plane) in order

to better represent elongated objects. As a result, we obtain

a rich set of 3D object proposals Mt
prop =

{

mt,j
prop

}

, j ∈
1, . . . ,mt. Each proposal is defined by its position p =
[x, y, z]

T
, velocity v = [ẋ, ẏ, ż]

T
(obtained from scene flow

[36]), size estimate s =
[

w3D, h3D, l3D
]T

, and score:

mt,j
prop = [p,v, s, sprop]

T
. (2)

B. Observation Fusion

At this step, we have a set of detections, which provide

object class information, and a set of 3D proposals, which

provide localization and object size estimates. However,

no category information is associated to these proposals.

Therefore, a group of pedestrians is a valid object, as much

as each pedestrian individually is.

Only by picking a proposal at the right scale, its mea-

surement becomes meaningful semantically. This is a first

instance of image- and world-space information supporting

each other. A detection has no precise 3D information, which



is obtained by associating the detection to a proposal. On

the other hand, a 3D measurement can only be considered

precise (in a semantic sense) if the proposal is derived from

a segment of the point-cloud which corresponds to an actual

object. The set of detections helps selecting meaningful

proposals, and rejecting the others. See Fig. 3 for examples

of associated detections and proposals.

We address the selection problem by performing MAP

inference in a CRF model. We enumerate a large set of

possible associations between detections and 3D propos-

als. In theory, we would need to enumerate the Cartesian

product of both sets to obtain the overlapping observation

set ot = Mt
det × Mt

prop. In practice we do gating and

have only a limited number of overlapping observations.

These associations are interpreted as nodes in a graph and

we assign binary labels s ∈ {0, 1}| o | (1: selected, 0: not

selected). By minimizing the following energy, we obtain a

set of consistent associations between the proposals and the

detections.

E(s,o) =
∑

oi∈o

siφ (oi) +
∑

oi,oj∈o

sisjϕ (oi, oj) , (3)

where the detection-to-proposal association potential is de-

fined as:

φ (oi) = −wo
1φsize (oi)− wo

2φpos (oi)− wo
3φproj (oi) + wo

4 (4)

The first term φsize (oi) scores the 3D proposal size, using

the probability of the size given statistics (mean+variance)

learned from data. The second term ensures that the detection

and the proposal have a small distance on the ground

plane (Mahalanobis distance given the uncertainty of the

measurements). The third term matches the projected area

of the proposal with the area of the detection bounding box

(intersection-over-union). The weight wo
4 imposes a minimal

requirement on the association, since observations with an

overall positive score φ (oi) will not be selected.

The pairwise term penalizes overlapping associations:

ϕ (oi, oj) = wo
5 ·

|Pi

⋂

Pj |

min (|Pi| , |Pj |)
+ wo

6 · I (oi, oj) . (5)

The first term measures the (normalized) overlap of the two

observations i and j, based on the number of shared 3D

points |Pi

⋂

Pj | of their 3D proposals. The second term

is a hard-exclusion term: the indicator function I (oi, oj)
is 1 if two observation share a proposal or a detection

and 0 otherwise. The purpose of the pairwise term is to

penalize physical overlap of the observations and to disallow

observations that are claiming the same proposal or detection.

The inference problem (3) is NP-hard. We therefore obtain

an approximate solution using the multi-branch method from

[31]. Note that the obtained solution gives us a set of valid

associations between the detections and 3D proposals. As

3D proposals can mostly be obtained in the close camera

range, there will be detections that are not part of any

selected observation. For such detections, we augment our

final observation set with partial observations, containing

detections, but no 3D information. In particular, this helps

to retain far-away targets which are not covered by 3D

proposals.

The proposed approach of combining the information from

different sources is also called early fusion, as hard decisions

are made prior to invoking the tracker. This contrasts to

late fusion, where the tracker performs the selection and

fusion of measurements. However, late fusion would result

in a combinatorial explosion of the state-space of our multi-

hypothesis tracker. Additionally, the previously described

selection of observations matches the selection process of

tracking hypotheses through the tracker. The scores and inter-

action terms consist of the same building blocks, increasing

the chance that the observations picked here will produce

high-scoring hypotheses.

V. TRACKING

Our tracking formulation follows a hypothesize-and-select

framework, as initially proposed in [20], which is a current

state-of-the-art tracking paradigm for vision-based tracking

[9]. In this paradigm an over-complete set of hypotheses is

created, and then the most suitable ones are selected.

In the following, we will first describe our 2D-3D Kalman

filter. It is applied to filter the observations which are

associated to our trajectory hypotheses. By generating an

over-complete set of hypotheses we capture a multitude of

possible data associations.

A. Coupled Filtering of 2D-3D States

We propose a formulation which keeps track of objects in

both image domain and world-space. In contrast, most state-

of-the-art vision-based tracking methods perform tracking

just in the image domain.

We use an Extended Kalman Filter (EKF) to estimate a

joint 2D-3D state, and couple the different quantities using

projection and back-projection operations. The geometry of a

hypothesis is estimated using detections (1) and 3D proposals

(2), which we filter using the EKF. The state at time t is

defined by xt = [b2D, ḃ2D,p,v, s]T . For the position p on

the ground plane and the 2D bounding box b2D we use a

constant-velocity model, which requires adding the rate of

change of the bounding box ḃ2D.

At each timestep, the bounding box position of each

hypothesis is corrected for the ego-motion. The footpoint

of the bounding box b2D is back-projected into world-space,

using the estimated distance from the camera computed using

p. The translation and rotation given by the ego-motion is

then applied to the 3D point. By projecting it back into the

image, we obtain the corrected footpoint.

Then, the components of the position and bounding boxes

are predicted using the corresponding velocities, except for

the following heights and the footpoint estimate, which are

weakly coupled through these projection and back-projection

operations:

h3D= wb
dc

f
h2D+ wah

3D (6)

h2D= wa

(

δtḣ2D+ h2D
)

+ wb
f
dc
h3d. (7)



y2D= wa

(

δtẏ2D+ y2D
)

+ wb

(

f
dc

(

δtẏC+ yC
)

+v0

)

(8)

x2D= wa

(

δtẋ2D+ x2D
)

+ wb

(

f
dc

(

δtẋC+ xC
)

+u0

)

(9)

Here δt is the time difference between two prediction steps, f

is the focal length, and u0, v0 are the horizontal and vertical

components of the principal point. The position in camera

space pC =
[

xC , yC , zC
]T

helps to compute the distance

from camera dc = zC . The weights wa and wb determine

how much the 2D and 3D states contribute to the coupling

(we learn these weights on our training set, see Sec. VI).

Depending on which observations are available (see

Sec. IV-B), we perform sequential updates with these dif-

ferent sources of information. We distinguish two cases:

(i) Fused observation, where a detection is associated

to a 3D proposal, resulting in observable values zt =
[

b2D,p,v, s
]T

. In this case we update the corresponding

quantities of the state. The coupling only happens in the

prediction step. However, a measured bounding box will

still influence the next 3D prediction through the coupling.

(ii) Partial observation (non-associated detections), which

restricts the observable values to zt =
[

b2D,pbp, smean

]T
.

Here, we still update the 3D position using the back-

projection of the footpoint of the bounding box pbp, and we

update the 3D size using the mean size smean of the category

from the training data. In this case, a different measurement

variance is attached to the 3D position and size.

B. Hypothesis Set Generation

We perform tracking by maintaining an over-complete set

of trajectory hypotheses h =
{

ht0:tnk

}

, each defined on the

time-span t0:tn (note that we will omit time indices where not

needed). Each hypothesis is built from the set of observations

using our 2D-3D Kalman filter. It is constrained to the ground

plane and maintains a state estimate over time:

hk(t) =
[

b2D, ḃ2D,p,v, s, c, otk

]T

. (10)

The observation used in each frame is also attached to

the hypothesis, although it may be missing for any given

frame, i.e. otk = ∅. A hypothesis ht0:tnk is furthermore

associated to its inlier set Ik = {otk |t0 ≤ t ≤ tn} of

observations spread out over the temporal domain. We attach

a multinomial distribution over possible object categories

c = {car,pedestrian,cyclist}. It is estimated from

the associated detections by performing forward Bayesian

filtering (likelihood terms are learned from the data).

Hypothesis Extension. We create an over-complete hy-

pothesis set similar to the one proposed in [20]: at each

time step, we (i) extend existing hypotheses with a new

observation and (ii) generate alternative hypotheses starting

at new observations within a temporal window.

In case several detections are very close to the hypothesis

(in image-space, on the ground plane, and in appearance), we

branch the hypothesis, updating each branch with a different

detection.

Hypothesis Persistence. We stop updating hypotheses

which have left the camera view frustum, but we keep

extrapolating them for a while (see Fig. 6). This keeps the hy-

pothesis ‘alive’ and it continues to claim its inlier set during

the optimization procedure, such that these observations are

not suddenly free to support other hypotheses which would

be implausible otherwise. In order to keep the size of the

hypothesis set feasible, we remove duplicates and hypotheses

which were not selected for some time.

C. Hypothesis Selection

In each frame we select from the set of hypotheses by

performing MAP inference in a CRF model, similar to [20]:

E(m,h) =
∑

hi∈h

miϑ (hi) +
∑

hi,hj∈h

mimjψ (hi, hj) , (11)

where m ∈ {0, 1}|h| is a binary indicator vector, with mi =
1 meaning that a hypothesis has been picked. We search

for the selection m∗ = argminm E(m,h) with the lowest

energy given a hypothesis set h.

Hypothesis Score. The unary term scores a hypothesis:

ϑ (hi) = wh
min −

∑

ot
i
∈Ii

S(oti , hi), (12)

where the model parameter wh
min defines a minimal

score for a hypothesis. The contribution of an observation

S
(

oti , h
t0:tn
i

)

is:

S
(

oti , h
t0:tn
i

)

= e(−τ ·(tn−t)) · s
(

oti
)

· Φ
(

oti , h
t0:tn
i

)

. (13)

Using an exponential decay, observations further in the

past have less influence. The score of an observation is

s (oti ) = sdet. In the current formulation, we only use the

score of the detection. The association affinity term:

Φ (oi, hi) = Ic (oi, hi) ·

(wcΦc (oi, hi) + wmΦm (oi, hi) + wpΦp (oi, hi))
(14)

is a linear combination of the appearance score Φc (oi, hi),
the motion model term Φm (oi, hi), and the projection model

term Φp (oi, hi), multiplied by an indicator function Ic (·, ·)
that prevents association between hypotheses and observa-

tions of incompatible categories. The weights are functions

of the distance d (oi) of an observation from the camera and

the relative weighting of the appearance term wc:

wm = (1− wc)e
(−γ·d(o

i
)) , wp = (1− wc − wm) . (15)

For the appearance score we use intersection kernels

over color histograms as in [9]. The motion model term

Φm (oi, hi) ∼ N
(

pobs |p
hk

pred,Σ
hk

pred

)

scores the probabil-

ity of the observation given the Kalman filter prediction

(on the ground plane). The projection model Φp (oi, hi) =
IoU

(

b2D (o) ,b2D (h)
)

is computed as the intersection-over-

union between the predicted 2D bounding box of the hypoth-

esis and the observed bounding box (in the image domain).

Hypothesis Interaction. The pairwise potential of the CRF

in (11) scores the interaction of each pair of hypotheses:

ψ (hi, hj) = wh
olO(hi, hj) + wh

sh |Ii ∩Ij | . (16)



The parameter wh
ol weights the physical overlap penalty:

O
(

hi, hj
)

=
∑

t

[

IoU
(

b2D (hi, t) ,b
2D

(

hj, t
))]2

, (17)

which punishes overlap in image space of the two hypothe-

ses. Additionally, we add a penalty wh
sh for each observation

shared by the hypotheses.

Intuitively, after solving this inference problem we obtain

a set of best-scoring trajectories that are physically plausible

(i.e. do not overlap in space-time). Note the similarity of this

model to the observation fusion in Sec. IV-B. The difference

is that in this case we are aiming for a partition of the obser-

vations over time, whereas in Sec. IV-B we are computing

associations between 3D proposals and detections.

VI. EXPERIMENTAL EVALUATION

All our evaluations are based on the KITTI Vision Bench-

mark Suite [14]. It provides training sequences with a

publicly available ground truth, and a separate test set which

can only be evaluated using the provided evaluation server.

Evaluations are based on the CLEAR MOT metrics [3].

KITTI furthermore provides detections for cars, pedestrians,

and bicycles from two different detectors [38], [13]. In

our experiments we use the detections from the Regionlet

detector [38]. We split the KITTI training data into two

disjoint sets: a training set which is used for optimizing

parameters (based on MOTA score) via Hyperopt [2] and a

validation set for evaluating different aspects of our pipeline2.

We interpret the reported result mostly based on the achieved

MOTA score, which is considered to be the most distinctive

tracking evaluation measure [5].

Observation Precision. For our detailed analysis of the

fused observations, we use 2D and 3D annotations provided

in the KITTI training set. We focus on single frame results

here, in order to gain insights into the observation fusion

without regarding the tracking.

Fig. 4 shows the positioning error by distance range,

split into the error made in estimating the distance to the

camera, and the lateral error orthogonal to the depth error.

We compare the performance of our 3D proposals to three

baselines: (GP-P) Ray-casting of the footpoints of the 2D

bounding boxes and intersection with the ground plane; (DA)

Results obtained by depth analysis [12]; (3DOP) Results

from the recent 3DOP [7]. While 3DOP has ultimately other

goals, the estimation of 3D bounding boxes is an essential

step in the pipeline.

For cars, our evaluation shows that simpler methods (GP-P

and DA) are clearly outperformed by the more sophisticated

ones. The lateral position of cars is best estimated by 3DOP,

which is specially designed for estimating bounding boxes of

specific object categories, while our method is more general.

Our method is one of the two best performing methods in

all cases. While DA is performing well on the pedestrian

category, it lacks precision in the car category; the situation

is reversed for 3DOP.

2 We used sequences 1,2,5,7,8,9,11,17,18,19 as training set and sequences
0,3,4,6,10,12,13,14,15,16,20 to perform validation.

15 20 25 30 35 40 45 50 55

Distance from camera (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
rr

o
r 

(m
)

Depth Error - CAR

Our method

DA

GP-P

3DOP

15 20 25 30 35 40 45 50 55

Distance from camera (m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
rr

o
r 

(m
)

Depth Error - PEDESTRIAN

Our method

DA

GP-P

3DOP

15 20 25 30 35 40 45 50 55

Distance from camera (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

o
r 

(m
)

Lateral Error - CAR

Our method

DA

GP-P

3DOP

15 20 25 30 35 40 45 50 55

Distance from camera (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

o
r 

(m
)

Lateral Error - PEDESTRIAN

Our method

DA

GP-P

3DOP

Fig. 4. Localization error by distance range in depth and lateral direction.

Ablation Study. In order to evaluate the influence of the

different ingredients of our approach, we switch off parts of

our pipeline. MOTA and MOTP are both computed using the

2D bounding box overlap, which is the standard in KITTI.

See Table I for the results: (No-flow) uses no scene flow;

(Det. only) does not use 3D proposals; (2D-tracker) is a

pure 2D version of our tracking pipeline, disabling even

the ground plane estimation and visual odometry; (DA) uses

depth analysis [12] rather than our 3D proposals to obtain the

3D measurements. As can be observed, in this 2D evaluation

our full method performs best, and each of the components

contributes to the performance. A clear benefit of our method

will be seen when evaluating in world space.

3D Localization Evaluation. For each true positive asso-

ciation we evaluate the distance in 2D (as intersection-over-

union) and in 3D (as the Euclidean distance on the ground

plane). This allows to compute the MOTP-2D and MOTP-3D

metrics as suggested by [3]:

MOTP-2D =

∑

i,t IoU
(

bi
gt(t),b

i
traj(t)

)

∑

t ntp(t)
(18)

MOTP-3D =

∑

i,t

∥

∥pi
gt(t)− pi

traj(t)
∥

∥

∑

t ntp(t)
, (19)

with the number of true positive associations per frame ntp.

We compare the results using both metrics in Fig. 5. For

MOTP-2D (higher values are better), there is barely any

difference between the full version and the detection-only

baseline. However, for MOTP-3D (lower values are better),

3D localization precision is considerably better. This experi-

ment shows that one can benefit from using 3D information

in vision-based tracking, even without compromising the

ability to accurately track objects in the image domain. Given

the considered applications, the MOTP-3D results are clearly

more relevant, since in practical tasks we want to obtain

precise information in the real world, not in image space.

Exploiting Precise 3D Segmentations. As has been shown,



TABLE I

ABLATION STUDY.

Cars MOTA MOTP ID Frag MT PT ML

Full Version 74.38 82.85 26 131 49.59 40.68 9.80
No-flow 74.17 82.74 31 141 49.50 40.20 10.29
Det. only 73.99 82.66 48 152 49.01 40.19 10.78
2D-tracker 72.29 82.40 11 72 43.13 42.64 14.22

DA 72.93 82.56 108 201 49.50 37.25 13.24

Pedestrians MOTA MOTP ID Frag MT PT ML

Full Version 61.87 78.85 41 164 55.95 33.33 10.71
No-flow 61.82 78.89 53 175 54.76 34.52 10.71
Det. only 61.13 78.88 51 172 55.95 34.52 9.52
2D-tracker 59.74 78.85 59 162 48.81 35.71 15.47

DA 61.69 78.97 32 148 55.95 33.33 10.71
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Fig. 5. Tracking Precision MOTP by distance range in 2D (higher values
are better) and 3D (lower values are better) for cars and pedestrians.

Fig. 6. Precise 3D localization enables us to do shape integration, and
increase the system’s awareness of its surroundings. Best viewed in color.

our approach is suitable for performing precise 3D localiza-

tion of tracked objects. This localization can be utilized to ac-

cumulate 3D measurements over time, in order to reconstruct

more of the shape of tracked objects than can be seen in one

frame. The proposals come with precise segmentations of

the 3D point cloud (compare Fig. 3). The precision of these

segmentation masks results in a clean shape representation.

The duration of tracking helps to accumulate more depth

data over time. In Fig. 6 we accumulate measurements by

using the GCT representation and weighted ICP proposed

by [25]. Alternatively, one could use the segments as an

input to [17]. The provided result can only be obtained

when performing precise segmentation in 3D. As objects and

possible occluders can be well separated in world space, the

shape of the tracked objects can be acquired with less noise.

KITTI Evaluation Results. Table II shows the result of

Fig. 7. Qualitative results on the KITTI tracking dataset showing 2D and
3D bounding boxes of the tracked objects.

evaluating our full pipeline on the official KITTI test set w.r.t.

the highest-ranked baselines (note, that for NOMT [9], we

used the online version, NOMT-HM). Although we perform

tracking jointly in 2D and 3D, the official KITTI evaluation

is based on bounding box overlap in the 2D image domain.

We achieve highly competitive results in both categories,

cars and pedestrians. For cars, our result is on par with the

best performer, NOMT-HM [9]. In contrast, for pedestrians

we clearly outperform NOMT-HM. Similar to us, SCEA [41]

has consistently good results on both categories and is the top

performer for the pedestrians category, with our approach a

close second. Fig. 7 shows a selection of qualitative tracking

results.

Runtime. Our full tracking pipeline requires 347 ms per

frame, excluding external components (Intel I7 CPU, single

thread, not optimized). When not using observation fusion

and the corresponding 3D proposals, each frame takes 48 ms.

VII. CONCLUSION

We presented a novel tracking pipeline which combines

2D and 3D measurements. Our approach shows promising

results, follows a clean design and is easily extendable.



TABLE II

RESULTS ON THE KITTI BENCHMARK. TRACKING ACCURACY (MOTA) AND PRECISION (MOTP), ID-SWITCHES (ID), FRAGMENTATIONS (FRAG)

MOSTLY TRACKED (MT), PARTLY TRACKED (PT), MOSTLY LOST (ML).

Cars MOTA MOTP ID Frag MT PT ML

Our method 67.35 79.25 169 675 48.93 40.09 10.98
NOMT-HM [9] 67.92 80.02 109 371 49.24 37.65 13.11
SCEA [41] 67.11 79.39 106 466 52.13 36.89 10.98
LPSSVM [32] 66.35 77.80 63 558 55.95 35.82 8.23
mbodSSP [21] 62.64 78.75 116 884 48.02 43.29 8.69
RMOT [42] 53.03 75.42 215 742 39.48 50.46 10.06

Pedestrians MOTA MOTP ID Frag MT PT ML

Our method 38.37 71.44 113 912 13.40 51.55 35.05
NOMT-HM 31.43 71.14 186 870 21.31 36.77 41.92
SCEA 39.34 71.86 56 649 16.15 40.55 43.30
LPSSVM 34.97 70.48 73 814 20.27 45.36 34.36
mbodSSP - - - - - - -
RMOT 36.42 71.02 156 760 19.59 39.18 41.24

In future work, we plan to exploit class-agnostic tracking

of objects originating from our 3D object proposals. In

the context of autonomous driving cars and pedestrians are

the most prominent categories, but other obstacles, from

potentially unknown categories, should be identified as well.
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