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Abstract

We address semi-supervised video object segmentation,
the task of automatically generating accurate and consis-
tent pixel masks for objects in a video sequence, given the
first-frame ground truth annotations. Towards this goal, we
present the PReMVOS algorithm (Proposal-generation, Re-
finement and Merging for Video Object Segmentation). This
method involves generating coarse object proposals using a
Mask R-CNN like object detector, followed by a refinement
network that produces accurate pixel masks for each pro-
posal. We then select and link these proposals over time
using a merging algorithm that takes into account an ob-
jectness score, the optical flow warping, and a Re-ID fea-
ture embedding vector for each proposal. We adapt our
networks to the target video domain by fine-tuning on a
large set of augmented images generated from the first-
frame ground truth. Our approach surpasses all previous
state-of-the-art results on the DAVIS 2017 video object seg-
mentation benchmark and achieves first place in the DAVIS
2018 Video Object Segmentation Challenge with a mean of
J & F score of 74.7.

1. Introduction

Video Object Segmentation (VOS) is the task of auto-
matically estimating the object pixel masks in a video se-
quence and assigning consistent object IDs to these ob-
ject masks for the video sequence. This can be seen as
a combination and extension of both instance segmenta-
tion from single frames to videos, and multi object track-
ing from tracking bounding boxes to tracking pixel masks.
VOS has a multitude of applications in robotics, self driv-
ing cars, and any other application which benefits from un-
derstanding the composition of a video. Semi-supervised
Video Object Segmentation focuses on the VOS task for
certain objects for which the ground truth mask for the first

Figure 1. PReMVOS methodology overview.

video frame is given. The DAVIS datasets [1, 2, 3] present
a state-of-the-art testing ground for this task. In this paper
we present a new paradigm for tackling the semi-supervised
VOS task and evaluate the corresponding algorithm on the
set of DAVIS dataset benchmarks. An overview of our
method, PReMVOS, can be seen in Figure 1. Our method
surpasses all current state-of-the-art results on all of the
DAVIS benchmarks and achieves the best results in the 2018
DAVIS Video Object Segmentation Challenge.

2. Related Work

Current state-of-the-art methods for VOS fall into one
of two paradigms. The first is objectness estimation with
domain adaptation from first-frame fine-tuning. This ap-
proach, first proposed in [4], uses fully convolutional net-
works to estimate the objectness of each pixel by fine-tuning
on the first-frame ground truth. This approach was ex-
panded upon by [5] and [6, 7] by using semantic segmen-
tation guidance and iterative fine-tuning, respectively. The
second paradigm, used in several state-of-the-art methods
[8, 9, 10, 11], involves propagating the mask from the pre-
vious frame using optical flow and then refining these es-
timates using a fully convolutional network. The methods
proposed in [9] and [11] expand this idea by using a net-
work to calculate a re-identification (ReID) embedding vec-
tor for proposed masks and using this to improve the object
re-identification after an object has been occluded. [10] im-
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proves upon the mask propagation paradigm by training on
a huge set of augmented images generated from the first-
frame ground truth. Our method adopts parts of the ideas
presented in all of the above papers, but combines them with
a new paradigm for tackling the VOS task.

3. Approach

We propose PReMVOS as a new paradigm for address-
ing the VOS task. This approach is designed to produce
more accurate and more temporally consistent pixel masks
across a video. Instead of predicting object masks directly
on the video pixels, as done in [4, 5, 6, 7], a key idea of our
approach is to instead detect regions of interest as coarse
object proposals using an object detection and mask net-
work, and to then predict accurate object masks only on the
cropped and resized bounding boxes. We also present a new
proposal merging algorithm in order to predict more tempo-
rally consistent pixel masks, especially in the multi-object
VOS scenario. The methods presented in [8, 9, 10, 11] cre-
ate temporally consistent proposals by generating their pro-
posals directly from the previous frame’s proposals warped
using optical flow into the current frame. Instead, our
method generates proposals independently for each frame
and then selects and links these proposals through the video
using a number of cues such as optical flow based proposal
warping, ReID embeddings and objectness scores, as well
as taking into account the presence of other objects in the
multi-object VOS scenario. This new VOS paradigm, as
shown in Figure 1, allows us to predict both more accurate
and more temporally consistent pixel masks than all previ-
ous methods and achieves state-of-the-art results across all
datasets. Below we describe our implementation of this new
VOS paradigm.

Image Augmentation. For each video we generate a set of
2500 augmented images using the first-frame ground truth.
We use the method in [10] but only generate single images
(not image pairs). This method removes the objects, auto-
matically fills in the background, and then randomly trans-
forms each object and the background before randomly re-
assembling the objects in the scene. Fine-tuning on this set
of augmented images allows us to adapt our networks di-
rectly to the target video domain.

Proposal Generation. We generate coarse object propos-
als using a Mask R-CNN [12] network implementation by
[13] with a ResNet101 [14] backbone. We adjust this net-
work to be category agnostic by replacing the N classes with
just one class for detecting generic objects. We train this
network starting from pre-trained ImageNet [15] weights
on both the COCO [16] and Mapillary [17] datasets jointly.
We then fine-tune a separate version of this network for each
video for three epochs of the 2500 augmented images. This
takes around one hour on a GTX 1080 Ti GPU. This net-

work generates coarse mask proposals, bounding boxes, and
objectness scores for each image in the video sequence. We
extract proposals with a score greater than 0.05 and also per-
form non-maximum suppression removing proposals which
have an IoU of 66% or greater with a proposal with a higher
score.

Proposal Refinement. The Proposal-Refinement Network
is a fully convolutional network inspired by [18] and based
on the DeepLabv3+ [19] architecture. This network takes
as input a 385 × 385 image patch that has been cropped
and resized from an approximate bounding box around an
object of interest. A 50 pixel (in the original image) mar-
gin is first added to the bounding box in all directions. We
add a fourth channel to the input image which encodes the
original bounding box as a pixel mask to the input image.
Starting from weights pre-trained on ImageNet [15], COCO
[16], and PASCAL [20], we train this network on the Map-
illary [17] dataset using random flipping, random gamma
augmentations and random bounding box jitter [18] up to
5% in each dimension, to produce an accurate object seg-
mentation, given an object’s bounding box. We then fine-
tune a separate version of this network for each video on
the 2500 augmented images. We fine-tune for five epochs
of the 2500 images, which takes around twenty minutes per
object in the video on a GTX 1080 Ti GPU. We then use this
network to generate accurate pixel mask proposals for each
of the coarse bounding box proposals previously generated
by the Proposal-Generation Network.

Mask Propagation using Optical Flow. As part of our
proposal merging algorithm we use the optical flow between
successive image pairs to warp a proposed mask into the
next frame, to calculate the temporal consistency between
two mask proposals. We calculate the Optical Flow using
FlowNet 2.0 [21].

ReID Embedding Vectors. We further use a triplet-loss
based ReID embedding network to calculate a ReID em-
bedding vector for each mask proposal. We use the fea-
ture embedding network proposed in [23]. This is based on
a wide ResNet variant [24] pre-trained on ImageNet [15]
and then trained on the COCO dataset [16] using cropped
bounding boxes resized to 128 × 128 pixels. This uses a
triplet loss to learn an embedding space in which crops of
different classes are separated and crops of the same class
are grouped together. It is trained using the batch-hard loss
with a soft-plus margin proposed in [25]. We then fine-tune
this network using the crops of each object from the gen-
erated 2500 augmented images for each of the 90 video se-
quences (242 objects) in the DAVIS 2017 val, test-dev
and test-challenge datasets combined. This trains
this network to be able to generate a ReID vector which
separates all the possible objects of interest in these three
datasets from each other. We use this network to calculate
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Ours Ours Lixx Dawns ILC R Apata UIT DyeNet MRF Lucid ReID OSVOS-S OnAVOS OSVOS
(Ens) [11] [22] [10] [9] [5] [6][7] [4]

17/18
T-C

J& F Mean 74.7 71.8 73.8 69.7 69.5 67.8 66.3 - - 67.8 69.9 - 57.7 -

J
Mean 71.0 67.9 71.9 66.9 67.5 65.1 64.1 - - 65.1 67.9 - 54.8 -
Recall 79.5 75.9 79.4 74.1 77.0 72.5 75.0 - - 72.5 74.6 - 60.8 -
Decay 19.0 23.2 19.8 23.1 15.0 27.7 11.7 - - 27.7 22.5 - 31.0 -

F
Mean 78.4 75.6 75.8 72.5 71.5 70.6 68.6 - - 70.6 71.9 - 60.5 -
Recall 86.7 82.9 83.0 80.3 82.2 79.8 80.7 - - 79.8 79.1 - 67.2 -
Decay 20.8 24.7 20.3 25.9 18.5 30.2 13.5 - - 30.2 24.1 - 34.7 -

17
T-D

J& F Mean 71.9 71.6 - - - - - 68.2 67.5 66.6 66.1 57.5 56.5 50.9

J
Mean 67.7 67.5 - - - - - 65.8 64.5 63.4 64.4 52.9 52.4 47.0
Recall 77.1 76.8 - - - - - - - 73.9 - 60.2 - 52.1
Decay 21.0 21.7 - - - - - - - 19.5 - 24.1 - 19.2

F
Mean 76.1 75.7 - - - - - 70.5 70.5 69.9 67.8 62.1 59.6 54.8
Recall 84.7 84.3 - - - - - - - 80.1 - 70.5 - 59.7
Decay 19.7 20.6 - - - - - - - 19.4 - 21.9 - 19.8

17
Val

J& F Mean 78.2 78.2 - - - - - 74.1 70.7 - - 68.0 67.9 60.3

J
Mean 74.3 74.3 - - - - - - 67.2 - - 64.7 64.5 56.6
Recall 83.5 83.5 - - - - - - - - - 74.2 - 63.8
Decay 16.0 16.0 - - - - - - - - - 15.1 - 26.1

F
Mean 82.2 82.2 - - - - - - 74.2 - - 71.3 71.2 63.9
Recall 89.6 89.6 - - - - - - - - - 80.7 - 73.8
Decay 18.5 18.4 - - - - - - - - - 18.5 - 27.0

16
Val

J& F Mean 87.0 87.1 - - - - - - - - - 86.5 85.5 80.2

J
Mean 85.5 85.5 - - - - - 86.2 84.2 - - 85.6 86.1 79.8
Recall 96.4 96.7 - - - - - - - - - 96.8 96.1 93.6
Decay 10.4 9.1 - - - - - - - - - 5.5 5.2 14.9

F
Mean 88.6 88.7 - - - - - - - - - 87.5 84.9 80.6
Recall 94.5 94.5 - - - - - - - - - 95.9 89.7 92.6
Decay 12.4 10.8 - - - - - - - - - 8.2 5.8 15.0

Table 1. Our results (with and without ensembling) compared to state-of-the-art results on the four DAVIS benchmark datasets: the
2017/2018 DAVIS test-challenge set (17/18 T-C), the 2017 test-dev set (17 T-D), the 2017 val set (17 Val), and the 2016 val set
(16 Val). Methods with citation are from the literature, methods without are the top five other competitors in the 2018 DAVIS Challenge.

a ReID embedding vector for each of our generated object
proposals and also for each of the first-frame ground truth
object masks.

Proposal Merging. Our proposal merging algorithm
works in a greedy manner. Starting from the ground truth
object masks in the first-frame, it builds tracks for each
frame by scoring each of the proposals on their likeliness
to belong to a particular object track. The proposal with the
highest track score is then added to each track. This track
score is calculated as an affine combination of five separate
sub-scores, each with values between 0 and 1. In the follow-
ing, taking the complement of a score means subtracting it
from 1. The first sub-score is the Objectness score given
by the Proposal-Generation network. The second score is
a Mask Propagation IoU score. This is calculated for each
possible object track as the IoU between the current mask
proposal and the warped proposal that was decided for in
the previous timestep for this object track, warped into the
current timestep using the optical flow. The third score is an

Inverse Mask Propagation IoU score. This is calculated as
the complement of the maximum Mask Propagation IoU
score for the current mask proposal and all other object
tracks except the object track of interest. The fourth score
is a ReID score, calculated using the Euclidean distance be-
tween the first-frame ground truth ReID embedding vector
and the ReID embedding vector of the current mask pro-
posal. This distance is then normalized by dividing it by
the maximum distance for all proposals in a video from the
ground truth embedding vector of interest. The complement
is then taken to convert from a distance into a similarity
score. The fifth score is an Inverse ReID score. This is cal-
culated as the complement of the maximum ReID score for
the current mask proposal and all other object tracks except
the object track of interest. In cases where the selected pro-
posals for the different objects within one timestep overlap,
we assign the overlapping pixels to the proposal with the
highest combined track score. The weighting for each of
the five scores was tuned using random-search hyperparam-
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eter optimization evaluated against the DAVIS 2017 val
set. We ran the optimization for 25000 random parameter
values. We present two versions of our algorithm, one us-
ing the best parameter values, and one using an ensemble of
the results using the top 11 sets of parameter values, using
a simple pixel-wise majority vote to ensemble the results.

4. Experiments
We evaluate our algorithm on the set of DAVIS [1,

2, 3] datasets and benchmarks. Table 1 shows our re-
sults on the four DAVIS benchmarks. The DAVIS 2017
test-challenge, test-dev and val datasets con-
tain multiple objects per video sequence, whereas the
DAVIS 2016 val dataset contains a single object per se-
quence. The metrics of interest are the J score, calculated
as the average IoU between the proposed masks and the
ground truth mask, and the F score, calculated as an aver-
age boundary similarity measure between the boundary of
the proposed masks and the ground truth masks. For more
details on these metrics see [3]. We present results from
our method both with and without ensembling. On all of
the datasets our method gives results better than all other
state-of-the-art methods for both the F metric and the mean
of the J and F score. We also produce either the best, or
comparable to the best, results on the J metric for each
dataset. This method was also used to win the 2018 DAVIS
Challenge. These results show that the novel proposed VOS
paradigm performs better than the current VOS paradigms
in predicting both accurate and temporally consistent mask
proposals.

5. Conclusion
In this paper we present the PReMVOS algorithm, a new

paradigm for video object segmentation based on proposal-
generation, refinement and merging. We show that this
method produces results better than all current state-of-
the-art results for multi-object semi-supervised video object
segmentation on the DAVIS benchmarks, as well as getting
the best score in the 2018 DAVIS Challenge.
Acknowledgments. This project was funded, in parts,
by ERC Consolidator Grant DeeVise (ERC-2017-COG-
773161).
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