
Improved
Ramsey-Based Büchi Complementation

Stefan Breuers, Christof Löding, and Jörg Olschewski

RWTH Aachen University

Abstract. We consider complementing Büchi automata by applying the
Ramsey-based approach, which is the original approach already used by
Büchi and later improved by Sistla et al. We present several heuris-
tics to reduce the state space of the resulting complement automaton
and provide experimental data that shows that our improved construc-
tion can compete (in terms of finished complementation tasks) also in
practice with alternative constructions like rank-based complementation.
Furthermore, we show how our techniques can be used to improve the
Ramsey-based complementation such that the asymptotic upper bound
for the resulting complement automaton is 2O(n log n) instead of 2O(n2).

1 Introduction

The aim of this paper is to present several techniques to improve the Ramsey-
based approach to complementation of Büchi automata, which was originally
used by Büchi when he introduced this model of automata on infinite words to
show the decidability of monadic second order logic over the successor struc-
ture of the natural numbers [2]. The method is called Ramsey-based because its
correctness relies on a combinatorial result by Ramsey [10] to obtain a periodic
decomposition of the possible behaviors of a Büchi automaton on an infinite
word. Starting from a Büchi automaton with n states the construction yields
a complement automaton with 2O(n2) states [13]. A non-trivial lower bound
of n! for the complementation of Büchi automata was shown by Michel in [8].
The gap between the lower and the upper bound was made tighter by a deter-
minization construction presented by Safra [11] from which a complementation
construction with upper bound 2O(n log n) could be derived. An elegant and sim-
ple complementation construction achieving this upper bound was presented by
Klarlund in [7] using progress measures, now also referred to as ranking func-
tions. Based on Klarlund’s construction the gap between upper and lower bound
has been tightened by Friedgut, Kupferman and Vardi [5] and later even fur-
ther by Schewe [12], leaving only a polynomial gap compared to the improved
lower bound that was obtained by Yan [16]. Besides the optimizations of the
rank-based approach, a different construction has been developed by Kähler and
Wilke in [6], usually called slice-based complementation, and the determinization
construction of Safra has been optimized by Piterman [9].

Given all these different constructions, there has recently been an increased
interest in experimental evaluations of the different complementation methods.

L. Birkedal (Ed.): FOSSACS 2012, LNCS 7213, pp. 150–164, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved Ramsey-Based Büchi Complementation 151

In experimental studies conducted by Tsai et al. [15], it turned out that the
Ramsey-based approach was not only inferior to the more modern approaches
(determinization-based, rank-based, and slice-based) in terms of the size of the
resulting complement automata, but that in most cases its implementation did
not even terminate within the imposed time and memory bounds.

Though performing inadequately for complementation, the Ramsey-based ap-
proach is used in two other fields, namely universality checking and inclusion
checking [4,1]. For these two purposes specific optimization techniques have been
developed.

Since the Ramsey-based approach to complementation has got an appealingly
simple structure and is nice to teach, our aim is to improve it on both the
practical level by using heuristics to reduce the size of the complement automata,
and the theoretical level by using the ideas underlying our heuristics to obtain
a general optimization of the method that meets the upper bound of 2O(n log n).

We have implemented these heuristics [17] and conduct experiments on a large
set of example automata, showing that the improved construction can compete
with other methods for complementation.

The remainder of the paper is structured as follows. In Section 2 we start
with some basic definitions and in Section 3 we repeat the original Ramsey-
based complementation method. In Section 4 we present our heuristics that are
used in the implementation, and we discuss our experimental results. Finally,
in Section 5 we show how the ideas from Section 4 can be used to obtain an
improvement of the Ramsey-based construction also on a theoretical level.

2 Preliminaries

The set of infinite words over an alphabet Σ is denoted by Σω. For an infinite
word α = a0a1 · · · , with α[i] we denote the letter ai at position i.

An automaton is a tuple A = 〈Q, Σ, q0, δ, F 〉 where Q is a finite set of states,
Σ is a finite alphabet, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q is the transition
function and F ⊆ Q is the set of accepting states. The transition function δ
can be extended to a function δ∗ : 2Q × Σ∗ → 2Q on subsets of the state set
and on words in the natural way. By RSC denote the set of all subsets of states
that are reachable by the subset construction, i.e. RSC := {P ⊆ Q | ∃w ∈
Σ∗ : δ∗({q0}, w) = P }. A is called deterministic if |δ(q, a)| ≤ 1 for all q ∈ Q and
a ∈ Σ.

For automata we consider two different semantics: the usual NFA semantics, in
which the automaton accepts a language of finite words, and the Büchi semantics,
in which the automaton accepts a language of infinite words. This is made precise
in the following definitions.

A run of A on a word α ∈ Σω is an infinite sequence of states ρ = p0, p1, . . .
such that p0 = q0, and pi+1 ∈ δ(pi, α[i]) for all i ≥ 0. A run ρ is Büchi-accepting
if ρ(i) ∈ F for infinitely many i ≥ 0. A path from p to q in A of a word
u = a1 · · · an ∈ Σ∗ is a finite sequence of states p0, . . . , pn such that p = p0,
q = pn, and pi ∈ δ(pi−1, ai) for all 1 ≤ i ≤ n. The path is NFA-accepting if
p0 = q0 and pn ∈ F .

152 S. Breuers, C. Löding, and J. Olschewski

The languages recognized by an automaton A are

L∗(A) := {w ∈ Σ∗ | there is an NFA-accepting path of w in A} and
Lω(A) := {α ∈ Σω | there is a Büchi-accepting run of A on α}.

If there is a path from p to q of u in A, then we denote this fact by p
u−→ q. If

furthermore there is a path from p to q of u in A that visits a final state, then
we additionally denote this by p

u−→
F

q (in particular, this is the case if p or q is
final).

3 The Ramsey-Based Approach

Throughout this paper, A = 〈Q, Σ, q0, δ, F 〉 is a fixed automaton. Our goal is to
complement this automaton regarding the Büchi acceptance condition, i.e. we
want to obtain an automaton A′ with Lω(A′) = Σω \ Lω(A). In the Ramsey-
based approach the complement automaton basically guesses a decomposition
of the input word into finite segments such that the automaton A has a specific
behavior on these segments. These behaviors are captured by transition profiles.
Presentations of this complementation proof can be found in [13] and in [14].
In this section we repeat the essential parts of the method that are required to
describe our improvements.

A transition profile of a word u essentially describes the behavior of all states
of the automaton when reading u with respect to states that are reachable and
states that are reachable via a final state.

Definition 1. A pair t = 〈→t, →◦ t〉 with →t ⊆ Q × Q and →◦ t ⊆ →t is called a
transition profile over A. The transition profile τ(u) of the word u ∈ Σ∗ over A
is the pair 〈→, →◦ 〉 with p → q iff p

u−→ q and p →◦ q iff p
u−→
F

q.

One can visualize a transition profile as a directed graph. The nodes of the graph
represent the states of the automaton, and there is an edge (→) between two
nodes, if the word u permits a transition from one state to the other. Additionally
this edge is marked (→◦) if it permits a transition via a final state. A transition
profile τ(u) contains information about the behavior of A on u, relevant to a
Büchi automaton.

We define TP to be the set of all transition profiles over A. There is a natural
concatenation operation on TP. For s1, s2 ∈ TP, the transition profile t = s1 · s2
is defined by

– p →t q iff ∃r ∈ Q such that p →s1 r ∧ r →s2 q, and
– p →◦ t q iff ∃r ∈ Q such that (p →◦ s1 r ∧ r →s2 q) ∨ (p →s1 r ∧ r →◦ s2 q).

It is easy to see that the concatenation of transition profiles is associative, so
〈TP, ·〉, the set of all transition profiles together with concatenation, forms a
semigroup. With τ(ε) as the neutral element, it even is a monoid — the transition
monoid of A. Furthermore, by induction on the length of the words one can show
τ(u · v) = τ(u) · τ(v), so τ is a monoid homomorphism.

Improved Ramsey-Based Büchi Complementation 153

For an automaton with |Q| = n states, there are n2 distinct pairs of states,
and for each pair, there are only three possibilities (either p → q, or p → q but
p →◦ q, or p →◦ q). So we have exactly 3n2 distinct transition profiles in the
transition monoid. However, not for all of them there is a word which induces
this profile. By RTP we denote the set of all reachable transition profiles, i.e.,
those t ∈ TP for which there is a word u ∈ Σ∗ with τ(u) = t.

For a transition profile t, define the language

L(t) := τ−1(t) = {u ∈ Σ∗ | τ(u) = t}.

The nonempty languages L(t) form a partition of the set Σ∗ of all words into
finitely many distinct classes, for there are only finitely many transition profiles.

It is not difficult to see that for each t the language L(t) is a regular language
of finite words. In fact, the transition monoid of A can be represented by a de-
terministic finite automaton that we call the transition monoid automaton. Each
state of this automaton corresponds to a reachable transition profile, the initial
state is τ(ε), and the a-successor of a state t is computed by t ·τ(a). Constructing
this automaton can be done by starting with the initial state and spawning new
states doing a breadth-first search, until the automaton is complete.

We define TMA = 〈Q̃, Σ, q̃0, δ̃〉 with Q̃ = RTP, and q̃0 = τ(ε), and δ̃(q̃0, a) =
τ(a) and δ̃(t, a) = t · τ(a) for every a ∈ Σ and t ∈ RTP. Note that TMA does
not have final states. The reason is that we instantiate TMA with different sets
of final states, depending on the language we want to accept: By induction on
the length of words, one can show that δ̃∗(q̃0, w) = τ(w) and from that it follows
that the language recognized by TMA with final state set F = {t} is exactly
L(t).

The key observation in Büchi’s proof is the following lemma. It states that
each infinite word can be decomposed into finite segments such that the induced
sequence of transition profiles is of the form stω. This is an almost direct conse-
quence of Ramsey’s theorem which states that for each coloring of (unordered)
pairs over an infinite set with finitely many colors there is an infinite monochro-
matic subset. One can even restrict the transition profiles to those which satisfy
the equations t · t = t (so t is idempotent) and s · t = s.

Lemma 2 (Sequential Lemma). For every α ∈ Σω there is a decomposition
of α as α = uv1v2 · · · with reachable transition profiles s, t such that τ(u) = s,
τ(vi) = t for every i ≥ 1, t · t = t, and s · t = s.

Define L(〈s, t〉) := L(s) · L(t)ω and let

s-t-Pairs := {〈s, t〉 ∈ RTP2 | s · t = s, t · t = t}.

The Sequential Lemma states that the languages L(〈s, t〉) cover the set of all
infinite words:

Σω =
⋃

{L(〈s, t〉) | 〈s, t〉 ∈ s-t-Pairs} .

Given an arbitrary decomposition of an infinite word α into finite segments, the
corresponding sequence of transition profiles contains all the relevant information

154 S. Breuers, C. Löding, and J. Olschewski

τ (ε)

t1
t2

t3
t4

. . .

a

b

a, b

ab

τ (ε)

t1
t2

t3
t4

. . .

a

b

a, b

ab

ε

τ (ε)

t1
t2

t3
t4

. . .

a

b

a, b

ab

ε

τ (ε)

t1
t2

t3
t4

. . .

a

b

a, b

ab

ε

ε

ε

ε

Fig. 1. A layout of a complement automaton with Rejects,t = {〈t1, t2〉, 〈t4, t3〉, 〈t4, t4〉}

on possible runs of A on α. This means that if two infinite words are both in
L(〈s, t〉), they both are accepted or both are rejected.

Lemma 3. Let s and t be transition profiles. Then either L(〈s, t〉) ∩ Lω(A) = ∅,
or L(〈s, t〉) ⊆ Lω(A).

This allows us to separate accepting and rejecting s-t-pairs into disjoint sets:

Accepts,t := {〈s, t〉 ∈ s-t-Pairs | L(〈s, t〉) ⊆ Lω(A)} and
Rejects,t := {〈s, t〉 ∈ s-t-Pairs | L(〈s, t〉) ∩ Lω(A) = ∅}.

As a consequence we obtain the following characterization of the complement of
Lω(A):

Σω \ L =
⋃

{L(〈s, t〉) | 〈s, t〉 ∈ Rejects,t} .

Using the transition monoid automaton as a basic building block one can con-
struct a Büchi automaton for the complement. There are automata for each of
the languages L(s) and L(t) for every rejecting s-t-pair. These can be combined
to obtain an automaton for L(〈s, t〉) = L(s) · L(t)ω by connecting the final states
of the first automaton (for L(s)) to the initial state of the second one (for L(t)),
and by allowing the second automaton to loop back to its initial state from its
final state with an ε-transition, and making the initial state the only final state.
This construction assumes that the initial state of the automaton for L(t) does
not have incoming transitions. Otherwise one can easily obtain this property by
adding a new copy of the initial state.

Improved Ramsey-Based Büchi Complementation 155

In the construction it is even possible to reuse the same automaton for each of
the different languages L(s), as it is done in [13]. This construction is depicted in
Figure 1. The ε-transitions used in the illustration can be eliminated by standard
techniques.

We refer to the first part of the automaton that guesses the initial segment
of the decomposition as the initial part (on the left-hand side of Figure 1), and
to the remaining part of the automaton that guesses the periodic part of the
decomposition as the looping part.

The complement automaton consists of at most 3n2 Büchi automata in the loop-
ing part, each with at most 3n2 + 1 states (since we might need to add a new copy
of the initial state), plus an additional initial automaton component of 3n2 states.
This results in a complement automaton with at most 2 · 3n2 + 9n2 states.

4 Reducing State Space

In this section, we discuss several ideas to reduce the state space of the comple-
ment automaton.

4.1 Subset Construction
The first observation is that for a decomposition stω of an infinite word, the
precise transition profile s is not required to decide whether the pair s, t is in
Rejects,t. The only information that is required on s is, which states are reachable
from the initial state in s. Hence, we will replace the copy of TMA that takes care
of the initial segment L(s) of the decomposition by a standard subset automaton,
as detailed in the following.

For P ⊆ Q define L(P) := {u ∈ Σ∗ | δ∗({q0}, u) = P } to be the set of all
words with which from q0 one can reach exactly the states in P . For a transition
profile t, define t(P) := {q ∈ Q | ∃p ∈ P : p →t q} to be the set of all states
which are reachable from P via t. It is clear that t(s(P)) = (s · t)(P) for all
s, t ∈ TP and P ⊆ Q.

The Sequential Lemma can easily be adapted to the new setting.
Lemma 4. For every α ∈ Σω there is a decomposition of α as α = uv1v2 · · ·
with a set P ⊆ Q and a reachable transition profile t such that u ∈ L(P),
τ(vi) = t for every i ≥ 1, t · t = t, and t(P) = P .
Proof. We pick a decomposition according to Lemma 2 for transition profiles s
and t. Setting P = s({q0}) one easily verifies the claimed properties. ��
So instead of considering s-t-pairs, from now on we work with P-t-pairs

P-t-Pairs := {〈P, t〉 ∈ RSC × RTP | t(P) = P, t · t = t},

and we define L(〈P, t〉) := L(P)·L(t)ω . Then Theorem 4 shows that the P-t-pairs
again cover the set of all infinite words:

Σω =
⋃

{L(〈P, t〉) | 〈P, t〉 ∈ P-t-Pairs} ;

and we can divide the set of P-t-pairs into accepting and rejecting ones.

156 S. Breuers, C. Löding, and J. Olschewski

Lemma 5. Let P ⊆ Q and let t be a transition profile. Then either L(〈P, t〉) ∩
Lω(A) = ∅, or L(〈P, t〉) ⊆ Lω(A).

Proof. If L(P) · L(t)ω ∩ Lω(A) is not empty, then there is a word α which lies
in both sets. Then α can be decomposed as α = uv1v2 · · · with u ∈ L(P) and
all vi being in L(t). Because the word α is in L, there must be an accepting run
of A on α. Consider the form of this run to be q0

u−→ q1
v1−→ q2

v2−→ q3 · · · . Note
that q1 ∈ P . This run visits infinitely often an accepting state. So for infinitely
many i it holds qi

vi−→
F

qi+1.
Now let β be any word in L(P) · L(t)ω. Then β can also be decomposed as

β = u′v′
1v′

2 · · · with u′ ∈ L(P) and all v′
i being in L(t). We have u′ ∈ L(P)

and τ(vi) = τ(v′
i) for all i ≥ 1. Then there is a run ρ′ of A on β of the form

q0
u′−→ q1

v′
1−→ q2

v′
2−→ q3 · · · . It holds qi

v′
i−→

F
qi+1 for the very same i as above. So

ρ′ is an accepting run and β ∈ Lω(A). ��
We adapt the definition of the set of accepting and rejecting pairs:

AcceptP,t := {〈P, t〉 ∈ P-t-Pairs | L(〈P, t〉) ⊆ Lω(A)}
RejectP,t := {〈P, t〉 ∈ P-t-Pairs | L(〈P, t〉) ∩ Lω(A) = ∅}

Summarizing the above observations, we can improve the construction from Sec-
tion 3 by replacing the initial copy TMA (on the left-hand side in Figure 1) by a
copy of a simple automaton keeping track of the set of reachable states, denoted
by PA. A set P is connected to the copy of the TMA for the transition profile t
if 〈P, t〉 ∈ RejectP,t.

Note that according to the above description all pairs of the form 〈∅, t〉 and
〈P, t∅〉 with the empty transition profile t∅ = 〈∅, ∅〉 are in RejectP,t. However, all
these pairs correspond to words on which no run exists at all and thus have a
prefix leading from {q0} to ∅ in the initial part PA of the complement automaton.
In our implementation we hence make ∅ an accepting state and do not further
consider the pairs of the above form in the construction of the automaton.

4.2 Merging Transition Profiles

In this section, we show how to merge different copies of TMA in the looping
part of the complement automaton. Our hope is to obtain, for the looping part,
a smaller number of automata and/or automata that are smaller in terms of
their state space.

As we have seen in Section 3, the automata for the right-hand part are gener-
ated by setting the acceptance component of the transition monoid automaton
TMA to a singleton set. Let us denote the resulting automata by singleton au-
tomata. A natural way to extend this practice is to allow arbitrary subsets of the
state space to be set as the acceptance component. Then the resulting automaton
(considered as a ∗-automaton) accepts the union of the languages formerly ac-
cepted by the singleton automata, and (in the best case) the singleton automata
are not needed anymore and can be removed from the right-hand part.

Improved Ramsey-Based Büchi Complementation 157

Obviously, this merging cannot be done in an arbitrary fashion. Below we
state criteria that are sufficient for merging several of the singleton automata in
the looping part.

In the following, a set of P-t-pairs is called a bucket. For a bucket B =
{〈P1, t1〉, . . . , 〈Pn, tn〉}, we define the language L(B) := LP(B) · (

Lt(B)
)ω, where

LP(B) :=
⋃n

i=1 L(Pi) and Lt(B) :=
⋃n

i=1 L(ti). Obviously, for a bucket B, it
holds L(B) ⊇ L(〈P, t〉) for each 〈P, t〉 ∈ B (simply by definition of L(B)).

Now we are interested in a condition that allows to merge several rejecting
pairs into a bucket B such that L(B) has an empty intersection with L(A).

Definition 6. For a bucket B = {〈P1, t1〉, . . . , 〈Pn, tn〉}, we define its join as
the pair 〈P, t〉 with P =

⋃
i Pi and p →t q iff ∃i : p →ti q, and p →◦ t q iff

∃i : p →◦ ti q. We say that such a pair 〈P, t〉 has a lasso if there is a sequence of
states p1, . . . , pk, . . . , pn, 1 ≤ k < n such that

– p1 ∈ P ,
– pi →t pi+1 for all 1 ≤ i < n,
– pk →◦ t pk+1, and
– pn →t pk.

We say that a bucket is mergeable if its join does not have a lasso.

For the join 〈P, t〉 of a bucket, note that P is not necessarily a reachable subset
and that t is not necessarily a reachable transition profile.

The following lemma expresses, that by aggregating several mergeable P-t-
pairs into one bucket, the language accepted by the resulting automaton is still
inside the complement of L(A).

Lemma 7. Let B be a mergeable bucket. Then L(B) ∩ Lω(A) = ∅.

Proof. Let B = {〈P1, t1〉, . . . , 〈Pn, tn〉} and let 〈P, t〉 be the join of B and let
α be a word in L(B). Then α ∈ ⋃n

i=1 L(Pi) · (
⋃n

i=1 L(ti))ω and there is an
infinite sequence i0, i1, i2, . . . with 1 ≤ ij ≤ n such that α can be decomposed as
α = uv1v2 · · · with u ∈ L(Pi0) and vj ∈ L(tij) for each j ≥ 1.

Assume that α ∈ L(A) and consider an accepting run ρ of A on α. Consider
the form of this run to be q0

u−→ q1
v1−→ q2

v2−→ q3 · · · , and let R be the set of
those states which occur infinitely often in this form. Since α ∈ L(A), there is
a state q ∈ F such that q is visited infinitely often in ρ. Now we argue that
〈P, t〉 has a lasso. We have q1 ∈ Pi0 and therefore q1 ∈ P . We have qi →t qi+1
for all i ≥ 1. Since there are infinitely many accepting states visited in ρ, there
must be a state qk ∈ R with qk →◦ tik

qk+1 and therefore qk →◦ t qk+1. Finally
since qk occurs infinitely often in the above form, there must be a state qn with
n > k and qn →tin

qk, and therefore qn →t qk. So 〈P, t〉 has a lasso and this is
a contradiction to the premise that B is mergeable. ��

Proposition 8. Let {B1, . . . , Bn} be a set of buckets such that each bucket Bi

is mergeable, and for each 〈P, t〉 ∈ RejectP,t there is a bucket Bi with 〈P, t〉 ∈ Bi.
Then L(B1) ∪ · · · ∪ L(Bn) = Σω \ L(A).

158 S. Breuers, C. Löding, and J. Olschewski

Proof. Let α ∈ L(Bi) for some 1 ≤ i ≤ n. Since Bi is mergeable, by Theorem 7
it follows that α /∈ L(A).

For the other direction, let α ∈ Σω \ L(A). By Theorem 4 and the definition
of RejectP,t, we know that there is a 〈P, t〉 ∈ RejectP,t such that α ∈ L(〈P, t〉).
Then there is a bucket Bi with 〈P, t〉 ∈ Bi and since L(Bi) ⊇ L(〈P, t〉) it follows
that α ∈ L(Bi). ��
Given a set {B1, . . . , Bn} of buckets as in Proposition 8, and automata Ai =
〈Qi, Σ, qi

0, δi, Fi〉 for the languages Lt(Bi), we can now further modify the con-
struction from Section 3 by connecting for each pair 〈P, t〉 ∈ Bi the set P from
the initial PA to the automaton Ai for Lt(Bi), and applying the looping con-
struction on the Ai. This is done formally in the following definition, where we
do not use ε-transitions for the connections and loops as in Figure 1 but directly
eliminate them.

Definition 9. Let {B1, . . . , Bn} be a set of buckets as in Proposition 8 and for
each 1 ≤ i ≤ n let Ai = 〈Qi, Σ, qi

0, δi, Fi〉 be an automaton such that L∗(Ai) =
Lt(Bi). Furthermore assume that the initial states of the Ai do not have incoming
transitions. Then define the automaton A′ := 〈Q′, Σ, q′

0, δ′, F ′〉 with
– Q′ = RSC ∪ ⋃

i Qi,
– q′

0 = {q0},
– F ′ = {∅} ∪ {q1

0, . . . , qn
0 }, and

– δ′(P, a) = {δ∗(P, a)} ∪ {q ∈ Q′ | ∃i
(∃〈P, t〉 ∈ Bi for some t ∧ q ∈ δi(qi

0, a)
)}

for P ⊆ Q and a ∈ Σ, and

– δ′(q, a) =

{
δi(q, a) if δi(q, a) ∩ Fi = ∅
{qi

0} ∪ δi(q, a) otherwise
for q ∈ Qi and a ∈ Σ.

It is easy to see that Lω(A′) = L(B1) ∪ · · · ∪ L(Bn) and by Proposition 8 we
obtain that A′ is an automaton for the complement of L(A).

In the above definition the automata for Lt(Bi) are parameters and we did
not specify how to construct them. Since for a bucket B, it holds Lt(B) =⋃n

〈P,t〉∈B L(t), one can use the transition monoid automaton TMA, setting all
the states t to be final for which some pair 〈P, t〉 is in B. This is how we proceed
in our implementation. In Section 5 we work with specific buckets and for those
provide an alternative construction that allows us to give a better upper bound
on the size of the resulting automata.

Minimizing t-Automata. The automata for the languages Lt(B) that are
obtained from TMA, as described above, are deterministic. As these automata
are very large and have only few accepting states, they likely have many re-
dundant states, too. So a natural approach here is to minimize these automata.
After generating a bucket automaton At(B), our algorithm immediately com-
putes the minimal equivalent deterministic automaton, which in our experiments
often results in much smaller automata for the looping part of the complement
automaton.

Improved Ramsey-Based Büchi Complementation 159

4.3 Experimental Results

In order to compare our complementation method with existing ones, we tried
to reflect the experimental setting of Tsai et al. [15]. They compared four differ-
ent implementations, named Ramsey, Safra-Piterman, Rank, and Slice. Each
of these implement one of the four approaches, Ramsey-based, determinization-
based, rank-based, and slice-based, respectively. They randomly generated 11,000
input automata, each with 15 states, an alphabet of size 2, and combinations
of 11 transition densities and 10 acceptance densities. Then they fed these com-
plementation tasks to a cluster of computers. For each task, they allocated
a 2.83 GHz CPU with 1 GB of memory and 10 minutes computation time.
Since Ramsey performed very poorly in their experiments, they excluded this
implementation from the overall comparison. The other three implementations
were then improved by various heuristics. In the end, the improved versions of
Safra-Piterman, Rank, and Slice had 4 tasks, 3,383 tasks, and 216 tasks that
aborted unsuccessfully, respectively.

We have implemented our ideas in a Java program. It can be obtained from [17],
including its Java source code. Because there is no unique distribution of P-t-
pairs to buckets, we had to agree on a concrete way to fill the buckets. We have
chosen the following greedy algorithm. Maintain a list (B1, . . . , Bn) of buckets,
which can grow if needed. For each pair 〈P, t〉 ∈ RejectP,t, add 〈P, t〉 to the
first bucket Bi such that Bi ∪ {〈P, t〉} is mergeable. If no such bucket exists,
then create a new empty bucket Bn+1 and start over again. The algorithm that
uses all of the above heuristics, the subset construction for the initial part, the
merging of transition profiles for the looping part, and the minimization of the
bucket automata, together with the greedy bucket filling algorithm, is called
improved-Ramsey.

Our complementation jobs were conducted in sequence on a single machine
with a 2.83 GHz CPU, a timeout of 10 minutes, and 4 GB of memory from which
only 1 GB was used for the Java heap space. We used the same 11,000 comple-
mentation tasks as Tsai et al. Out of these, 10,839 finished successfully, 152 ran
out of memory, and 9 violated the time limit. In terms of successfully finished
tasks, this puts improved-Ramsey second place, between Safra-Piterman and
Slice.

The size of the complement automata computed by improved-Ramsey range
from 0 to 337,464 states with an average size of 361.09 states (328.97 after
removing dead states). We were not able to adequately compare these sizes with
the results of [15] for the following reason. Tsai et al. provide average sizes only
for 7,593 of the initial 11,000 automata, namely for those tasks that finished
successfully by all of their implementations. Our numbers, on the other hand,
base upon all 10,839 finished tasks of our implementation.

5 Preorder-Based Optimization

The aim of this section is to improve the Ramsey-based construction in such a
way that the resulting complement automaton is of size 2O(n log n). There are

160 S. Breuers, C. Löding, and J. Olschewski

two things we have to take care of: The complement automaton is composed
of the initial subset automaton and the part for the ω-iteration, in which for
each transition profile there is one copy of the transition monoid automaton. To
reduce the number of states we have to reduce (1) the number of copies, and (2)
the size of these automata.

In Section 4.2 we have seen that we can merge transition profiles in the looping
part of the complement automaton, as long as the combination of the merged
transition profiles does not introduce an accepting cycle. To obtain an automaton
for the complement it is sufficient to cover RejectP,t by mergeable buckets of
transition profiles.

In this section we show how to systematically do this merging such that the
number of buckets, and the respective size of the automata for the buckets are
of order 2O(n log n). The key idea is that we can merge all transition profiles that
can be embedded into the same preorder in such a way that →◦ edges are strictly
increasing in the order and → edges are not decreasing, thus avoiding accepting
cycles. This is made precise in the following definitions.

A total preorder (or weak order) on P ⊆ Q is a binary relation � on P that is
total (for all p, q ∈ P it holds p � q or q � p), and transitive (for all p, q, r ∈ P
with p � q and q � r it holds p � r). With Pre denote the set of all pairs 〈P,�〉
such that P ⊆ Q and � is a total preorder on P .

For any total preorder �, one can define its corresponding equivalence relation
by p � q ⇔ p � q ∧ q � p. The resulting equivalence classes are linearly ordered
by [p] ≤ [q] ⇔ p � q. As usual one defines [p] < [q] if [p] ≤ [q] ∧ [q] ≤ [p].

Note that the number of preorders on a set with n elements is bounded by nn

because each preorder can be characterized by a mapping that assigns to each
element of the set a number from 1 to n corresponding to its position in the
order (equivalent elements are mapped to the same number). So the number of
pairs 〈P,�〉 is bounded by 2nnn.

Definition 10. Let 〈P,�〉 ∈ Pre. We say that a transition profile t = 〈→, →◦ 〉
is compatible with 〈P,�〉 if

– t(P) ⊆ P , and
– for all p, q ∈ P with p → q it holds [p] ≤ [q], and
– for all p, q ∈ P with p →◦ q it holds [p] < [q].

For any preordered set 〈P,�〉, let us define the bucket

B〈P,�〉 := {〈P, t〉 ∈ RSC × RTP | t is compatible with 〈P,�〉}.

It is not difficult to see that these buckets are mergeable in the sense of Section 4.2
and that each pair in RejectP,t is compatible with a suitable preorder.

Lemma 11. B〈P,�〉 is mergeable for each 〈P,�〉 ∈ Pre and for each 〈P, t〉 ∈
RejectP,t, there is a total preorder � on P with 〈P, t〉 ∈ B〈P,�〉.

Proof. We start with the first claim. Assume the join of B〈P,�〉 has a lasso.
Then there is a sequence of states p1, . . . , pk, . . . , pn ∈ Q, 1 ≤ k < n with

Improved Ramsey-Based Büchi Complementation 161

p1 ∈ P , pi → pi+1 for all i < n, pk →◦ pk+1, and pn → pk. Since t(P) ⊆ P for
all t compatible with 〈P,�〉, it holds pi ∈ P for all 1 ≤ i ≤ n by induction on i.
Then we have [pk+1] ≤ [pk+2] ≤ · · · ≤ [pn] ≤ [pk], and [pk] < [pk+1], which is a
contradiction.

To prove the second claim, note that by definition of RejectP,t it holds t(P) ⊆
P . Consider the directed graph G with vertex set P and edge relation →t. The
SCCs of G are preordered by C1 R C2 iff there is a path from a state p ∈ C1 to a
state q ∈ C2 in G. We make this preorder total by ordering incomparable SCCs
of G in an arbitrary way. We obtain a total preorder R′ on the set of SCCs. This
induces a total preorder � on P by p � q iff Cp R′ Cq for p ∈ Cp and q ∈ Cq.
Clearly p →t q implies [p] ≤ [q]. Let C ⊆ P be an SCC of G. Then for states
p1, p2 ∈ C, it cannot hold p1 →◦ t p2, as otherwise we can construct an accepting
run q0

u−→ p1
v1−→
F

p2
v2−→ p3 −→ · · · pn

vn−→ p1 · · · of A on a word u(v1 · · · vn)ω

with u ∈ L(P) and vi ∈ L(t). So p1 →◦ t p2 implies [p1] < [p2]. Altogether, t is
compatible with 〈P,�〉, and thus 〈P, t〉 ∈ B〈P,�〉. ��
According to the above lemma we have already found a covering of RejectP,t by
a number of buckets that is bounded by 2nnn. It remains to show that for a given
preorder 〈P,�〉 the language Lt(B〈P,�〉), that is, those words whose transition
profile is compatible with 〈P,�〉, can be recognized by a “small” automaton.

We realize this as follows. When reading a word v, the automaton keeps track
for each q ∈ Q which are the maximal equivalence classes [p′] and [p′′] of 〈P,�〉
such that in τ(v) there is an → edge from an element of [p′] to q and there is an
→◦ edge from and element of [p′′] to q. This information can easily be updated
when appending a new letter to v, and Lemma 13 shows that it suffices to deduce
whether τ(v) is compatible with 〈P,�〉.

To formalize this idea let M〈P,�〉 be the set of all functions f : Q → P⊥, where
P⊥ = {⊥} ∪ (P/�) and the linear order ≤ on P/� is extended to P⊥ by setting
⊥ < [p] for all [p] ∈ P/�.

The states of the automaton are pairs of such mappings. The initial state is
the pair 〈φε, ψε〉 ∈ M〈P,�〉 × M〈P,�〉 with

φε(q) :=

{
[q] if q ∈ P,

⊥ else;
and ψε(q) :=

{
[q] if q ∈ P ∩ F,

⊥ else.

For two functions φ, ψ ∈ M〈P,�〉 and for a letter a ∈ Σ, we define the update of
φ and ψ by letter a to be 〈φ, ψ〉 · a := 〈φ′, ψ′〉 with

φ′(q) = max{φ(r) | r ∈ Q, r
a−→ q}, and

ψ′(q) =

{
max{φ(r) | r ∈ Q, r

a−→ q} if q ∈ F,

max{ψ(r) | r ∈ Q, r
a−→ q} else.

We use the convention max ∅ = ⊥. Note that the definition depends on the
context 〈P,�〉 in which it is used.

We write 〈φa, ψa〉 for 〈φε, ψε〉 · a, and inductively we write 〈φva, ψva〉 for
〈φv, ψv〉 · a. The function φv maps every state q to the maximal class in

162 S. Breuers, C. Löding, and J. Olschewski

P/� from which one can reach q by reading v; it maps to max ∅ = ⊥ if no
such class exists. Accordingly, the function ψv maps every state q to the maxi-
mal class from which one can reach q passing an accepting state by reading v;
it maps to ⊥ if no such class exists. We formalize this in the following lemma.

Lemma 12. Let 〈P,�〉 ∈ Pre and v ∈ Σ∗. Then φv(q) = max{[p] | p ∈ P, p
v−→

q} and ψv(q) = max{[p] | p ∈ P, p
v−→
F

q} for each q ∈ Q.

To define the set of final states of the automaton we have to identify those pairs
of functions that indicate whether the transition profile of the current word is
compatible with 〈P,�〉.

Let φ, ψ ∈ M〈P,�〉. We say that the pair 〈φ, ψ〉 is consistent with 〈P,�〉 if
– for all q ∈ Q \ P it holds φ(q) = ⊥, and
– for all q ∈ P it holds φ(q) ≤ [q], and
– for all q ∈ P it holds ψ(q) < [q].

Lemma 13. Let 〈P,�〉 ∈ Pre and v ∈ Σ∗. Then the transition profile τ(v) is
compatible with 〈P,�〉 iff 〈φv, ψv〉 is consistent with 〈P,�〉.
Proof. Let t = τ(v). With Theorem 12 we obtain

t(P) ⊆ P ⇐⇒ ∀q ∈ Q \ P ¬∃p ∈ P : p
v−→ q

⇐⇒ ∀q ∈ Q \ P : φv(q) = ⊥, as well as

∀p, q ∈ P : (p v−→ q ⇒ [p] ≤ [q]) ⇐⇒ ∀q ∈ P : max{[p] | p ∈ P, p
v−→ q} ≤ [q]

⇐⇒ ∀q ∈ P : φv(q) ≤ [q], and

∀p, q ∈ P : (p v−→
F

q ⇒ [p] < [q]) ⇐⇒ ∀q ∈ P : max{[p] | p ∈ P, p
v−→
F

q} < [q]

⇐⇒ ∀q ∈ P : ψv(q) < [q].

��
Combining the above observations we can define the deterministic automaton
A〈P,�〉 := 〈Q′′, Σ, q′′

0 , δ′′, F ′′〉 as follows:
– Q′′ = {〈P,�, φ, ψ〉 | φ, ψ ∈ M(P)}
– q′′

0 = 〈P,�, φε, ψε〉
– δ′′(〈P,�, φ, ψ〉, a) = {〈P,�, φ′, ψ′〉} where 〈φ′, ψ′〉 = 〈φ, ψ〉 · a
– F ′′ = {〈P,�, φ, ψ〉 | 〈φ, ψ〉 is consistent with 〈P,�〉}
As a consequence of Lemma 13 we obtain the following result.

Lemma 14. For every 〈P,�〉, the automaton A〈P,�〉 accepts those words for
which the transition profile is compatible with 〈P,�〉, that is, L∗(A〈P,�〉) =
Lt(B〈P,�〉).
Now we can plug the automata A〈P,�〉 into the construction from Definition 9.
The results from this section in combination with Proposition 8 imply that the
resulting automaton indeed recognizes the complement language of the original
automaton.

Improved Ramsey-Based Büchi Complementation 163

Theorem 15. Applied to a Büchi automaton with n states, the Ramsey-based
method in combination with preorder merging of transition profiles yields a com-
plement automaton with at most 2n + 2nnn((n + 1)2n + 1) states.

Proof. As mentioned above, the number of pairs 〈P,�〉 is bounded by 2nnn.
The number of states in A〈P,�〉 is not greater than (n + 1)2n. For applying

the ω-iteration to these automata a new initial state has to be introduced.
The initial part of the complement automaton consists of a subset automaton.

Altogether this gives the claimed bound. ��

6 Conclusion

We proposed several heuristics to improve the Ramsey-based Büchi complemen-
tation method. We implemented these heuristics and showed that, in practice,
our implementation can compete with implementations of other complementa-
tion methods. We introduced a novel optimization of the Ramsey-based method
using preorders, with a 2O(n log n) upper bound. From this and from the fact
that the improved Ramsey-based approach yields good experimental results, we
conclude that the Ramsey-based approach still has its place, in contrast to the
results in [15].

Although the preorder-based optimization results in a complement automaton
for which we can prove a better upper bound, our implementation uses a different
strategy (the greedy strategy described in Section 4.3) to construct the buckets.
The reason is that the greedy strategy easily allows to restrict to reachable
transition profiles, while the preorder based approach does not allow this (at
least not directly). Therefore, the improved Ramsey-based method still has to
compute the entire reachable part of the transition monoid, and we are not aware
of any upper bound on its size better than 3n2 . However, the experiments suggest
that in many cases the reachable part of the monoid is much smaller than the
worst case.

We see our paper also in the broader context of comparing and unifying
different complementation methods. Only recently, Fogarty et al. [3] compared
the rank-based with the slice-based method. They combined both approaches
and obtained, utilizing a total preorder on the nodes in a run DAG, a unified
complementation method. We would not be surprised if the improved Ramsey-
based method could also be unified with one of the other methods. This is one
way, of extending our work. A second direction of future work could investigate
whether the heuristics of our work can be used for universality and inclusion
checking of Büchi automata.

Acknowledgments. We thank the authors of [15] for providing the 11,000
example automata, and the anonymous referees for their helpful comments.

164 S. Breuers, C. Löding, and J. Olschewski

References

1. Abdulla, P.A., Chen, Y.-F., Clemente, L., Holík, L., Hong, C.-D., Mayr, R., Voj-
nar, T.: Advanced Ramsey-based Büchi Automata Inclusion Testing. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901,
pp. 187–202. Springer, Heidelberg (2011)

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science, pp. 1–11. Stanford Univerity Press (1962)

3. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Unifying Büchi complemen-
tation constructions. In: CSL (2011)

4. Fogarty, S., Vardi, M.Y.: Efficient Büchi Universality Checking. In: Esparza,
J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 205–220. Springer,
Heidelberg (2010)

5. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter.
International Journal of Foundations of Computer Science 17(4), 851–868 (2006)

6. Kähler, D., Wilke, T.: Complementation, Disambiguation, and Determinization of
Büchi Automata Unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórs-
son, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 724–735. Springer, Heidelberg (2008)

7. Klarlund, N.: Progress measures for complementation of ω-automata with appli-
cations to temporal logic. In: FOCS, pp. 358–367. IEEE Computer Society (1991)

8. Michel, M.: Complementation is more difficult with automata on infinite words.
Technical report, CNET, Paris (1988)

9. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Logical Methods in Computer Science 3(3) (2007)

10. Ramsey, F.P.: On a problem of formal logic. Proceedings of the London Mathe-
matical Society 2(1), 264 (1930)

11. Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327. IEEE (1988)
12. Schewe, S.: Büchi complementation made tight. In: STACS. LIPIcs, vol. 3,

pp. 661–672. Schloss Dagstuhl (2009)
13. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi

automata with applications to temporal logic. Theoretical Computer Science 49,
217–237 (1987)

14. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Com-
puter Science. Formal Models and Semantics, vol. B, pp. 133–192. Elsevier Science
Publishers, Amsterdam (1990)

15. Tsai, M.-H., Fogarty, S., Vardi, M.Y., Tsay, Y.-K.: State of Büchi Complementation.
In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 261–271.
Springer, Heidelberg (2011)

16. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata
technique. Logical Methods in Computer Science 4(1) (2008)

17. http://www.automata.rwth-aachen.de/research/Alekto/

http://www.automata.rwth-aachen.de/research/Alekto/

	Improved Ramsey-Based Büchi Complementation
	Introduction
	Preliminaries
	The Ramsey-Based Approach
	Reducing State Space
	Subset Construction
	Merging Transition Profiles
	Experimental Results

	Preorder-Based Optimization
	Conclusion
	References

