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Input image
Uncropped, static RGB 

image of a single person

Output 3D skeleton
17 body joints in 3D camera space

relative to the root (pelvis) joint
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Why not some simpler geometric shapes?
We found them less effective in our recent 

occlusion-robustness study[8]

Augmented inputs with pasted occluders
Applied with 50% probability, 1–8 objects,

at random scale, at random position

● Detect person with YOLOv3, then zoom & crop
● Predict volumetric body joint heatmaps directly, with a 

fully-convolutional backbone (ResNet-50v2)
● Predict person center depth with a 1D heatmap head
● Obtain 3D points with soft-argmax and camera back-projection
● Minimize the L1 loss after subtracting root joint

● Achieved first place in the Challenge 
● No additional pose datasets used for training
● High frame rate inference (204 fps, excl. detection) on Titan X GPU

Our Approach

3D Human Pose Estimation with Volumetric Heatmaps

Comparison on the full 

Human3.6M[1][2] benchmark
MPJPE, trained on subjects S1, S5, 

S6, S7, S8; tested on S9, S11

Qualitative Results Validation set (GT translucent) 

Test set (final winning model, unknown ground truth) 

Final challenge results
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2638 occluder objects from Pascal VOC
Filter out ‘person’, ‘truncated’, ‘difficult’ and small

object segments

Ours


