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Abstract ately recognize it as yet another car, without needing any
kind of extra training. Lots of qualitative information can
In the transition from industrial to service robotics, raso be derived through mechanisms of generalization, based
will have to deal with increasingly unpredictable an@n previous exposure to other members of the same ob-
variable environments. We present a system that is ajget class. Coming back to the issue of functional parts,
to recognize objects of a certain class in an image andtteeir relative positions tend to be quite similar indeed and
identify their parts for potential interactions. The methowe won't be hard-pressed to identify them. Similarly, we
can recognize objects from arbitrary viewpoints and genan judge 3D shape from a single image, not very pre-
eralizes to instances that have never been observed dugiggly but at a qualitative level. This is often enough to
training, even if they are partially occluded and appeasllow interaction with an object, possibly in an iterative
against cluttered backgrounds. Our approach builds amay. Qualitative information can serve as a starting point
the Implicit Shape Model of Leibe et al. (2008). We et6 obtain more accurate data if needed.
tend it to couple recognition to the provision of meta-data This qualitative rather than quantitativeype of scene
useful for a task and to the case of multiple viewpoints byalysis is a natural outcome of our need to interact with
integrating it with the dense multi-view correspondencie world at a high semantic level. A need for prior, quan-
finder of Ferrari et al. (2006). Meta-data can be partitatively precise models of the surroundings would put
labels but also depth estimates, information on materiabavy constraints on the applicability and robustness of a
types, or any other pixelwise annotation. We present @ystem. An increasing number of robotic applications call
perimental results on wheelchairs, cars, and motorbikefor similar, semantic capabilities. Yet, much of robotics
Keywords: object class recognition, computer vision so far has been geared towards navigation in precisely
modeled worlds and interactions with precisely modeled
objects. Object class recognition or fast matching of in-
1 Introduction formation (e.g. images) against massive datasets to find
topological similarities was not possible before. But that
People can very quickly understand scenes and assessssigpidly changing now.
uations. In particular, we can deal with the substantiallLet us take visual navigation as a case in point for qual-
variability which we are bound to be confronted with iitative scene analysis. People are known to mainly de-
our daily lives. The human ability to recognize objedermine their trajectoryelative to landmarks. Robots,
classes and their functional parts is a vital componentan the other hand, are typically programmed to navigate
this. If a new type of car hits the market, we immedivia precisely defined paths, calculatedainsoluteterms,



based on a precise 3D world model. New results on =‘. "
fast comparisons of images taken by a mobile platfo l

against masses of reference images, can provide for
aformentioned relative trajectory planning. Indeed,
ing such technologies, the first such implementations
robot navigation have already been published (Goéde
et al., 2004, 2007; Fraundorfer et al., 2007; Segvic et
2007). Object class recognition from 2D images still has

not quite put its mark onto robotics to the same degrqf}gure 1: Humans can quickly analyze a scene from a

but can be expected to have an even bigger impact. Kfgle image. Recognizing subparts of an object helps
forts to classify parts of scenes as trees, buildings, &i.recognize the object as a whole, but recognizing the
from mobile platforms have been made, but by taking 3hject in turn helps to gather more detailed information

point clouds as input, most of this work is still very muchpout its subparts. Knowledge about these parts can then
grounded in the quantitative line of thinking (Pantofarge ysed to guide actions. For instance, in the context of a
et al., 2003; Munoz et al., 2008; Brostow et al., 2008gr wash, a decomposition of the car in its subparts can
Even though visual information is gaining interest (Poge ysed to apply optimized washing methods to the differ-

ner et al., 2007), it is mostly used only to augment thgt parts. This figure shows such decomposition obtained
point clouds. Meger et al. (2008) do use visual informgith our system.

tion in their Curious George platform to augment online
scene mapping with semantically useful information, i.e.
the presence of specific objects. It would be interestingftom the training instances. A codebook of typical ap-
extend their approach to object classes and enable inpaarances is constructed from interest points, and their
action with the objects. occurrences on the training images are recorded, allowing
With this paper, we contribute to this general shift tdo detect novel objects by means of generalized Hough
wards more qualitative, but semantically enriched infoveting. As already argued, dealing with higher intra-class
mation. Our proposed approach recognizes object classsability implies that robots can no longer rely on rigid,
from single images, regardless of their viewpoint. As gredefined 3D transformations to interact with those ob-
integral component, our approach detects individual, geets. Instead, we propose a meta-data transfer method
mantically meaningful object parts and crudely localizeghich helps a robot to localize the relevant part for inter-
them on the object. This should allow a robot to approaektion based on the actual image observations, rather than
these parts in order to engage in an interaction with tredying on a fixed rigid 3D structure. But other types of
objects. The experiments show results for object classesta-data can be handled as well, such as crude 3D shape
like cars, wheelchairs, and motorbikes. In terms of appéind surface orientation. As will be described, our meta-
cations, an automated carwash station could better ad#gtar transfer is tightly interwoven with the object class
to the particular car at hand (Figure 1), or a service rolr@icognition procedure itself. We attach meta-data to the
could approach a wheelchair, grasp it at the handles, antes cast in the Hough space. By collecting the votes
bring it to a specified location (Figure 13). Moreover, wihat contributed to an object hypothesis, we can combine
demonstrate that expectations about object classes allber meta-data fragments into an annotation for the rec-
for the estimation of the overall 3D shape of members ofnized object. Moreover, we also extend the recogni-
the same class. All this works for class members that haien procedure to handle multiple viewpoints. Instead of
never been seen before, and from single images. running a separate detector for each view, we establish
The presented work builds on earlier object class recamd exploit relations between the views. Indeed, tradi-
nition work. In particular, we use the Implicit Shapéional object class recognition methods, including the Im-
Model approach of Leibe and Schiele (Leibe et al., 200)jcit Shape Model, work with a preferred viewpoint only
which is briefly reviewed in Section 3. It models new inte.g. frontal faces or cars seen from the side). The same
stances of an object category as a jigsaw puzzle of parslti-viewpoint capabilities are inherited by our meta-




data transfer. 2 Related Work

. N . The first examples of cognitive feedback in vision have
In this paper, we highlight the use of object class reCOgl'ready been implemented. Hoiem et al. (2006) and Cor-

nition and meta-data transfer for tasks that would requiigiic ot al (2006) proposed frameworks which embed
object-robot interactions. The impact of these procedurt 2 i

b ted 1o b h h £ | i separate mechanisms of object detection and scene
can ,e EXpecled 10 be much farger, however. Lven 1o eometry estimation into a cognitive loop. Objects can
level’ processes like motion extraction or ground pla

determinati benefit v A ft £ f detected more reliably and false-positive detections in
etermination can benetit greatly. AS a matter o a(ﬁﬁprobable locations (e.g. people on trees) are filtered
this is a major breakthrough that we can expect to hap-

h icall i f th
pen over the coming years. When high-level, semar?g%lt based on the automatically estimated geometry of the

. o . X ene. In turn, object detections allow to improve scene
information like object class membership (a car) or mate-

ial t indshield be fed back into | level eometry estimation. In Leibe et al. (2007), a similar idea
rial type (a win shie ) can )€ Ted back Into Iower 1evelp, applied to images taken from a moving vehicle, us-
these can function more reliably. Cars tend to move

h d ol . i d windshield car and pedestrian detections to improve ground-plane
€ ground plane in Specilic ways, and WInAsnields atfy seane depth estimation in a city environment. How-

fsmootth andb?wz_ade dotfhglass, thgr(?[rorebshclpy, ar:jd jte'geo Uér, these systems only couple recognition and crude 3D
ormation obtained there can Letier be discarded. As Y e information (the position of the groundplane). Here
performance of the lower levels improves because of tk}\'/% set out to demonstrate the wider applicability of cog-
feedbagk from higher levels, they can then also SUppRﬁIive feedback, by inferring ‘meta-data’ such as material
these higher levels more effectlve_ly. One gets process racteristics, the location and extent of object parts, o
loops that are closed over semantic levels. These obse%\@e-n 3D object shape, based on object class recognition.

tions are mirrored by neurophysiological findings (Munbiven a set of annotated training images of a particular
ford, 1994; Rockland and Hoesen, 1994).  In the braj ject class, we transfer these annotations to new images

low-level areas do not only feed into the. hlgh—levgl containing previously unseen object instances of the same
ones, but invariably the latter channel their output mchass

the former. The resulting feedback loops over the seman- : .

. : A general framework that allows such inference is the

tic level are key for successful scene understanding. The . . .
. . ) . work onimage analogieswhere a mapping between two

brain seems keen to bring all levels into unison, from b

sic perception up to cognition. It relies on thesgnitive
loopsfor this to happen.

Si'ven imagesd and A’ is transferred to an image to get
an ‘analogous’ images’. As shown in work by Hertz-
mann et al. (2001) and Cheng et al. (2008), mappings
can include texture synthesis, superresolution and image
The paper is organized as follows. After discussidransformations like blurring and artistic filters. Most
of related work (Section 2), we recapitulate the Implicitlosely related to our work is the mapping that is called
Shape Model of Leibe et al. (2008) for simultaneous oliexture-by-numbers’, wherel is a parts annotation of a
ject recognition and segmentation (Section 3). Then foéxtured imaged’. This allows to generate a plausible
lows the first contribution of this paper, as we explaiextured image from a new annotatiégh Even though
how we transfer meta-data from training images to a pra example is shown in the cited works, it should be pos-
viously unseen image (Section 4) for both discrete antble to do the inverse mapping, i.e. annotate an unseen
real-valued meta-data. Next, as the second contributionage. However, the image analogies framework is lim-
we show how to efficiently extend the recognition and aited to local image statistics, and does not involve a deeper
notation procedure to the multi-view case (Section 5) lbyderstanding of the structure of the image.
integrating it with Ferrari et al. (2006). We demonstrate Related to image analogies is SIFT Flow by Liu et al.
the viability of our approach by transferring object pafR008), where the best matching image in a database of
labels for wheelchairs, cars and motorbikes, as well aining images is warped to match the structure of a query
depth maps and surface orientations for cars (Sectioniff)age. If the training images are annotated with a type
Section 7 concludes the paper. of meta-data (e.g. motion vectors), an annotation for the



guery image can be inferred. The success of the mettordPartial Surface Models (Kushal et al., 2007), canoni-
depends on the presence of a sufficiently similar imagal object parts (Savarese and Fei-Fei, 2007), a rigid 3D
in the training set. It cannot integrate information frormodel with features from different object instances at-
multiple images to annotate a given query image. tached to it (Yan et al., 2007) and a set of CAD mod-
Other approaches focus on inferring 3D shape from sils (Liebelt et al., 2008). However, all of these focus on
gle images. Hoiem et al. (2005) estimate the coarse gescognition only and are not suited for deriving meta-data,
metric properties of a scene by learning appearance-baisethat there is no obvious mechanism for adapting the
models of surfaces at various orientations. In the sametadata to the appearance of the new object instance.

vein, Saxena et al. (2005) are able to reconstruct coarsreliminary versions of the two main components of
depth maps from a single image of an entire scene {pys work appeared in Thomas et al. (2008, 2009) (meta-
means of a Markov Random Field. Both these methogsta transfer) and Thomas et al. (2006) (multi-view). This
focus purely on geometry estimation, without incorpgsaper for the first time discusses their full integratiomint

rating an object recognition process. Like image analg-single system and shows experimental results obtained
gies, they rely solely on the statistics of small imaggith this integrated method.

patches. There are methods which focus on more detailed
3D shape estimation of separate objects from a monocu-
lar image, like Han and Zhu (2003). Their method uses
graph representations for both the geometry of the dB- Object Class Detection with an
jects and their relations to the scene. To extract the graph s
representation from the image and estimate the geometry, Imp“CIt Shape Model
a sketch representation of the objects is generated. This
limits the method to objects that can be represented Ipythis section we briefly summarize thenplicit Shape
a set of lines or that have prominent edges, like trees\dpdel (ISM) approach proposed by Leibe et al. (2008),
polyhedra. Hassner and Basri (2006) infer 3D shape of §Rich we use as the object class detection technique at
object in a single image from known 3D shapes of othBte basis of our approach (see also Figure 2).
members of the object’s class. Their method is specificGiven a training set containing images of several in-
to 3D meta-data though, and the object is assumed tost@nces of a certain category (e.g. side views of cars)
recognized and segmented beforehand. Their analysiasswell as their segmentations, the ISM approach builds
not integrated with the detection and recognition of tlemodel that generalizes over intra-class variability and
objects, as is ours. scale. The modeling stage constructs a codebook of lo-
Recently, there has been a growing interest in extenditey appearances, i.e. of local structures that occur repeat
object category recognition to the multi-view case, miedly across the training images. Codebook entries are
roring a similar evolution in the older field of specific obebtained by clustering image features sampled at interest
ject detection (e.g. Rothganger et al. (2006); Ferrari.et pbint locations. Instead of searching for correspondences
(2006)). Aside from Thomas et al. (2006) which will fornbetween a novel test image and model views, the ISM ap-
the basis of the multi-view recognition and annotation egroach maps sampled image features onto this codebook
tension in this paper (Section 5), other approaches hagpresentation. We refer to all features in every training
been proposed to handle multi-view object class recagiage that are mapped to a single codebook entigcas
nition. Hoiem et al. (2007) have extended their Layurrencesof that entry. The spatial intra-class variability
out Conditional Random Field framework to input a 3 captured by modeling spatial occurrence distributions
model. They demonstrate recognition on cars from muibr each codebook entry. Those distributions are esti-
tiple viewpoints. Although the aspect of meta-data is notated by recording all locations of codebook entry oc-
explored, their method could potentially be applied to esdrrences, relative to the object centers (which are given
timate 3D-related meta-data like a depth map for the rexs training annotation). Together with each occurrence,
ognized object. Other methods for viewpoint-independehte approach stores a local segmentation mask, which is
object recognition have been proposed as well, e.g. baksdr used to infer top-down segmentations.
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3.2 Top-Down Segmentation

o e :!;!ﬂ:"a'rH & ] After the voting stage, the ISM approach computes a
Cﬁ m—— = L om0« probabilistic top-down segmentation for each hypothesis,
_ votingspace N Order to determine its spatial support in the image. This
Seamen e — b s — Fes#i M) s achieved by backprojecting to the image the votes con-
Rofined Hypothosis  Backprojected  Backprojection tributing to the hypothesis and using the stored local seg-
(optional) Hypothesis of Maximum mentation masks to infer the probability that each pixel
p is figure or ground given the hypothesis at location
Figure 2:The reCOgnition procedure of the ISM SyStem}\ (Le|be et a|_, 2008) More precise|y, tm'@ure prob-
ablity for p is only affected by codebook entries that
3.1 ISM Recognition match to a patcle cgntainingp, and only _by their oc-
currences that contribute to the hypothesis at locakion
The ISM recognition procedure is formulated as a profbhe probability is calculated as a weighted average over
abilistic extension of the Hough transform (Leibe et akhe corresponding pixels in these occurrences’ segmenta-
2008). Lete be an image patch observed at locatin tion masks. The weights correspond to the contribution of
The probability that matches to codebook entry can each occurrence to the hypothesis:
be expressed agc;|e). Patches and codebook entries are
represented by feature descriptors. In our implementdp = figure|o,, A)
tion, two descriptors match if their distance or similar- .
ity (Euclidean or correlation, depending on the descrip-_ Z Zp(p = figurele,ci, on, A)p(e cilon, A)
tor type), respectively, is below or exceeds a fixed thresh- “P<°

old. Each matched codebook entrycasts votes for in- = > > p(p = figure|c;, 0,, A) HemAlcdrilelne)
stances of the object categary at different locations and e;pEe c;
scalesh = (\,, Ay, \,) according to its spatial occur- 3)

rence distributionP(o,,, Alc;, £). The votes are weighted ) )
by P(0,, Alci, €)p(cile), and the total contribution of a\We underline here that a separate local segmentation mask

patch to an object hypothesis,,, A) is expressed by theiS kept for every occurrence of each codebook entry. Dif-

following marginalization: ferent occurrences of the same codebook entry in a test
image will thus contribute different local segmentations,
p(0n, Ae, £) = Zp(om Aeci, £)p(cile) (1) based on their relative location with respect to the hypoth-
7

esized object center.
where the summation is over all entriesin the code- In early ver;ions of their_work, Leibe_et al. .(2008) in-
book. The votes are collected in a continuous 3D votir‘flu{jecj.""n opt|0n§1I processing step, \.N.h'Ch refines the hy—
space (translation and scale). Maxima are found usi gt}heSIS t')y'a guided search for additional matches (Fig-
Mean Shift Mode Estimation with a kernal with scale- - 2).' This IMproves the quality Qf the segmgntaﬂons, but
adaptive bandwidth and a uniform profile (Cheng, 1995;at a h_|gh computa_'uonal cost. Umform sampling was used
Leibe and Schiele, 2005): in Leibe an(_j Schlele (2003), wh|_ch became_ untractable
' once scale-invariance was later introduced into the sys-
. 1 X—X;\ tem. Instead, in this paper we propose a more efficient
Plon, A) = hN)? ZZMO%AA%JWK <h()‘)j> refinement algorithm (Section 4.3).
kg

2
In this equation\; are the locations of the votes, stemg 3 MDL Verification
ming from image patches,. Each local maximum in this
voting space yields an hypothesis for an object instancdrag last processing stage of the ISM system, the computed
a certain location and scale in the image. segmentations are exploited to refine the object detection



scores, by taking onlfigure pixels into account. More- [§
over, this last stage also disambiguates overlapping
potheses. This is done by a hypothesis verification std
based on Minimum Description Length (MDL), whichyssiess
searches for the combination of hypotheses that together \
best explain the image. This step prevents the same local
image structure to be assigned to multiple detections (e.g.
a wheel-like image patch cannot belong to multiple cars).
For details, we again refer to Leibe et al. (2008).

Figure 3: Transferring (discrete) meta-data. Left: two
training images and a test image. Right: the annotations
L o for the training images, and the partial output annotation.
The_ power of th_e IS.M approach lies in |_ts ab"'fy 10 I€Crhe corer of the license plate matches with a codebook

4 Transferring Meta-data

) . . , ns are combined and instantiated in the output annota-
functionality of transferring meta-data to new test images

Example meta-data is provided as annotations to the '
training images. Notice how segmentation masks can be
considered as a special case of meta-data. Hence,jyg;:
transfer meta-data with a mechanism inspired by that used
above to segment objects in test images. The training
meta-data annotations are attached to the occurrences of 7 (P = ajlon, A)

codebook entries, and are transferred to a test image along = Z Zp(p = a;|ci, 0n, A)
with each matched feature that contributed to an hypoth- peEN(e) i
esis (Figure 3). This strategy allows us to generate novel % p(d(p) . (p)|e)p(6 ¢ilon, A) (4)

annotations tailored to the new test image, while expjicitl
accommodating for the intra-class variability.

Unlike segmentations, which are always binary, met-gbe components of this equation will be explained in de-

data annotations can be either binary (e.g. for delineatlfrﬁﬁ_?i)g' n-lt-gre z:tsst _e:]n: Ias; fa(f;ﬁ::’ iree ?eesr:aenr?llhzst;r:;g—
a particular object part or material type), discrete mullii.- ! tu d P th ! (?b( ).k gthp i q
valued (e.g. for identifyingll object parts), real-valued lons stored in the codebook, an € voling procedure,

(e.g. depth values), or even vector-valued (e.g. surface i)?spectively. One extension consists in transferring anno
&

entations). We first explain how to transfer discrete me fions also from image patcheearthe pixelp, and not

data (Section 4.1), and then extend the method to the rS4)ly from thosecontainingit. With the original version,
and vector-valued cases (Section 4.2). itis oﬂen difficult to obtain full coverage pf the opjegt,
especially when the number of training images is lim-
ited. By extending the neighbourhood of the patches, this
4.1 Transferring Discrete Meta-data problem is reduced. This is an important feature, because
producing the training annotations can be labor-intensive
In case of discrete meta-data, the goal is to assign to e@elr notion of proximity is defined relative to the size of
pixel p of the detected object a labele {a;};—1.n. We the image patch, and parameterized by a scale-fagtor
first compute the probability(p = a;) for each label More precisely, let an image pateh= (e,,e,,es) be
a; separately. This is achieved by extending eq. (3) fdefined by the three-dimensional coordinates of its cen-
p(p = figure) to the more general case of discrete meteer (e,, e,) and scales; obtained from the interest point



detector. The neighbourhodd(e) of e is defined as: 4.2 Transferring Real- or Vector-valued
N(E) = {plp € (csreyrsn -e.))  ~ Metadata

A potential disadvantage of the above procedure is tﬁ%ﬁmany cases, the meta-data is not discrete, but real-

for p = (p. p,) outside the actual image patch, the tran¥é ued (e.g. 3D depth) or vector-valued (e.g. surface ori-

ferred annotation is less reliable. Indeed, the pixel may ﬁntatlon). We will first explain how we obtain a real-

on an occluded image area, or small misalignment err péued annotgtion from quantizgd training data, and then
may get magnified. Moreover, some differences betwe v fully continuous meta-data is processed.

the object instances shown in the training and test images

that were not noticeable at the local scale can now affédce.1 Quantized Meta-data

the results. To compensate for this, we add the second

factor to eq. (4), which indicates how probable it is that € available training meta-data is quantized, we can
the transferred annotatian. (p) still corresponds to the use the discrete system as in the previous section, but still

‘true’ annotationa(p). This probability is modeled by gobtain a continuous estimate for the output by means of

Gaussian, decaying smoothly with the distance from tigerpolation. Treating the quantized values as a fixed set

center of the patch, and with variance related to the siz& Value labels’, we infer for each pixel a probability for
of ¢ by a scale factos: each discrete value (4). Next, we select the discrete value

label with the highest probability, as before. To refine this

R 1 d? + dy2 value, a parabola is fitted to the probability scores for the
p(a(p) = ac(p) [e) = T (_ 202 ) maximum value label and the two immediate neighbour-
with o = sq-es ing value labels. The value corresponding to the maxi-
(dordy) = (o —enspy —ey) ©6) mum of the parabola yields the final estimate. This is a

similar method as used in interest point detectors (Lowe,
Once we have computed the probabilitigp = a;) 2004; Bay et al., 2006) to determine continuous scale co-
for all possible label{a,};—-1.n, We come to the actualordinates and orientations from discrete values. Thanks to
assignment: we select the most likely label for each pix#his interpolation procedure, we obtain real-valued outpu
Note how for some applications, it might be better to ke@yen though the training meta-data is quantized.
the whole probability distribution(p(p = a;)},=1.n
rather than a hard assignment, e.g. when feeding backf£5  continuous and Vector-valued Meta-data
information as prior probabilities to low-level image pro-
cessing. Processing fully real-valued or vector-valued meta-data
An interesting possible extension is to enforce spgequires a different approach. Instead of building prob-
tial continuity between labels of neighboring pixels, e.gbility maps for discrete labels, we store for each pixel all
by relaxation or by representing the image pixels asvalues that have been voted for, together with their vote
Markov Random Field. In our experiments (Section 6)yeights. We again use Eq. 6 to decrease the influence of
we achieved good results already without enforcing spastes with increasing distance from their patch location.
tial continuity. By storing all votes, we obtain a sampling of the proba-
The practical implementation of this algorithm requirgsility distribution for each pixel. To extract a final value
rescaling the annotation patches. In the original ISM syfer each pixel, we estimate the mode of this distribution,
tem, bilinear interpolation is used for rescaling operasing a Mean Shift Procedure. This is more robust to out-
tions, which is justified because segmentation data canlibes than e.g. taking the value with the heighest weight or
treated as continuous probability values between 0 andtie average.
However, interpolating over discrete labels such as ‘wind-We use a Mean Shift procedure (Cheng, 1995) with a
shield’ or ‘bumper’, which in practice are numerical valfixed window radius to estimate the mode for each pixel.
ues too, does not make sense. Therefore, rescaling niies method works for 1-dimensional as well as vector-
be carried out without interpolation. valued data. The mode estimation procedure uses a set
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Figure 4: Mean-Shift mode estimation for continuous and vectoredlmeta-data. The top left shows a 3x3 pixel
fragment from an image, with 1D vote distributions for eattep The top right shows another possible distribution
where each vote is a 3D normal vector (the size of the circldEates the vote weights). The middle and bottom row
show the Mean-Shift mode estimation procedure for bothstgpeata. In the rightmost figures, the line width of the
windows corresponds to their scores and the black dot is tia Vialue.



of candidate windows, which are iteratively shifted tdJsing a large value fogx will only partially solve this
wards regions of higher density until convergence occupsoblem, because there is a limit as to how far informa-
Because the number of votes is small, in the order tdn from neighboring points can be reliably extrapolated.
one hundred, there is no need to initialize the window®o large ans)y may cause the annotation to ‘leak’ into
through random sampling as done in other works (Chetige background and small details to be drowned out. A
1995). Instead, we cover the entire distribution with cabetter solution is to actively search for additional code-
didate windows by considering the location of each vob®ok matches in these areas. The refinement procedure
as a candidate window, and removing all overlapping wim early, fixed-scale versions of the ISM system (Leibe
dows. Two windows overlap if their distance is less thaand Schiele, 2003) achieved this by means of uniform
the window radius. Depending on the type of data, disampling. A dense 2D grid of candidate points was gen-
tance can be defined as Euclidean distance, or as theaaated around the hypothesis, which is intractable in the
gle between vectors. Next, we iterate over all windows Isgale-invariant (3D) case. Therefore we have developed a
moving each window to the weighted mean of all votewsore efficient refinement algorithm which only searches
within its radius, until convergence occurs. The score fafr matches at promising locations.

a window is the sum of the weights of all its votes. The For each hypothesis, new candidate points are gener-
coordinates of the window with the highest score yield tlated by backprojecting all occurrences in the codebook,
positiona of the mode. The estimate for the final valuexcluding points nearby existing interest points. When

for p can be formulated as: the feature descriptor for a new point matches with the
R codebook cluster(s) that backprojected it, an additional

a(p) = arghnax Z w(ai(p)) ) hypothesis vote is cast. The confidence for this new vote
d(a,ai(p))<b is reduced by a penalty factor to reflect the fact that it was

The scalar or vector value;(p) expresses théth vote notgenerated by an actual interest point. This penalty fac-
for the value of pixelp. The functiond(zx, y) is a dis- toris0.5 in all our experiments. The additional votes en-
tance measure between meta-data val@és the mean- able the meta-data transfer to cover those areas that were
shift window radius, andu(ai(p)) is the weight of the initially missed by the interest point detector. This proce
i-th vote. In case there are multiple modes with the sarghere is illustrated in Figure 5. As can be seen from fig-
score, we take the average position (this occurs rarelyife 5, this refinement step is a vital part to obtain a good
our experiments). The label ‘background’ is assigneddéverage of the object.
the score of the window arouridis smaller than the sum This refinement step can either be performed on the fi-
of the weights of background votes. nal hypotheses that result from the MDL verification, or
Figure 4 illustrates the mode estimation procedure fon all hypotheses that result from the initial voting. In the
both 1-dimensional meta-data (e.g. depth values) anddgter case, it will improve MDL verification by enabling
dimensional normal vectors. In the latter case, the wiit4o obtain better figure area estimates of each hypothe-
dows are circles on a unit sphere, and the distance mga-Leibe et al., 2008). Therefore, we perform refinement
sure between the votes and windows is the angle betwearthe initial hypotheses in all our experiments.
their vectors. When updating the window positions, care
must be taken to keep the resulting vectors normalized. L .
When the meta-data consists of vectors that need to®e Multi-View extension of the ISM
compared using Euclidean distance (e.g. 3D points), the
windows are (hyper)spheres of the same dimension asthéhis section, we describe how we can achieve multi-
vectors. view object class detection and annotation in a more ef-
ficient and higher performance way than simply running
a battery of single-view detectors. We establish relations
between different views of the same object. There are sev-
When large areas of the object are insufficiently coveredal approaches to this problem, e.g. the view clustering
by interest points, no meta-data can be assigned to themethod by Lowe (2001) and thmage exploratioralgo-

4.3 Refining Hypotheses
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the whole object (top right). By backprojecting the occur- ¢odebook,
rence locations from the detected peak in the Hough space links)
(bottom left), additional points can be found (bottom cen-

ter), and a more complete annotation can be constructed

(bottom right).
Figure 6: Visualization of our multi-view model. Only

viewpoints lying on a circle around the object are shown.

rithm proposed by Ferrari et al. (2004, 2006). We buifdowever, the proposed method supports the general case

upon the latter method, which is designed for estabilishf Viewpoints distributed over the whole viewing sphere.

ing dense correspondences among multiple model views

of a sp_ecmc Object' In th|s_ wqu, we apply image e_xplo-one ISM for each column), antl/ sets of region tracks
ration in the following fashion: for each specific trainin

. . . re extracted (one set for each row). The next step is to
object, a set ofegion tracksis produced, densely con- . . : .
o ) ) establish relations between the single-view ISM models,
necting its model views. Each such track is composed 0

. : . . consisting of so-calledctivation links
the image regions of a single physical surface patch alonq Section 5.1 first 76 how to obtai i
the model views in which it is visible. n Section 5.1, we Tirst summarize how to obtain mufti-

o i view tracks with the method of Ferrari et al. (2004, 2006).
The global scheme of the multi-view system is as fo{ex; we explain in Section 5.2 how the tracks are in-
lows. Initially, both a set of ISM models and exploggrated in the ISM system, to construct activation links

ration systems are trained separately on the same datgfiing training (Section 5.2.1) and to use these for im-
This dataset consists of images bf object instances, proving recognition of a test image (Section 5.2.3).
taken fromV viewpoints. The viewpoints should approx-

imately correspond to a fixed set of poses, but each in-

stance does not need to have all viewpoints. In practiée]l Dense Multi-View Correspondences by

it is sufficient to walk around each of the objects with a Image Exploration

camera, and take images at approximately corresponding

viewpoints. The total set of training images can be coRinding relations between the different views of an ob-
sidered as ai x N matrix, with each row correspondingect instance is a two-stage process. First, dense two-view
to an object instance and each column to a viewpoint (figratches are produced between each model image and all
ure 6). A set ofN ISMs are then trained independentlypther images within a limited neighborhood on the view-
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5.2 Integrating the Multi-View Correspon-
dences with the ISM

With the tracks learnt from the image exploration algo-
rithm, we can make the different single-view codebooks
communicate with each other by means agftivation
links. This results in additional votes being inserted into a
codebook’s voting space, based on activations in the other
codebooks. Section 5.2.1 explains how to generate the
activation links. Sections 5.2.2 and 5.2.3 explain how the
multi-view model is used during recognition.

Figure 7: Top: some of the region-tracks found across 3 . . o .
views of a motorbike: bottom: all of them. 5.2.1 Training: Establishing Activation Links

The image exploration system (Section 5.1) produces a

set of tracks per training object, each containing regions

ing sphere. Next, all pairwise sets of matches are inf@responding across the object's model views. These re-
grated into a single multi-view model. gions are described by ellipses, i.e. affine transformation
. ~of the unit circle (figure 7). Regions are constructed so
Region correspondences between two model viewsi ot the affine transformation between two regions in a

andv; are obtained via Ferrari et al. (2004). The methqgh, o\ approximates the transformation between the image
fIt_‘St generates a large set of low confidence, initial "Batches they cover. The goal of the linking stage is to es-
gion matches, and then graduadlyploresthe surround- (4jish connections between the different ISMs. These

ing areas, trying to generate more and more matches, dgnnections consist adctivation linksbetween the oc-

creasingly farther from the initial ones. The exploratiog, rences, indicating which occurrences in different ISMs

process exploits the geometric transformations of exigkrespond to the same object part. Because the ISM and

ing matches to construct correspondences in VIBWor  jmaqe exploration systems have different goals, they use

a number of overlapping circular regions, arranged Ofygerent features, so there is no one-to-one correspon-
grid completely covering view; (coverage regions This  yance between regions and occurrences.

is achieved by iteratively alternating expansion phaseSBefore explaining how to use multi-view tracks to pro-

Wh'c_h construct new maiching regions as, W't_h €O duce activation links, we first report on a subproblem:
traction phases that remove mismatches. With eachHB-W to find the regionR, closest to an occurrend@;
{3 [

eration, the correct matches cover more and more of s problem boils down to finding in a set of ellipses (all

object, while the ratio of mismatches progressively d?égions in an image) the one nearest to a point (the cen-

creases. The result is a large set of reliable region CONEF of 0,). An analytical solution for this problem exists,

spo.ndences', densely covering the parts of the object V5 jg computationally expensive. Therefore, we use as
ble in both views. an approximation the distance to a line segment of length
Pairs of model views are matched within a limitedl|| — ||s||, aligned with the major axis of the ellipse, with
neighborhood around each view. Next, the resulting twbands the major and minor axes respectively.
view correspondences are organized into multi-view re-Occurrences are assigned to the nearest region only if
gion tracks (Ferrari et al., 2006). The crucial point is tihey are within a distanc2- ||s||. This assumes that the
use always the same coverage regions when matchirgffane transformation of a region is typically valid within
certain view to any of the other model views. As a consa-small area around it (figure 8).
guence, each region-track is directly defined by a cover-With this approximate distance measure, we are now
age region together with all regions it matches in the othrerady to link the different ISMs together, by creating ac-
views (figure 7). tivation links between occurrences in different training
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Figure 10: Overview of the multi-view recognition
scheme. After performing voting in all views, the most
promising views are selected (Section 5.2.2). Evidence
is transferred from all other views towards each working
view, using the activation links (Section 5.2.3). After an
optional refinement step (Section 4.3), the MDL procedure
(Section 3.3) produces the final detection scores.

Figure 9:Establishing links between occurrences;; is
the affine transformation between the regi@nin view+
andR; in viewj. O} is obtained by mapping occurrenc
O; from view: to view; usingA4,;. In this example, a link Pe
between occurrence&s; andOf is created, becaus(éf- is
sufficiently similar taO;.

use the following heuristics to determine whether a circle
ith centerp. and radius? matches an ellipse with center
and major/minor axis lengthd||, ||s||:

”pc_peH < a-R (8)

L= (Isl- D /R2| < b ©
- vation i iect i Isll/R > 1/c (10)
views. Activation links are created per object instance, WUR < d a

i.e. one link only connects occurrences belonging to a
specific training object. The algorithm iterates over gl a,b, ¢, d parameters, set 0 = 0.35, b = 0.25, ¢ =
occurrenceg); in all training views of this object. For ; _ 3 4 in all reported experiments. These formulas put
eachO;, it looks for the nearest regiofi;, using the ap- ¢onstraints on the distance between the centers, the ratio
proximate distance measure described above. Then, Weyeen the areas, the ratio between the minor axis and

treat every other view; in the region's track as follows the radjus, and the ratio between the major axis and the
(figure 9). The circular region corresponding®9is first  44iys respectively.

transformed with the affine transformatioty; between
R; andR;, i.e. O] = A;; - O;. Next, we look for oc-
currences()§-C in view v; whose geometry is sufficiently
similar to O.. All O; — Of are then stored as activatiorThe early processing stages for detecting an instance of
links. the object class in a novel image are similar to those of
Again, matching the occurrencéls’; to O/ involves the the original ISM framework (Section 3). Features are ex-
comparison between circles and an ellipse. However, thiacted from the image, and matched to all the codebooks
time we do not look for the nearest circle to the ellipsef the different ISMs. Next, votes are cast in the Hough
but for all circles sufficiently similar to the ellipse. Wespaces of each ISM separately, and initial hypotheses are

5.2.2 Recognition: Selecting Working Views
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following process is repeated for each working view. Af-
ter augmenting the Hough space of a working view, local
peaks are detected again, and the MDL stage of Section 3
is performed on the resulting hypotheses. Detections after
the MDL stage are the output of our system.

Figure 11: Voting spaces for three neighbouring view- The key idea for augmenting the Hough spaces is the
points at a certain scale. Note how strong hypothesgsiowing. If a feature matches to a codebook entry in
appear at similar locations. view v;, we look if that entry has occurrences linking to
our working vieww;. If we find such activation links,

) ) ) we cast additional votes in view;. We call this process
detected as local density maxima in these spaces. URdiphsferring votegsee Figure 12). In other words, if we

thi; point, our sys_tem wprks in a similar fashion as a bagkect an object part in the codebook of view but we
of independent single-view detectors. have found view; to be a more likely pose for the object,
_Figure 10 illustrates the different steps in the multiye transfer the evidence of the part to view Therefore,
view recognition procedure, which will be explained iy cast the transferred vote we use information from both
detail next. After initial hypotheses are found in eac};lls andv;'s ISMs. Remember that during the original
view separately, our system estimates which views &f&ing stage, votes are cast for possible object positions.
likely to match the actual pose(s) of the object(s) in thghese are computed as the sum of the position where a
testimage. We will refer to these viewswsrking views  qdebook entry matches in the test image, and the rela-
We observed that a correct strong hypothesis is oftge positions of the occurrences to the center of the ob-
corroborated by other strong hypotheses at similar 10Gact in the training images. To determine the position of
tions in the voting spaces of neighbouring views (figy transferred vote, we assume that when detecting a part
ure 11) This can be eXpIained by the fact that thereiﬁiview v;, the same part may be present in Vieyvat
some continuity in the voting spaces from one viewpoighproximately the same position. Therefore, the position
to the next. Moreover, the pose of an object in a testimagthe transferred vote is calculated as the sum of the co-
may fall in between the canonical poses of two trainingdinates where the codebook entry matched in view
views. We tested a few different criteria to select workingnd the relative coordinates of the occurrence in view
views. We assumed that by detecting clusters of nearbince the estimate for the object center is inevitably less
hypotheses across views, a more stable estimation of #38urate than in the single-view case, we use a larger ker-
correct pose may be possible. Surprisingly however, thjg| size when detecting peaks in the augmented Hough
is not the case: the most straightforward criterion Provggaces. This compensates for the larger variance in the
to be the best performing. Instead of clustering nearytes’ positions.
hypotheses across views like in Thomas et al. (2006), Werhe weight of the transferred votes is determined by
pick the strongest hypothesis across all views, and defigending eq. (1) to the multi-view system. This formula

a thresholdr = T' - sy00, With 5,4, the score of the expresses the contribution of a pateho an object hy-
strongest hypothesis afiti= 0.7 in our experiments. The pothesig(o,,, \):

set of working views is defined as all views that contain at
least one hypothesis whose score is abave p(on, Ale, £) =

> p(on, Nl Op(cile) +
k

5.2.3 Recognition: Transferring Votes Across Views

The next stage is taugmentthe Hough spaces of each ZZP(O”)‘M’C;’QP(CHQ (12)
working view, by inserting additional votes that stem from kol

codebook matches in other views. This is where the aatiith v; the current working view. The first term is as in
vation links come into play. Since working views are careq. (1). The summation ovér runs over all codebook
didates for the actual pose of the object to be detected, émries for viewv;. The summation ovef runs over all
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Matched feature

side a working view. Transferred votes are treated as if
they would originate directly from the interest point that
triggered the vote transfer (see Figure 12). Thanks to this
mechanism, even if there was no direct match from the
working view for that point, the patch can still be anno-
tated, leading to a more complete meta-data annotation.

Activation Link

Other training view Working View Test image

6 Experimental evaluation

Figure 12: \Vote tranfer. The codebook entry containin%l | h with | i
occurrence); matches to the testimage, but another viely€ €valuate our approach with several experiments on

is selected as working view. Therefore, a votedgris tnree different object classes: wheelchairs, cars, and mo-
cast. torbikes. Each experiment is designed to test a specific
aspect of the system. We start with two experiments in
a controlled scenario to assess the annotation ability of
other codebooks’ entries, i.e. for views # v;. In this the system. In the first experiment we perform part de-
summation, the factop(c;|e) is the probability that en- composition for wheelchairs, which is a discrete label-
try ¢} is a correct interpretation for pateh Just like in ing problem (6.1). The second experiment shows dis-
the original ISM system, we assume a uniform distribegrete, continuous, and vector-valued meta-data transfer o
tion here. P(o,,, A|ci,, ci, £) is non-zero only if there ex- cars, where in addition to part decomposition (6.2.1) we
ists an activation link betweerj andci. It expresses the also recover depth and 3D orientation information (6.2.2).
spatial distribution of transferred votes from occurrencélext, we demonstrate simultaneous recognition and anno-
in codebook entry! to occurrences in codebook entryation on challenging real-world images (6.3). Finally, in
c1. This distribution consists of a set of weighted Dirac>€ction 6.4 we use the class of motorbikes to demonstrate
impulses in the 3D Hough space at locations as descrité@ multi-view extension from Section 5.2.
above. The weights of these impulses are derived as folThese experiments demonstrate how the recognition of
lows. Each of thek occurrences in codebook entrjy Previously unseen object class instances can be coupled
has probabilityl / K to yield the correct vote for the objectwith the inference of additional information about the rec-
center (under the uniform distribution assumption). I§thPgnized object. The possibilities are not limited to the
occurrence hag links towards viewv;, the probability examples shown. Any type of information that can be at-
for each link to be valid id /L. Therefore, each impulsetached to images in a pixel-wise fashion can be used as
in the transferred vote distribution should be weighted ieta-data. Other possible examples include the expected
1/(KL). Note that, compared to the weights of tlieect Motion vector field or a temperature map for a recognized
votes, which originate from view; itself, there is an ad- object. The inferred data can be used for action planning
ditional factor of1/L. The weights of transferred vote®r can be compared with actual measurements to detect
are lower than direct ones, which adequately mirrors tHeusual events, e.g. in a surveillance application.
fact that they are more numerous and less reliable individ-

ually. 6.1 Wheelchairs: Indicating Areas of Inter-

est for a Service Robot

5.2.4 Multi-view Meta-data Transfer i ) ) ) )
In the first experiment, the goal is to delineate certain ar-

Transferring meta-data in the multi-view case is analeas of interest on the objects, which is a discrete anno-
gous to the single-view case from Section 4. Naturallgtion task. For the class of wheelchairs, a possible ap-
votes originating from within each working view are useplication is a service robot. This robot’s task could be
to construct the output annotation. Moreover, transferrediretrieve a wheelchair, for instance in a hospital or to
votes contribute as well, as if they were regular votes ihelp a disabled person at home. In order to retrieve the
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wheelchair, the robot must be able to both detect it and de-
termine where to grab it. Our method will help the robot
Grabarea  Wheels  Ammrests  Seat Fame Backgound (O @PProach the grabbing position, after which a detailed
I I analysis of the scene geometry in a small region can be
Test image Ground truth Result used to finetune the grasp (e.g. Saxena et al., 2006).

We collected 141 images of wheelchairs from Google
Image Search. We chose semi-profile views because they
were the most widely available. All images were anno-
tated with ground-truth part segmentations of the grab
area, wheels, armrests, seat, and frame. In our assistive
robot scenario, the grab area is the most important one.
A few representative images and their ground-truth an-
notations can be seen in the left and middle columns of
Figure 13.

The images are randomly split into training and test set.
We train an ISM on 80 images using the Hessian-Laplace
interest point detector (Mikolajczyk and Schmid, 2004)
and local Shape Context descriptors (Belongie et al.,
2000), because this combination has been shown to per-
form best in Seemann et al. (2005). Next, we test the
system on the remaining 61 images, using the method
from Section 4.1. In this experiment and all the follow-
ing, sy = 3 andsg = 1.4. The goal of this first exper-
iment is to assess the quality of the annotations only, not
the recognition performance, which will be demonstrated
in Section 6.3. Because each image only contains one
object, we select the detection with the highest score for
meta-data transfer. Some of the annotations produced by
our system can be seen in the third column of Figure 13.
The grab area is accurately localized.

To evaluate this experiment quantitatively, we use the
ground-truth annotations to calculate the following error
measures. We defirleakageas the percentage of back-
ground pixels in the ground-truth annotation that were la-
beled as non-background by the system. The leakage for
this experiment, averaged over all test images, i§%.

We also define @overagemeasure, as the percentage of
non-background pixels in the ground-truth images labeled
non-background by the system. The coverage obtained by

Figure 13: Results for the annotation experiment ofur @lgorithm is)5.1%. This means our method is able to
wheelchair images. From left to right: testimage, groundccurately segment the wheelchair from the background.

truth, and output of our system. White areas are unlabeledVe evaluate the annotation quality of the individual
and can be considered background. parts with a confusion matrix. For each test image, we

count how many pixels of each pat} in the ground-
truth are labeled by our system as each of the possible
parts (grasp, wheels, etc.), or remain unlabeled. Unla-

EEEER
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backgrnd frame seat armrest whegtab-area | unlabeled
backgrnd| 32,58 190 0.24 0.14 1.10 0.37 63.67
frame| 15.29 66.68 6.47 0.46 6.90 0.10 4.10

seat 2.17 1595 7428 097 0.33 1.55 4.75
armrest| 11.22 5.62 29.6449.32 1.25 0.63 2.32
wheels| 13.06 9.45 0.36 0.07 71.39 0.00 5.67

grab-area 6.48 128 9.77 011 0.00 76.75 5.62

Table 1:Confusion matrix for the wheelchair part annotation expegnt. The rows represent the annotation parts in
the ground-truth maps, the columns the output of our systdra.last column shows how much of each class was left
unlabeled. For most evaluations, those areas can be comsides “background”.

beled areas can be due to lack of codebook matchegtadl. (2007). It was obtained from the LabelMe website
that location, or because they are too far away from afiRussell et al., 2005) by extracting images labeled as ‘car’
detected object. This pixel count is normalized by the tand sorting them according to their pose. There are gener-
tal number of pixels of that label in the ground-trdth ally no images of the same car from different viewpoints.
We average the confusion table entries over all images, Teerefore, we only use the ‘az300deg’ pose, which is
sulting in Table 1. The diagonal elements show how well semi-profile view. In this pose both the car’s front
each part was recovered in the test images. Not congidindscreen, headlights, license plate) and side (wheels,
ering the armrests, the system performs well as it labelgrxdows) are visible. This allows for more interesting
correctly betweer67% and 77% of the pixels, with the depth/orientation maps and part annotations compared to
highest score being for the part we are the most interespente frontal or side views. The dataset contains a total of
in, i.e. the grab area. Performance is lower for the art39 images. We randomly picked 79 for training and 60
rests because they are the smallest parts in most imafmstesting.

Small parts have a higher risk of being confused with the

larger parts in their neighborhood. 6.2.1 Parts Decomposition

In a similar fashion as in Section 6.1, we annotated our
6.2 Cars: Indicating Areas of Interest for car dataset with ground-truth part segmentations for body,
an Automated Car Wash windshield/windows, wheels, bumper, lights and license
N late. The ISM is trained using the same interest point
To show the versatility of our system, we present reSUgétector and descriptor as in Section 6.1. The testing
on the object class ‘car’ for three different types of met%hase is again performed with the method presented in
data. The firstis a part decomposition as before. Next, Wgction 4.1. Results are shown in Figure 14. The leakage
infer 3D properties, consisting of a depth map and surfagg this experiment i$.83% and coverage i85.2%.
orientations, from &ingleimage of a previously unseen Taple 2 shows the confusion matrix for this experiment.
car. A possible application is the automated car wash frqipeling performance is good, except for the headlights.
Figure 1. A decomposition into parts can be used to ap@ymilarly to the armrests in the wheelchair experiment,
optimized washing methods to the different car parts. Tiigs js as expected because the headlights are very small.

3D information would allow to optimize the washing proThey are therefore easily confused with the larger parts
cess beforehand, based on the car's shape inferred bygdgy, humper) surrounding them.

system (both depth and orientations). This is an improve-
ment over existing systems which are in most cases baaeiiz
on sensors to measure distances to the car, and they aré
only used locally while the machine is already running. To obtain ground-truth data for training and testing, for
As a dataset we adopt a subset of the one used in Leilo¢h depth and orientation, we manually align a 3D model

Inferring 3D Shape
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bkgnd body bumper headlt window wheels licensenlabeled
bkgnd | 23.56 2.49 1.03 0.14 125 1.88 0.04 69.61
body | 4.47 72.15 464 181 8.78 1.86 0.24] 6.05
bumper| 7.20 454 73.76 157 000 785 243 2.64
headlt| 1.51 36.90 23.5434.75 0.01 065 0.23 2.41
window | 3.15 13.55 0.00 0.00 80.47 0.00 0.00 2.82
wheels| 11.38 6.85 8.51 0.00 0.00 63.59 0.01 9.65
license| 2.57 1.07 39.07 0.00 0.00 1.0456.25 0.00

Table 2:Confusion matrix for the car parts annotation experimeaott. Table 1)

on top of each training image. The most suitable 3B plausible real-world depth error can therefore be calcu-
model for each image is selected from a freely avalkted by multiplying this measure 85 - 1.80m, which
able collectioh. Depth is extracted from the OpenGlyields a mean error af4.8cm. To better visualize how
Z-buffer. In general, any 3D scanner or active lightinthe output compares to the ground-truth, Figure 16 shows
setup could be used to automatically obtain 3D shape anfew horizontal slices through two depth maps of Fig-
notations during training. We normalize the depths basek 15. Moreover, Figure 17 shows some views of a 3D
on the dimensions of the 3D models by assuming thabdel created by mapping the image of the recognized
the width of a car is approximately constant. Orientaar onto the depth map produced by our system.
tions are encoded by mapping each surface normal vectoFor the surface orientation experiment, we can calcu-
n = (z,y,z) to a 24 bit colorc = (r, ¢,b) (e.g. with a late the average angular error over the area labeled as fore-
fragment shader): ground both by the ground-truth and test image. The av-
erage error over all test images2s.6 degrees. Part of
€ =255 (n/2 +(05,05, 0’5)) (13) thisgerror is inherent to the dgtaset, becguse there is quite
We train an ISM in a similar fashion as for the discret@ large variability in the rotation of both training and test
annotation experiments, but with the real-valued (depthptances. Because our system combines the information
and vector-valued (orientation) meta-data above. The sffem several different training examples, the orientagion
tem is tested on the 60 test images, using the method frégfived for a test image will be subject to a certain degree
Section 4.2.2. For the Mean Shift mode estimation, v@é averaging.
use a window radiug of 24% of the total depth range,
and60 degrees for the orientations. Some of the resultil@
annotations can be seen in the third and fifth columns of3
figure 15. For both the depthmap and orientation experi-

ment, leakage i5.7% and coverage i94.6%, hence the 14 jjjystrate our system’s ability to simultaneously détec
segmentation performance is again very good. objects in cluttered scenes and infer meta-data annotation
It is possible to estimate the depth error in real-worlglo renort here another part decomposition experiment for

units by scaling the normalized depth maps by a facghee|chairs and cars, this time on challenging, uncon-
based on the average width of a real car, which we foupd| ;g real-world images.

to be approximately.80m. All depth maps are scaled to

the interval(0, 1] such that their depth range 3s5 times siderable clutter and/or occlusion. The same ISM trained

the width of the car. In this scale, the average depth fil’section 6.1 was used to detect and annotate wheelchairs

ror is 3.94%. In order to eliminate bias from the baCkin these images. Example results are shown in Figure 18.

ground, this is only measured inside areas labeled as ngé
0

Combined recognition and annotation
in cluttered images

For wheelchairs, we collected 34 test images with con-

> consider a detection as correct when its bounding box
background both by the ground-truth and by our meth erlaps at leasi0% with the ground-truth bounding box.

Lhttp://dmi.chez-alice.frimodels1.html Out of the 39 wheelchairs present in the images, 30 were
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Body Windows Wheels Bumper Lights License Backgnd

Test image Ground truth Result

detected, and there were 7 false positives. This corre-
sponds to a recall df7% and a precision a81%. Results

for the cars on real-world images are shown in Figures 1
and 19.

6.4 Multi-View Meta-data Annotation

In the last experiment, we demonstrate the multi-view ex-
tension to the ISM system as described in Section 5.2,
to achieve multi-view annotation of meta-data. As a test
case, we use a part decomposition experiment on mo-
torbikes. Possible applications are in the field of traffic
surveillance, or e.g. an automated parking system where
the motorbike could be lifted by a robot and stored in a
warehouse.

As training set we use the one of Thomas et al. (2006),
and add 11 extra motorbikes. This amounts to a total of
41 instances, photographed frdi positions on a circle
around the object, approximatel.5 degrees apart. Be-
cause it was impossible to collect als viewpoints for
every motorbike, there are 11 views on average for each
motorbike, and onlyl bikes have alll6 images. As a re-
sult, there are on avera@é object instances available to
train the ISM for a single viewpoint. This is a rather small
number for training ISMs, but the refinement procedure
(Section 4.3) compensates for the reduced number of oc-
currences. Each image was annotated with a part decom-
position as in 6.1, discerning between the front, wheels,
seat, body and background, as shown in Figure 20.

First, we perform recognition and parts annotation on
the same motorbike testset as in Thomas et al. (2006).
This set consists of the ‘motorbikes-test2’ subpart of
the PASCAL Visual Object Classes (VOC) 2005 Chal-
lenge (Everingham et al., 2006), with duplicates removed.
We again use the Hessian-Laplace interest point detector
and Shape Context descriptor to train our multi-view sys-
tem. We use the discrete meta-data transfer method of
Section 4.1 combined with the multi-view method of Sec-
tion 5.2 to achieve multi-view recognition and annotation.

Figure 14: Results for the car parts annotation experiUsing the same overlap removal and evaluation method
ment. From left to right: test image, ground-truth, ands in Thomas et al. (2006), we obtain the precision-recall
output of our system. White areas are unlabeled and cesrve from Figure 21. Although this curve outperforms

be considered background.

all other VOC2005 contestants on the same challenge, it
cannot be immediately compared to those results. The
other systems reported in Everingham et al. (2006) were
trained on different instances, and evaluated on the en-
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Test image Ground truth Result Ground truth Result

Figure 15:Results for the car depth map and surface orientation erpemis. From left to right: test image, ground-

truth and output of our system for the depth map experimert ground-truth and output for the surface orientation

experiment. The R,G,B colors represent the componentg aiutfiace normal according to Eq. 13. White areas are
unlabeled and can be considered background. The lines itaghdéwo rows indicate the slices from Figure 16.
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tire VOC2005 set. The equal error rate (EERYis8%

and the average precision (AP).8%. The improvement
Depth map slice at y=80 Depth map slice at y=150 over Thomas et al. (2006), where the EER wa$% and
the AP56.0%, is due to the increased number of training
images, the higher performance working view selection
(Section 5.2.2), and the refinement step. Figure 21 also
shows a confusion matrix for the estimated pose of the
detections. Allowing a deviation @2.5 degrees, our sys-
tem estimated the correct pose 8%.9% of the correctly
o % o 2% o o» w woomw o x detected motorbikes. Figure 22 shows some detections to-
Depth map sice at y=50 Depth map shce at y=150 gether with their annotations. Despite the relatively $mal
number of training instances, the quality of the annota-
0 tions is good, and occlusions are handled correctly.
We report some additional qualitative results on the
more recent VOC2007 Challenge (Everingham et al.,
" 2007), using the same set-up as in the previous experi-
ment. We test on the images marked as containing one
ST m “—m mw w wm = OF more motorbikes that can be recognized without the

need of using context information. This amounts to a to-

Figure 16:Horizontal slices through the ground-truth an(}aI of 222 images. The images contain various motorbikes

. : In very diverse environments and poses, making this a
?ou;]%lji:]dggltﬁ em1a5ps of the fifth car (top) and sixth car (bo\few difficult test set. Figure 23 shows some detections

with corresponding annotations. Again, our technique
successfully localizes the motorbikes and delivers rather
complete part decompositions over a wide range of view-
points. Figure 24 shows a few images for which either
detection, annotation or both failed. Many of the failures
are due to objects that are in a pose that deviates too much
from the set of training poses.

Inverse depth
Inverse depth

Ground Truth
Output

Inverse depth
g
Inverse depth

6.5 Processing Speed

Because our main focus is on proving the good detec-
tion and annotation ability of our system, our current im-
plementation does not yet include any optimizations for
speed nor memory usage. Although some parts of the al-
gorithm have been multi-threaded, there is a lot of un-
exploited potential for parallel processing. Given the in-
creasing trend towards multi-core computing, this means
a substantial speed-up is certainly achievable. The refine-
Figure 17: Some views of a texture mapped 3D modé?em_ step _(sectipn 4.3) is_the most computationally ex-
. .~ pénsive. With refinement disabled, the average processing
generated from the depth map of the recognized car in the . S . . )
top left corner, ime per image for the multi-view algorithm (16 views) is
about 2 minutes on an Intel Core 2 Quad Q6600 CPU.
When refinement is enabled, the average time is about 8
minutes. Within the refinement step, calculating the de-
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Figure 18: Wheelchair detection and annotation results on challeggemal-world test images. All detections are
correct except for the two topmost ones in the center lefgen&lote how one wheelchair in the middle right image
was missed because it is not in the pose used for training.
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Figure 21:Left: precision-recall curve for detection per-
formance on the VOC2005 motorbikes test set. Right:
confusion matrix for pose estimation within correct detec-
tions. The poses go counter-clockwise around the object
starting at the frontal view. The best possible result would
be a black main diagonal, and white everywhere else.

scriptors for all points is the largest bottleneck, follave

by the generating of the candidate points. For calculating
the descriptors, we use a general purpose bfnatyich

was not constructed with efficiency in mind. An opti-
mized implementation (e.g. on a graphics card) could be
an order of magnitude faster. In general, cluttered im-
ages require more processing time because they generate
more hypotheses, and processing time is approximately
linear in the number of hypotheses. By placing bounds on
the number of working views and hypotheses per working

Figure 19:Car detection and annotation results on realVieW. the processing time and memory requirements per
world test images. See also Figure 1. image can be bounded.

7 Conclusions

Front  Wheels  Seat Body Backgnd

We have developed a method to transfer meta-data an-
notations from training images to test images containing
previously unseen objects in arbitrary poses, based on ob-
ject class recognition. Multi-view recognition is achidve

by embedding relations between different views in our
model. We have proposed a natural extension of the ISM
method for the inference of meta-data directly as a re-
sult of the recognition process. The low-level cues that
can lead to the detection of an object class instance in an

image, are enriched with part labels, depths, orientations

Figure 20:Some of the multi-view motorbike images us%q .
- : ) any other type of meta-data. During recognition, our
for training, and their ground-truth part annotations. y yp 9 9

2Available at http://www.robots.ox.ac.uk/"vgg/resedadtine/
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Figure 22: Multi-view motorbike detection and annota-

tion resuits on the VOC2005 dataset. Figure 23: Multi-view motorbike detection and annota-

tion results on the VOC2007 dataset.
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applications. For instance, part, depth or surface normal
annotations can be used to help a robot manipulate ob-
jects, or as input for other systems, forming a cognitive

loop (e.g. priors for a 3D reconstruction algorithm).

Future work includes integration of these results in a
real robotics application scenario, which will require op-
timizing the implementation and investigating ways to
place bounds on the number of views and hypotheses
without sacrificing performance. Also worth investigating
is whether adding relaxation or Markov Random Fields
can further improve the quality of the results.
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