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Abstract

We provide more details of Siam RCNN’s training pro-
cedure, a more detailed description of the video hard ex-
ample mining procedure, of the short-term tracking algo-
rithm, and of the estimation of rotated bounding boxes for
VOT2018. Additionally, we explain and analyze different
methods to speed up Siam R-CNN in more detail and we
analyze the amount of training data used by previous meth-
ods compared to our method. Moreover, we conduct a per-
attribute analysis of variants of Siam R-CNN on OTB2015
and also analyze the effect of fine-tuning Box2Seg. Finally,
we present additional quantitative and qualitative results
for short-term tracking, long-term tracking and video ob-
ject segmentation.

1. Further Method Details

In the following, we provide further details on the train-
ing procedure, video hard example mining, the short-term-
tracking algorithm, and on rotated bounding box estimation.

1.1. Training

We train Siam R-CNN with random image scale sam-
pling by scaling the small edge of the image to a random
value between 640 and 800 pixels, while keeping the as-
pect ratio. In cases where this resizing would result in a
larger edge size of more than 1333 pixels, it is resized to
a larger edge size of 1333 pixels instead. During test time
we resize the image to a smaller edge length of 800 pix-
els, again keeping the longer edge size no larger than 1333
pixels. Note that these settings are the default of the Mask
R-CNN implementation we used.

We train our network with two NVIDIA GTX 1080 Ti
GPUs for 1 million steps (5.8 days) with a learning rate
of 0.01, and afterwards for 120,000 steps and 80,000 steps
with learning rates of 0.001 and 0.0001, respectively. The
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hard example training is done afterwards with a single GPU
for 160,000 steps and a learning rate of 0.001. A batch size
of one pair of images (reference and target) per GPU is used.

1.2. Video Hard Example Mining

Index Structure. For the indexing structure, we use the
“Approximate Nearest Neighbors Oh Yeah” library for ap-
proximate nearest neighbor queries'.

Feature Pre-computation. During normal training with-
out hard negative examples, the Rols given to the second
stage are generated automatically by the RPN and are thus
not always perfectly aligned to the object boundaries. In the
three cascade stages, the Rol will then be successively re-
fined by bounding box regression. However, when naively
pre-computing the features for the ground truth bounding
boxes, the network might overfit to these perfect boxes.

In order for the network to learn to handle imperfect
bounding boxes, we add random Gaussian noise to the
ground truth bounding boxes before pre-computing the fea-
tures, and afterwards run these jittered Rols through the cas-
cade stages and also pre-compute the re-aligned features af-
ter every cascade stage.

In particular, we take the ground truth bounding box
(0, Y0, 21,y1) and independently add to each component
noise sampled from a clipped Gaussian with mean 0 and
standard deviation 0.25, i.e., for i € {0, 1,2, 3}, we have

7 ~ N(0,0.25), (1
r; = clip(7, —0.25,0.25). 2)

The jittered box is then given by
(xo +70,Y0 + 71,21 + 72, Y1 +73). 3

Training Procedure. = Having pre-computed the Rol-
aligned features for each object and each cascade stage, the
training procedure now works as follows. For each train-
ing step, as usual, a random video and object in this video
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is selected and then a random reference and a random tar-
get frame. Afterwards, we use the indexing structure to
retrieve the 10,000 nearest neighbor bounding boxes from
other videos (50,000 boxes for LaSOT because of the long
sequences). Note that the nearest neighbors are searched
for over all training datasets, regardless where the refer-
ence comes from. Since the nearest neighbors are found
per frame, often a few videos will dominate the set of near-
est neighbors. To get more diverse negative examples, we
create a list of all videos (excluding the reference) in which
nearest neighbor boxes were found and randomly select 100
of these videos. For each of the 100 videos, we then ran-
domly select 1 of the boxes which were retrieved as nearest
neighbors from this video and add them as negative exam-
ples for the re-detection head.

Adding only additional negative examples creates an im-
balance in the training data. Hence, we also retrieve the
features of the ground truth bounding boxes of 30 randomly
selected frames of the current reference video as additional
positive examples.

1.3. Short-term Tracking Algorithm

For the VOT2018 dataset [27], it is standard to use a
reset-based evaluation, where once the object is lost (0
IoU between predicted and ground truth bounding box), the
tracker is restarted with the ground truth box five frames
later and receives a penalty. This extreme short-term track-
ing scenario is not what Siam R-CNN with the Tracklet Dy-
namic Programming Algorithm (TDPA) was designed for.
It often triggers resets, which normally (without reset-based
evaluation) Siam R-CNN could have automatically recov-
ered from.

Since VOT2018 is an important tracking benchmark, we
created a short-term version of the Siam R-CNN track-
ing algorithm (see Alg. 1). Given the Rol Aligned fea-
tures ff_gt_feats of the first-frame bounding box and the
previous-frame tracking result det,_;, we first extract the
backbone features of the current image and afterwards gen-
erate regions of interest (Rols) using the region proposal
network (RPN, lines 1-3).

Note, that we know for sure that the previous-frame
predicted box det;_; has a positive IoU with the ground
truth box, as otherwise a reset would have been triggered.
Hence, the object to be tracked should be located close to
the previous-frame predicted box. In order to exploit this,
and to compensate for potential false negatives of the RPN,
we add shifted versions of the previous-frame prediction
as additional Rols (lines 5-9). Here, the function shift(-)
shifts the previous-frame box det,_; by factors of its width
and height, e.g., if shift, = 0.5 and shift, = 1.0, the box is
shifted by half its width in x-direction and by its full height
in y-direction.

Afterwards, we use the redetection_head to produce

Algorithm 1 Perform Short-term Tracking for time-step ¢

: Inputs ff_gt_feats, image;, dety—1

: backbone_feats <— backbone(image,)

: Rols + RPN(backbone_feats)

> Add shifted versions of det;_1 to Rols

: for shift, € {—1.5,—1.0,—0.5,0.0,0.5,1.0,1.5} do

for shift, € {-1.5,-1.0,-0.5,0.0,0.5,1.0,1.5} do
Rols < Rols U {shift(det;_1, shift,, shift, )}

end for

: end for

10: dets¢, det_scores; < redetection_head(Rols, ff_gt_feats)

11: prev_scores, < score_redetection(detst, det:—1)

12: loc_scores; <+ |bbox(dets;) — bbox(det;—1)|1

13: scores; < det_scores; + prev_scores, + 4 - loc_scores;

14: > Filter out detections with too large spatial distance

15: for det; € dets; do

16: if ||det; — det;—1]|oc > & then

17: scores[det;] + —oo
18: end if
19: end for

20: return arg MaXdet; cdets, SCOrest[dety]

detections dets; with detection scores det_scores; for the
current frame ¢ (line 10). We then additionally compute
previous-frame scores prev_scores, by using the previous-
frame box as a reference to score the current detections
(line 11). To exploit spatial consistency, we also com-
pute location scores (loc_scores;, line 12), given by the L -
norm of the pairwise differences between the current de-
tection boxes and the previous-frame predicted box. All
three scores are then combined (line 13) by a linear combi-
nation, where the current-frame and previous-frame scores
have equal weight.

Even when using a location score, it can happen, that
a distractor object appears far away from the object to be
tracked and gets a high combined score because it looks
very similar to that object. However, since we know that
the previous-frame box has positive overlap with the ground
truth box, a far-away detection cannot be the object to be
tracked. Hence, we explicitly filter out detections which
have a large spatial distance (measured by the L,-norm) to
the previous-frame predicted box (lines 15-19).

Finally, we report the detection with the highest com-
bined score as the result for the current frame (line 20), or
in case there is no valid detection, we repeat the previous-
frame result as result for the current frame.

1.4. Rotated Bounding Box Estimation

For VOT2018, the ground truth is given as rotated
bounding boxes which were automatically estimated by an
optimization procedure based on hand-annotated segmenta-
tion masks [26]. Nevertheless, most methods produce axis-
aligned bounding boxes and then evaluate against the ro-



Method EAO T Accuracy T Robustn.
DiMP-50 [3] 0.440 0.597 0.153
SiamRPN++ [29] 0.414 0.440 0.234
ATOM [13] 0.401 0.590 0.204
Ours (short-term) 0.408 0.609 0.220
+Rotated Boxes 0.409 0.686 0.272
+Rotated Boxes +Mask Dens. Filt. 0.423 0.684 0.248
Table 1: Results using rotated bounding boxes on

VOT2018. Mask Dens. Filt. denotes using a mask density
filter.

tated bounding box ground truth.

As an extension of Siam R-CNN, we used Box2Seg to
produce segmentation masks and then also ran the optimiza-
tion procedure which was used to create the ground truth to
generate rotated bounding boxes. Note that this optimiza-
tion procedure (implemented in MATLAB) is very slow,
slowing down our whole method to around 0.23 FPS. Note
that the speed of the optimization might strongly depend on
the hardware/software setup. However, here we do not aim
for a good run-time but instead want to analyze the achiev-
able performance using rotated bounding boxes.

Table 1 shows our results on VOT2018 with rotated
bounding boxes. When creating a rotated bounding box
for each frame, the overall EAO stays almost the same and
only increases from 0.408 to 0.409. However, the accuracy
which measures the average intersection-over-union of the
bounding box with the ground truth while disregarding re-
sets, increases strongly from 0.609 to 0.686. At the same
time, the number of resets strongly increases which can be
seen by the robustness degrading from 0.220 to 0.272.

A manual inspection of the results revealed that in some
cases the estimated segmentation mask from Box2Seg was
almost empty and the resulting rotated bounding box is
hence of very poor quality and can easily trigger a reset.

To avoid these cases, we apply a mask density filter,
which means that in cases where the estimated segmenta-
tion mask fills less than 10% of the bounding box which
was used to generate it, we stick to the original axis-aligned
bounding box in this frame instead of reporting the rotated
bounding box. In this setup, the EAO significantly increases
to 0.423, while keeping a high accuracy of 0.684. With the
mask density filter, Siam R-CNN achieves a robustness of
0.248 which is still worse than the robustness of the axis-
aligned version, but significantly better than the version
without the filter.

2. Further Analyses

In the following, we conduct further analyses of the
speed-accuracy trade-off of Siam R-CNN and of the de-

Dataset Speed OTB2015 LaSOT LTB35

Eval measure FPS AUC AUC F
Siam R-CNN 47 701 648 6638
ResNet-50 51 680 623 644
1 res. 57 702 629 656
100 Rols 87 687 641 613
100 Rols + £ res. 136 691 632 660
ResNet-50 + 100 Rols 103 669 615 659
ResNet-50 + 3 res. 6.1 686 612 640

ResNet-50 + 100 Rols + 2 res. 152 67.7 611 637

Table 2: Extended timing analysis of Siam R-CNN using a
V100 GPU.

pendence of Siam R-CNN and other methods on the used
training data. Additionally, we conduct a per-attribute anal-
ysis on OTB2015, and an analysis of the fine-tuning of
Box2Seg.

2.1. Speed-Accuracy Trade-off

Tab. 2 extends the timing analysis of the main paper.
Here, we evaluate three changes aimed at increasing the
speed of Siam R-CNN (smaller backbone, smaller input res-
olution, and fewer Rol proposals) in more detail.

When evaluating with a ResNet-50 backbone, Siam R-
CNN performs slightly faster and still achieves state-of-the-
art (SOTA) results (62.3 on LaSOT, compared to 56.8 for
DiMP-50 with the same backbone). This shows that the
strong results are not only due to a larger backbone, but due
to our tracking by re-detection approach.

We also evaluate reducing the image input size to a
smaller image edge length of 400 pixels instead of 800 (row
% res”). This also results in only a slight decrease in per-
formance in two benchmarks, and a slight increase in per-

formance on OTB2015.

The row “100 Rols” shows the results of using 100 Rols
from the RPN, instead of 1000. This almost doubles the
speed as most compute occurs in the re-detection head. This
results in only a small score decrease on two benchmarks,
while improving results on LTB35. This shows that Siam R-
CNN can run very quickly, even though it is based on a two-
stage detection architecture, as very few Rols are required.

The fastest setup with all three of these speed improve-
ments (ResNet-50 + 100 Rols + % res.) achieves 15.2
frames per second with a V100 GPU, but still achieves
strong results, especially for long-term tracking. The same
setup with a ResNet-101 backbone instead of ResNet-50
(100 Rols + % res.) runs at 13.6 frames per second and
achieves excellent results and loses at most 1.6 percentage
points over these three datasets compared to the standard

Siam R-CNN, while running almost three times as fast.



Videos

Additional Images Total

E Method GOT-10k ImageNet-Vid LaSOT YT-VOS TrackingNet YT-BB COCO ImageNet ImageNet-Det Videos + Add. Imgs
9k 4k 1k 3k 30k 380k 119k 1281k 457k

 Siam R-CNN v v v v v 18k+119k

i DiMP & ATOM v v v v v 41k+1400k
SiamRPN++ v v v v v 384k+1867k

o Siam R-CNN v v 9k+119k

8 DiMP & ATOM v v 9k+1281k
SiamRPN++ v v v 9k+1400k

Table 3: Training data used compared to some important recent methods [3, 13,

]. Videos + Add. Imgs: Number of videos

plus number of additional images not in videos. Eval.: Evaluation benchmark setup. ALL: All benchmarks except GOT-10k.
GOT: Evaluate on GOT-10k, use only GOT-10k training data in addition to static images. ImageNet-Vid: ImageNet Video,
YT-VOS: YouTube-VOS, YT-BB: YouTube BoundingBoxes.

ALL BC DEF FM IPR v LR MB OCC OPR ov SV

Siam R-CNN (ours) 70.1 69.1 64.5 71.0 69.9 71.6 71.1 74.2 66.6 68.6 67.9 72.1
No hard ex. min. -1.7 -3.0 -1.3 -2.2 -2.2 -23 -5.3 -2.1 -1.7 -2.1 -1.2 -1.7
No TDPA (Argmax) -6.3 -71.9 -1.5 -5.6 -9.5 -33 -140  -5.8 -4.6 -8.4 -6.8 212
No TDPA (Short-term)  -2.8 -6.5 -2.8 -3.5 -1.6 -2.5 -6.2 -8.4 -4.8 -3.7  -145 -5.3
0 Rols -129  -140 -105 -205 -105 -122  -203 -258 -149 -12.1 -21.8 -13.8

100 Rols -1.4 -1.8 +1.2 -3.6 -3.1 -0.8 -1.8 -4.5 -1.6 2.2 -4.2 -2.1

10000 Rols -0.5 -0.8 0.0 -0.1 -0.6 +04  +0.8 0.0 -0.7 -0.7 -0.3 -0.6
DiMP-50 [3] -1.3 -5.3 +3.7 -2.6 -1.4 -2.2 -8.1 -4.3 -0.2 -0.8 -5.4 -2.8
SiamRPN++ [29] -0.4 -0.0 +1.7 -2.0 -0.5 -0.3 -5.1 -3.0 -0.3 -0.3 -3.1 -2.4

Table 4: Per attribute ablation for Success (AUC) on OTB2015. The first row shows the performance of the full model, and all
other rows show the absolute difference to the full model. All: All Videos, BC: Background Clutters, DEF: Deformation, FM:
Fast Motion, IPR: In-Plane Rotation, I'V: Illumination Variation, LR: Low Resolution, MB: Motion Blur, OCC: Occlusion,
OPR: Out-of-Plane Rotation, OV: Out-of-View, SV: Scale Variation.

2.2. Training Data Dependence

We show how our training data compares to the data
used by some important recent methods in Table 3. We use
more video ‘datasets’, but actually use far less data. DiIMP-
50 [3] and ATOM [13] both use 2.28 times more videos.
SiamRPN++ [29] uses 21.3 times more. All three use Ima-
geNet and train on COCO by creating artificial videos using
augmentations (we use COCO without this complex kind
of augmentation). The only dataset we use which is not
used by any of the other considered methods is YouTube-
VOS [65], as we also evaluate on VOS benchmarks. For
GOT-10k [21] evaluation, where only GOT-10k video train-
ing data is allowed, all other methods also use static images
from ImageNet. For SiamRPN++, we use COCO but not
ImageNet. This shows that our strong results are not due to
the amount of training data.

2.3. Per-Attribute Analysis

Table 4 shows a per-attribute ablation on OTB2015.
Hard example mining improves results over all attributes
and is particularly helpful for low resolution (LR) and back-
ground clutter (BC).

Our Tracklet Dynamic Programming Algorithm (TDPA)

models spatio-temporal consistency cues only where it is
likely that there are consistent predictions, by building up
tracklets. It corrects itself immediately after disappearance
by tracking all objects simultaneously, and determining the
most likely set of previous tracklets for the object online
using dynamic programming. For the Out-of-View (OV)
attribute (the target disappears in the video), TDPA signif-
icantly outperforms Short-term, which is unable to rely on
spatio-temporal consistency cues during disappearance and
thus often fails and performs worse than Argmax. TDPA
tackles this problem of object disappearance, by using a dy-
namic and robust type of spatio-temporal consistency cues
and also increases robustness against distractors, improving
results across all attributes.

2.4. Fine-tuning Analysis

Figure 1 shows the result of Siam R-CNN with a differ-
ent number of fine-tuning steps for Box2Seg. For the fine-
tuned Box2Seg variant in the main paper, we used 300 steps
which yields a speed-accuracy trade-off of 74.8 7 &F with
a run-time of 1 FPS (compared to 70.6 J&F and 3.1 FPS
without fine-tuning). Note that here the timing is per frame,
and not per object, so that the run-time without fine-tuning
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Figure 1: Segmentation quality on the DAVIS 2017 valida-
tion set depending on the number of fine-tuning steps.

is longer than for single-object tracking scenarios. When
increasing the number of fine-tuning steps to 1000, Siam R-
CNN achieves a J &F score of 75.4 with a run-time of 0.38
FPS.

3. Further Experimental Results

In addition to the 11 benchmarks that we presented in
the main paper, we present here results on eight further
benchmarks, of which five are short-term tracking bench-
marks, one is a long-term tracking benchmark and two are
video object segmentation benchmarks. For all benchmarks
(except for the three VOT benchmarks) we use exactly the
same tracking parameters. This is in contrast to many other
methods which have parameters explicitly tuned for each
dataset. This shows the generalization ability of our tracker
to many different scenarios. For the three VOT datasets we
use the short-term variant of the tracking parameters (with
the same parameters across these three benchmarks).

3.1. Further Short-Term Tracking Evaluation

In the main paper we presented short-term tracking re-
sults on OTB2015 [63], UAV123 [41], NfS [25], Track-
ingNet [42], VOT2018 (the same as VOT2017) [27], and
GOT-10k [21]. Here in the supplemental material we
present results on five further short-term tracking bench-
marks.  These further benchmarks are OTB-50 [63],
OTB2013 [62], VOT2015 [28], VOT2016 [26], and Tem-
pleColor128 (TC128) [35].

OTB-50. We evaluate on the OTB-50 benchmark [63] (50
videos, 539 frames average length). This dataset is a sub-
set of OTB2015 using exactly half of the sequences. It is
evaluated with the same evaluation measures as OTB2015.
Tab. 5 compares our results to five state-of-the-art trackers.

SA-Siam SINT++ RTINet SPM ACT Siam
[19] [611  [701 [56] [6] R-CNN

Success AUC  61.0 62.4 63.7 653 657 66.3

Table 5: Results on OTB-50 [63].

RPCF SACF MCCT DRT GFS-DCF = Siam
(511 (721 [58] [491  [66]  R-CNN

Success AUC 713 713 714 720 722 70.4

Table 6: Results on OTB2013 [62].

MCCT STRCF RTINet ASRCF UPDT Siam
(581 311 (701  [111 [ R-CNN

Success AUC  59.6  60.1 60.2 60.3 622 60.1

Table 7: Results on TC128 [35].

FlowTrack SACF SiamRPN SiamDW DaSiamRPN Ours
(771 [72] [30] [74] [76] (short-t.)

EAO 341 34.3 35.8 38.0 44.6 45.4

Table 8: Results on VOT2015 [28].

DaSiamRPN SPM DRT SiamMask UpdateNet Ours
(76l [561 [491  [60] [71]  (short-t.)

EAO 41.1 434 442 44.2 48.1 46.5

Table 9: Results on VOT2016 [26].

Siam R-CNN achieves 66.3 AUC, which outperforms the
previous best published results by ACT [6] by 0.6 percent-
age points.

OTB2013. We evaluate on the OTB2013 benchmark [62]
(51 videos, 578 frames average length). This dataset is a
predecessor to OTB2015 and is evaluated with the same
evaluation measures. Tab. 6 compares our results to five
state-of-the-art trackers. Siam R-CNN achieves 70.4 AUC,
which is comparable to state-of-the-art trackers while being
1.8 percentage points behind the best published results by
GFS-DCF [66].

TC128. We evaluate on the TempleColor128 (TC128)
benchmark [35] (128 videos, 429 frames average length).
This dataset is also evaluated using the OTB2015 evalua-
tion measures. Tab. 7 compares our results to five state-of-
the-art trackers. Siam R-CNN achieves 60.1 AUC, which is
comparable to state-of-the-art trackers while being slightly
inferior to the best published results by UPDT [4] by 2.1
percentage points.

VOT2015. We evaluate on the VOT2015 benchmark [28]
(60 videos, 358 frames average length). This is evaluated
with the same evaluation measures as VOT2018. Tab. 8
compares our results to five state-of-the-art trackers. The



SiamFC PTAV ECO SiamRPN DaSiamRPN  Siam
[21 el 121 [30] [76] R-CNN

Success AUC 399 423 435 454 61.7 67.2

Table 10: Results on UAV20L [41].

short-term version of Siam R-CNN achieves 45.4 EAO,
which outperforms the previous best published results by
DaSiamRPN [76] by 0.8 percentage points.

VOT2016. We evaluate on the VOT2016 benchmark [26]
(60 videos, 358 frames average length). This is also evalu-
ated with the same evaluation measures as VOT2018. Tab. 9
compares our results to five state-of-the-art trackers. The
short-term version of Siam R-CNN achieves 46.5 EAO,
which outperforms all previous published results except
those of UpdateNet [71] which outperforms our results by
1.6 percentage points.

3.2. Further Long-Term Tracking Evaluation

We evaluate on one further long-term tracking dataset,

in addition to the three benchmarks presented in the main
paper.
UAV20L. We evaluate on the UAV20L benchmark [41] (20
videos, 2934 frames average length). This dataset contains
20 of the 123 sequences of UAV 123, however each of these
sequences extends for many more frames than the equiva-
lent sequence in the UAV123 version. It is also evaluated
with the same evaluation measures as OTB2015. Tab. 10
compares our results to five state-of-the-art trackers. Siam
R-CNN achieves 67.2 AUC, which outperforms the previ-
ous best published results by DaSiamRPN [76] by 5.5 per-
centage points, which further highlights the ability of Siam
R-CNN to perform long-term tracking.

3.3. Further Video Object Segmentation Evaluation

Table 11 is an extended version of the results on the
DAVIS 2017 [46] validation set shown in the main paper.

Table 12 shows results on the DAVIS 2016 validation
set [45] (20 videos, 68.8 frames average length, 1 object
per video) compared to 14 state-of-the-art methods. Meth-
ods are ranked by the mean of J and 7. Among meth-
ods which only use the first-frame bounding box (without
the mask), Siam R-CNN achieves the strongest result with
78.6% J&F, which is 8.8 percentage points higher than
SiamMask [60]. When fine-tuning Box2Seg, our method
achieves 87.1% J&F, which is close to the best result on
DAVIS 2016 by STM-VOS [43] with 89.3%.

Table 13 shows results on the DAVIS 2017 [46] test-dev
set (30 videos, 67.9 frames average length, 2.97 objects per
video on average) compared to six state-of-the-art methods.
Siam R-CNN achieves 53.3% J &F, which is more than 10
percentage points higher than the result of SiamMask [60].

Init Method FTM J&F T F Tbox W)

Siam R-CNN (ours) X

>

70.6 66.1 75.0 78.3 0.32

Siam R-CNN (fastest)y X X 70.5 66.4 74.6 76.9 0.12

5 SiamMask [60] X X 55.8 54.3 58.5 64.3 0.067
5 SiamMask [60] (Box2Seg) X X 63.3 59.5 67.3 64.3 0.11
SiamRPN++ [29] (Box2Seg) X X 61.6 56.8 66.3 64.0 0.11
DiMP-50 [3] (Box2Seg) X X 63.7 60.1 67.3 65.6 0.10
STM-VOS [43] X v 818 79.2 843 — 0.32f
FEELVOS [53] X v 715 69.1 740 71.4 051

é RGMP [64] X v/ 66.7 64.8 68.6 665 0.287
g VideoMatch [20] X v/ 624 565 682 — 0.35
FAVOS [8] X v 582 54.6 61.8 680 1.2f

OSMN [68] X v/ 548 525 57.1 60.1 0.28"
PReMVOS [38] v/ / 77.8 739 81.7 81.4 37.6

Ours (Fine-t. Box2Seg) v v 74.8 69.3 80.2 783 1.0

u‘f_ DyeNet [33] v/ 141 — - - 932f
é OSVOS-S [40] v/ / 68.0 64.7 71.3 684 9f
g CINM [1] v/ / 675 64.5 70.5 72.9 >120
OnAvOS [55] v/ V 636 61.0 66.1 66.3 26

0SVOS [5] v/ v 603 56.6 63.9 57.0 18t

GT boxes (Box2Seg) X X 826 79.3 85.8 100.0 —

GT boxes (Fine-t. Box2Seg) v v 86.2 81.8 90.5 100.0 —

Table 11: Results on the DAVIS 2017 validation set. FT:
fine-tuning, M: using the first-frame masks, t(s): time per
frame in seconds. {: timing extrapolated from DAVIS 2016
assuming linear scaling in the number of objects. Siam R-
CNN (fastest) denotes Siam R-CNN with ResNet-50 back-
bone, half input resolution, and 100 Rols from the RPN.

STM-VOS [43] performs significantly better with 72.3%,
however it relies on the first-frame mask which makes it
less usable in practice.

Fig. 2 shows the speed-accuracy tradeoff of different
methods for the YouTube-VOS 2018 validation set. Again,
Siam R-CNN achieves a good speed/accuracy trade-off
which is only beaten by STM-VOS [43] (which relies on
the first-frame mask).

3.4. Further Qualitative Evaluation

In Figure 3 we present further qualitative results of our
method on the OTB2015, LTB35 and DAVIS 2017 bench-
marks. We present results of our method compared to the
best competing method. We show sequences for which
Siam R-CNN has the best and worst relative performance
compared to the competing method, as well as the sequence
with the median relative performance.

3.5. Thorough Comparison to Previous Methods

Throughout the main paper and supplemental material
we presented results on 11 short-term tracking benchmarks
and four long-term tracking benchmarks, however these



Init Method FTM J&F T F Jbox Hs)
Siam R-CNN (ours) X X 78.6 76.8 80.4 86.6 0.24

% Siam R-CNN (fastest) X X 79.0 77.4 80.6 85.0 0.08
fé SiamMask [60] X X 69.8 71.7 67.8 73.3 0.03
SiamMask [60] (Box2Seg) X X 75.9 75.6 76.3 73.3 0.06
STM-VOS [43] X v 89.3 88.7 899 — 0.16
RGMP [64] X v 81.8 81.5 82.0 79.3 0.14

v FEELVOS [53] X v 81.7 81.1 82.2 80.2 045
3 FAVOS [8] X v 81.0 824 795 831 0.6
& VideoMatch [20] X v 809 81.0 80.8 — 0.32
PML [7] X v 774 755 793 759 0.28

OSMN [68] X v 735 74.0 729 71.8 0.14

Ours (Fine-t. Box2Seg) v v 87.1 85.3 88.8 86.6 0.56
PReMVOS [38] vV v/ 86.8 849 88.6 89.9 3238

‘3_';' DyeNet [33] v v — 862 — — 4.66
f‘@ OSVOS-S [40] v v/ 865 856 87.5 844 4.5
=] OnAVOS [55] v v 85.0 85.7 84.2 84.1 13
CINM [1] v v/ 842 83.4 85.0 83.6 > 120

OSVOS [5] v v 80.2 79.8 80.6 76.0 9

GT boxes (Box2Seg) X X 80.5 79.1 81.9 100.0 —

GT boxes (Fine-t. Box2Seg) v v 89.0 87.6 90.5 100.0 —

Table 12: Quantitative results on the DAVIS 2016 validation
set. FT denotes fine-tuning, M denotes using the first-frame
mask, and t(s) denotes time per frame in seconds. Siam R-
CNN (fastest) denotes Siam R-CNN with ResNet-50 back-
bone, half input resolution, and 100 Rols from the RPN.

Init Method FT M J&F J F t(s)

9 Siam R-CNN (ours) X X 533 48.1 58.6 044
S SiamR-CNN (fastest)y X X 51.6 46.3 56.8 0.16
- SiamMask [60] X X 432 40.6 45.8 0.09f
o STM-VOS [43] X vV 723 693 752 0.48f
3 RGMP [64] X v 529 514 544 0.42f
8 FEELVOS [53] X v 578 552 605 0.54
df PReMVOS [38] v/ v/ 716 67.5 757 41.3
=% Ours (Fine-t. Box2Seg) v v 62.1 57.3 66.9 1.48
§ OnAVvOS [55] v/ / 565 534 59.6 39

Table 13: Quantitative results on the DAVIS 2017 test-dev
set. FT denotes fine-tuning, M denotes using the first-frame
masks, and t(s) denotes time per frame in seconds. t: timing
extrapolated from DAVIS 2016 assuming linear scaling in
the number of objects. Ours (fastest) denotes Siam R-CNN
with ResNet-50 backbone, half input resolution, and 100
Rols from the RPN.

comparisons are spread throughout a number of tables and
figures. We provide a unified and thorough comparison of
our results to previous methods across all of these bench-
marks in Table 14. We compare to the results of every paper
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Figure 2: Quality versus timing on the YouTube-VOS 2018
[65] validation set. Only SiamMask [60] and our method
(red) are able to work without the ground truth mask of
the first frame and require just the bounding box. Meth-
ods shown in blue fine-tune on the first-frame mask. Ours
(fastest) denotes Siam R-CNN with ResNet-50 backbone,
half input resolution, and 100 Rols from the RPN.

that presents comparable tracking results from major vision
conferences in 2018 and 2019. As well as including all re-
sults from all of these papers we also present additional re-
sults from some methods that were either taken from later
papers or that we obtained by evaluating open-source code.
Sometimes these additional results were different to those
presented in the original papers, in which case both results
are shown. By evaluating on all of these datasets, and com-
paring to all methods from these two years, we are able to
present a complete and holistic evaluation of our method
compared to previous works.

Our method outperforms all previous methods on six out
of the 11 evaluated short-term tracking benchmarks, some-
times by up to 7.2 percentage points. On the remaining five
benchmarks we achieve close to the best results, with only
a few previous methods obtaining better results, and by not
too large a margin.

For long-term tracking, Siam R-CNN performs ex-
tremely well. Siam R-CNN outperforms all previous meth-
ods over all four benchmarks by between 3.9 and 10.1 per-
centage points.
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Figure 3: Qualitative results on OTB2015 [63], LTB35 [39], and DAVIS 2017 [46] (validation set). We compare the results
of Siam R-CNN to the best competing methods, which are UPDT [4] for OTB 2015, SiamRPN++ [29] for LTB35, and
SiamMask [60] for DAVIS 2017. Siam R-CNN’s result is shown in red (magenta for DAVIS 2017), the competing methods’
results are shown in blue, and the ground truth in yellow. For each benchmark, the sequences with the best, worst and median
relative performance (A) between Siam R-CNN and the competing method are shown. Six frames spaced equally throughout
each video are shown.



Short-Term Tracking Long-Term Tracking

Track.Net GOT10k NfS VOT15 OTB50 OTB15 UAVI123 VOTI16 OTB13 TC128 VOT17/18 OxUVA  LaSOT UAV20L LTB35
AUC AUC EAO AUC AUC AUC EAO AUC AUC EAO AUC F

AUC maxGM  AUC
Ours A to SOTA +7.2 +3.§ +1.9 +0.8 +0.6  +0.0 -0.5 -1.6 -1.8 -2.1 -3.2 +10.1 +7.9 +5.5 +3.9
Siam R-CNN 812 649 63.9 4547 663 70.1 T 704 601 408" 723 64.8 672 66.8
DiMP [3] 68.4 65.4 44.0 §
UpdateNet [71] 67.7 48.1 39.3 47.5
GFS-DCF [66] 60.9 69.3 722
ICCV  SPLT [67] 61.6
2019  fdKCF[75] 67.5 347 705 26.5
Bridging [22] 51.5 64.7 58.6 65.6
GradNet [32] 63.9 556 247 36.5
MLT [10] 61.1 62.1 36.8
ARCF [23] 473
SiamRPN++[29]  73.3 4548 69.6 61376428 49.6
ATOM [13] 70.3 59/58.45 67.18 8 40.1 51.5/51.48
ASRCF[11] 69.2 39.1 32.8 35.9
SPM [56] 51.3% 653  68.7 434 693 33.8
CVPR  SiamMask [60] 442 38.7
2019 SiamDW [74] 38.0 67.3 370 66.6 30.1
RPCF [51] 69.6 71.3 31.6
C-RPN [17] 66.9 66.3 363 675 28.9 455
TADT [34] 327 66.0 299 680 562
GCT [18] 64.8 50.8 67.0 274
UDT [57] 63.2 30.1 54.1
UPDT [4] 61.1% 54.1/53.78 70.18 5575478 622 378
DaSiamRPN [76]  63.8% 65.8% 58.6/58.5% 41.1 326 41.5% 60.7%
ACT [6] 64.3 275 66.3
RTINet [70] 63.7 682 29.8 60.2
SACF [72] 34.3 69.3 380 713
ECCV  DRL-IS [47] 67.1 59.0
2018 DSLT [36] 66.0 53.0 332 683 587
Meta-Tracker [44] 66.2 31.7
RT-MDNet [24] 65.0 53.5 56.3
MemTrack [69] 62.6 64.2
StructSiam [73] 62.1 264  63.8 33.5%
SiamFC-tri [14] 535 592 62.9 213
DRT [49] 69.9 442
MCCT [58] 69.5 393 714 596
SiamRPN [30] 35.8 63.7 34.4 45.48
STRCF [31] 68.3 313 60.1
VITAL [48] 68.2 323 710 39.08
CVPR  LSART[50] 67.2 323
2018  FlowTrack [77] 34.1 65.5 334 689
RASNet [59] 32.7 64.1 67.0 28.1
SA-Siam [19] 3.0 610 657 201 677 23.6
TRACA [9] 60.3 65.2
MKCF [52] 45.5 64.1
HP [15] 554 60.1 62.9
SINT++ [61] 624 574

Table 14: Comparison to all trackers published in CVPR, ICCV and ECCV in 2018 and 2019. Results from original papers,
except when marked with ¥ which are from later papers, or from running open-source code. Results in {Red, , Blue}
are the {Best, , Third}, respectively. Benchmarks are ordered by performance relative to the best method other than
ours (A to SOTA). Methods are ordered first by conference date, then by most ‘bests’, most ‘seconds’, most ‘thirds’ and
finally by approximate ‘head-to-head’ performance. On all benchmarks Siam R-CNN uses exactly the same network weights
and tracking hyper-parameters, except for those marked with T which use the ‘short-term’ tracking parameters, and those
marked with * which use weights trained only on GOT-10k.
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